
CMP325
Operating Systems

Lecture 06, 07

I/O Redirection & IPC

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of previous lecture

• File Management in Linux

• IO Redirection

• Cooperating Processes

• Taxonomy of Inter Process Communication

• Persistence of IPC Objects

• Use of Pipes on the Shell

• Use of FIFOS on the Shell

• Use of Signals on the Shell

2

3

Connection of an Opened File

4

File Management in Linux
Following are the four key system calls for performing file I/O
(programming languages and software packages typically employ these
calls indirectly via I/O libraries):
• fd = open(pathname, flags, mode) opens the file identified by

pathname, returning a file descriptor used to refer to the open file in
subsequent calls. If the file doesn’t exist, open() may create it,
depending on the settings of the flags bit. The flags argument also
specifies whether the file is to be opened for reading, writing, or
both. The mode argument specifies the permissions to be placed on
the file if it is created by this call. If the open() call is not being used
to create a file, this argument is ignored and can be omitted

• numread = read(fd, buffer, count) reads at most count bytes from
the open file referred to by fd and stores them in buffer. The read()
call returns the number of bytes actually read. On eof, read() returns
0.

• numwritten = write(fd, buffer, count) writes up to count bytes from
buffer to the open file referred to by fd. The write() call returns the
number of bytes actually written, which may be less than count

• status = close(fd) is called after all I/O has been completed, in order
to release the file descriptor fd and its associated kernel resources

5

Fd

flags

File ptr

PPFDT

0

1

2

3

4

5

File

offset

Status

flags

Inode

pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

File Descriptor Purpose POSIX Name stdio Stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

File Descriptor to File Contents

5

File Descriptor to File Contents
• Each process in UNIX has an associated PPFDT, whose size

is equal to the number of files that a process can open
simultaneously

• File descriptor is an integer returned by open() system call,
and is used as an index in the PPFDT

• File descriptor is used in read(), write() and close() system
call

• Kernel uses this descriptor to index the PPFDT, which
contain a pointer to another table called System Wide File
Table

• In the System Wide File Table, other than some
information there is another pointer to a table called Inode
Table

• The inode table contains a unique Inode to every unique file
on disk

6

7

Standard Descriptors in UNIX / Linux
• Three files are automatically opened for every process to

read its input from and to send its output and error
messages to.

• These files are called standard files:

• 0 – Standard Input (stdin). Default input to a
program is from the user terminal (keyboard), if no file
name is given.

• 1 – Standard Output (stdout). A simple program’s
output normally goes to the user terminal (monitor), if
no file name is given.

• 2 – Standard Error (stderr). Default output of error
messages from a program normally goes to the user
terminal, if no file name is given.

• These numbers are called File Descriptors – System calls
use them to refer to files.

Examples – File Handling

8

int main(){

char buff[256];

read(0, buff, 255);

write(1, buff, 255);

return 0;

}

int main(){

char buff[256];

while(1){

int n = read(0, buff, 255);

write(1, buff, n);

}

return 0;

}

Example – File Handling

9

int main(){

char buff[2000];

int fd = open ("/etc/passwd", O_RDONLY);

int n;

for(;;){

n = read(fd, buff, 1000);

if (n <= 0){

close(fd);

exit(-n);

}

write(1, buff, n);

}

return 0;

}

Example – File Handling

10

int main(){

int n;

char buff[1024];

int
fd=open("file.txt",O_CREAT|O_TRUNC|O_RDWR,0666);

for(;;){

n = read(0, buff, 1023);

if (n <= 0){

printf("Error in reading kb.\n");

exit(-n);

}

write(fd, buff, n);

}

close(fd);

return 0;

}

11

I/O Redirection

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

stdin

stdout

Example 1:
$ cat

This is GR8

This is GR8

<CTRL + D>

$
stderr

Stdin and Stdout for Commands

Example 2:
$ sort

rauf

arif

kamal

<CTRL+D>

arif

kamal

rauf

$ 12

13

Redirecting Input of a Command (0<)
• By default, cat and sort commands takes their input

form the standard input, i.e. key board. We can
detach the key board from stdin and attach some
file to it; i.e. cat command will now read input from
this file and not from the key board

cat 0< f1.txt

sort 0< f1.txt
Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

f1.txt

stdout

stderr

14

Redirecting Output of a Command (1>)
Similarly, by default cat and sort commands sends
their outputs to user terminal. We can detach the
display screen from stdout and attach a file to it; i.e.
cat command will now write its output to this file and
not to the display screen

cat 1> f1.txt

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

stdin

f1.txt

stderr

15

Redirecting Error of a Command (2>)
Similarly, by default all commands send their error
messages on stderr, which is also connected to the
VDU. We can detach the VDU from the error stream
and can connect it to a file instead. This is called
error redirection

cat nofile.txt 2> errors.txt

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

stdin

stdout

errors.txt

nofile.txt

Redirecting Input, Output and Error

$ cat 0< f1.txt 1> f2.txt 2> f3.txt

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

f1.txt

f2.txt

f3.txt

16

Duplicating a File Descriptor

$ cat 0< f1.txt 1> f2.txt 2>&1

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

f1.txt

f2.txt

17

18

Draw PPFDT of following Commands
• Differentiate between following two commands (if file2 do not exist)

$ cat < file1 > file2

$ cp file1 file2

• Differentiate between following two commands (if lab1 do not exist)

$ cat lab1.txt 1> output.txt 2> error.txt

$ cat 0< lab1.txt 1> output.txt 2> error.txt

• Differentiate between following two commands

$ find /etc/ -name passwd 2> f1 1>&2

$ find /etc/ -name passwd 2> f1 2>&1

• Explain behavior of following commands

$ cat 1> output.txt 0< input.txt 2> error.txt

$ cat 2> error.txt 1> output.txt 0< input.txt

$ cat f1.txt 2>&1 1> f2.txt

$ cat 0< f1.txt 1> f2.txt 2>&1

$ cat 2>&1 1> f2.txt 0< f1.txt

$ cat 1> f1.txt 2>&1 0< f1.txt

19

Quiz 03
Question 1: Assume that file f1, f2 and f3 do
not exist. Draw the PPFDT of following
command. Will f1 and f2 be created and what
will be their contents?

$ cat f1 1> f2 2> f3

Question 2: Assume that file f1, f2 and f3 do
not exist. Draw the PPFDT of following
command. Will f1 and f2 be created and what
will be their contents?

$ cat 0< f1 1> f2 2> f3

20

Taxonomy of

Inter Process Communication

Cooperating Processes
• Independent process is a process that cannot

affect or cannot be affected by the execution of
another process. A process that does not share
data with another process is independent

• Cooperating process is a process that can affect
or can be affected by the execution of another
process. A process that share data with other
process is a cooperating process

• Advantages of Cooperating processes:
– Information sharing

– Computation speed up

– Modularity

– Convenience
21

Application Design

22

• Option 1: One huge monolithic program that does
every thing

• Option 2: Multi_threaded programs

• Option 3: Multiple programs using fork() that
communicate with each other using some form of
Inter Process Communication (IPC)

Process Process Process ProcessProcessProcess

Disk

Shared

memory

Kernel Buffer

Processes can access shared memory
without involvement of kernel at all

User area

Kernel area

Ways to Share Information among Processes

23

Categories of IPC

Communication SignalsSynchronization

Taxonomy of IPC

• Communication: These facilities are concerned with
exchange of data among cooperating processes

• Synchronization: These facilities are concerned with
synchronizing actions among cooperating processes

• Signals: Although signals are primarily for other purposes,
they can be used as synchronization primitives in certain
circumstances

24

Communication

Data Transfer Shared Memory

Taxonomy of IPC

• Data Transfer: One process writes data to the IPC facility
and other process reads the data. It has destructive read
semantics and synchronization between the reader and
writer is implicit

• Shared Memory: A region of memory that is shared by
cooperating processes is established. Processes can then
exchange information by reading and writing data to the
shared region. In shared memory reading is non-
destructive, however synchronization is not implicit rather
is the baby of the programmer 25

Communication

Data Transfer Shared Memory

Byte Stream Message Passing

Pipes

FIFOS

Stream Sockets

SysV MQ

POSIX MQ

Datagram Sockets

SysV SM

POSIX SM

Memory Mappings

Anonymous Mapping

Memory Mapped Files

Taxonomy of IPC

26

Synchronization

Semaphores File Locks

SysV Semaphores

POSIX Semaphores

File Locks

Record Locks

Named

Unnamed

For Threads

Mutex

Condition Variables

Taxonomy of IPC

27

Signals

Standard Signals Real Time Signals

Taxonomy of IPC

28

•

Process
Persistence

Kernel
Persistence

File system
Persistence

●Exists as long as it is held open by a process

●Pipes and FIFOs

●TCP, UDP sockets

●Mutex, condition variables, read write locks

●POSIX memory based semaphores

●Exists until kernel reboots or IPC objects is

explicitly deleted

●Message Queues, semaphores & shared memory

are at least kernel persistent

●Exists until IPC objects is explicitly deleted, or file

system crashes

●Message queues, semaphores & shared memory

can be file system persistent if implemented using

mapped files

Persistence of IPC Objects

29

30

Use of Pipes on the Shell

UNIX IPC Tool: Pipes

31

 Pipes are used for communication between
related processes (parent-child-sibling) on
the same UNIX system.

P1 P2

UNIX/Linux System

Pipe

UNIX IPC Tool: Pipes

32

33

• The UNIX system allows stdout of a command to

be connected to stdin of another command using

the pipe operator |.

cmd1 | cmd2 | cmd3 | … | cmdN

• Stdout of cmd1 is connected to stdin of cmd2,

stdout of cmd2 is connected to stdin of cmd3, …

and stdout of cmdN-1 is connected to stdin of

cmdN.

cmd2 cmdNpipe pipe pipecmd1

UNIX IPC Tool: Pipes

Question: On a shell, how many commands can be connected using pipes?

UNIX IPC Tool: Pipes

34

$ cat f1.txt | wc

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

stdin stdout stdin stdout

User Space

Kernel Space

cat f1.txt wc

Let us try writing a program that simulate the shell command

cat f1.txt | wc

Uni-directional

Byte Stream

Example: cat f1.txt | wc

flags ptr

PPFDT of cat

0

1

2

OPENMAX-1

3

4

fd[1]

stdin

stderr

flags ptr

PPFDT of wc

0

1

2

OPENMAX-1

3

4

stdout

fd[0]

stderr

fd[1] fd[0]

f1.txt

35

• Example Write a command that displays the
contents of /etc/ directory, one page at a time

$ ls –l /etc/ 1> temp

$ less 0< temp

This will display the contents of file temp on screen one page at a time. After
this we need to remove the temp file as well.

$ rm temp

So we needed three commands to accomplish the task, and the command
sequence is also extremely slow because file read and write operations are
involved.

Lets use the pipe symbol

$ ls –l /etc/ | less

The net effect of this command is the same. It does not use a disk to connect
standard output of ls –l to standard input of less because pipe is implemented in
the main memory.

UNIX IPC Tool: Pipes

36

• Example Write a command that will sort the file
friends.txt and display its contents on stdout
after removing duplication if any

$ sort friends.txt | sort

• Example Write a command that will count the
number of lines in the man page of ls

$ man ls | wc -l

• Example Write a command that will count the
number of lines containing string ls in the man page
of ls

$ man ls | grep ls | wc -l

Try drawing the above commands pictorially and also draw their respective
PPFDTs for better understanding

UNIX IPC Tool: Pipes

37

• tee command reads from stdin and writes to stdout

$ tee

• tee command reads from stdin and writes to stdout as well

as the two files f1.txt and f2.txt

$ tee f1.txt f2.txt

• tee command is used to redirect the stdout of a command

to one or more files, as well as to another command

cmd1 | tee file1 … fileN | cmd2

• Stdout of cmd1 is connected to stdin of tee, and tee sends

its output to files file1, … fileN and also to stdin of cmd2

$ who | tee who.txt

UNIX IPC Tool: tee

38

• Example Write a command that reads a file f1.txt
and stores the line containing string pucit in
another file f2.txt by using pipes and I/O
redirection

$ cat f1.txt | grep pucit 1> f2.txt

• Example Repeat above command so that the output
is also displayed on stdout as well

$ cat f1.txt | grep pucit | tee f2.txt | cat

Try drawing the above commands pictorially and also draw their respective PPFDTs for better understanding

Pipe, tee and I/O Redirection

39

Use of Named Pipes on the Shell

40

 Named pipes (FIFO) are used for
communication between related or unrelated
processes on the same UNIX system.

P1 P2

UNIX/Linux System

FIFO

p1 p2

UNIX IPC Tool: FIFO

UNIX IPC Tool: FIFO

41

UNIX IPC Tool: FIFO

42 4Punjab University College Of Information Technology (PUCIT)

Use of FIFO Between Unrelated Processes

Instructor:Arif Butt

User Space

Kernel Space

Uni-directional

Byte Stream

P1 P2

$ echo “Hello PUCIT” 1> fifo1 $ cat fifo1

fifo1

$ mkfifo fifo1

$ sudo mknod fifo1 p

 Why echo, or cat blocks while writing or reading on fifo

 What if there are multiple readers on this fifo, who gets the data?

 Is any data written on the fifo?

43

Use of Signals on the Shell

44

Introduction to Signals

45

Introduction to Signals

46

Synchronous and Asynchronous Signals

47

Signal Delivery and Handler Execution

15Punjab University College Of Information Technology (PUCIT)

Signal Delivery and Handler Execution

Instructor:Arif Butt

Start of program

Program Code

Instruction n

Instruction n+1

F
lo

w
 o

f e
x
e
c
u

tio
n

Signal Handler

Code of signal
handler is
executed

1

2

4

3

return

Program resumes at point of interruption

Kernel calls S.H on behalf o
f process

exit()

Signal delivery

5

48

Signal Numbers and Strings

49

Sending Signals to Processes

50

Signal Dispositions

19Punjab University College Of Information Technology (PUCIT)

Signal Disposition
Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal: [$man 7 signal]

1. The signal is ignored; that is, it is discarded by the kernel and has no
effect on the process. (The process never even knows that it occurred)

2. The process is terminated (killed). This is sometimes referred to as
abnormal process termination, as opposed to the normal process
termination that occurs when a process terminates using exit()

3. A core dump file is generated, and the process is terminated. A core
dump file contains an image of the virtual memory of the process,
which can be loaded into a debugger in order to inspect the state of the
process at the time that it terminated

4. The process is stopped—execution of the process is suspended
(SIGSTOP, SIGTSTP)

5. Execution of the process is resumed which was previously stopped
(SIGCONT, SIGCHLD)

Instructor:Arif Butt

51

Signal Dispositions

52

Important Signals (Default Behavior: Term)

21Punjab University College Of Information And Technology(PUCIT)

Important Signals

Instructor:Arif Butt

SIGHUP(1) Informs the process when the user who run the process logs out. When a
terminal disconnect (hangup) occurs, this signal is sent to the controlling
process of the terminal. A second use of SIGHUP is with daemons. Many
daemons are designed to respond to the receipt of SIGHUP by
reinitializing themselves and rereading their configuration files.

SIGINT(2) When the user types the terminal interrupt character (usually <Control+C>,
the terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

SIGKILL(9) This is the sure kill signal. It can’t be blocked, ignored, or caught by a
handler, and thus always terminates a process.

SIGPIPE(13) This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the IPC
channel

SIGALRM(14) The kernel generates this signal upon the expiration of a real-time timer set
by a call to alarm() or setitimer()

SIGTERM(15) Used for terminating a process and is the default signal sent by the kill
command. Users sometimes explicitly send the SIGKILL signal to a
process, however, this is generally a mistake. A well-designed application
will have a handler for SIGTERM that causes the application to exit
gracefully, cleaning up temporary files and releasing other resources
beforehand. Killing a process with SIGKILL bypasses SIGTERM handler.

(Default Behavior: Term)

53

Important Signals (Default Behavior: Core)

22Punjab University College Of Information Technology (PUCIT)

Important Signals

Instructor:Arif Butt

SIGQUIT(3) When the user types the quit character (Control+\) on the keyboard, this
signal is sent to the foreground process group. Using SIGQUIT in this
manner is useful with a program that is stuck in an infinite loop or is
otherwise not responding. By typing Control-\ and then loading the
resulting core dump with the gdb debugger and using the backtrace
command to obtain a stack trace, we can find out which part of the program
code was executing

SIGILL(4) This signal is sent to a process if it tries to execute an illegal (i.e.,
incorrectly formed) machine-language instruction module

SIGFPE(9) Generate by floating point Arithmetic Exception

SIGSEGV(11) Generated when a program makes an invalid memory reference. A
memory reference may be invalid because the referenced page
doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-
only memory (e.g., the program text segment or a region of mapped
memory marked read-only), or the process tried to access a part of
kernel memory while running in user mode. In C, these events often
result from dereferencing a pointer containing a bad address. The
name of this signal derives from the term segmentation violation

(Default Behavior: Core)

54

Important Signals

23Punjab University College Of Information Technology (PUCIT)

Important Signals (cont...)

Instructor:Arif Butt

SIGSTOP(19) This is the sure stop signal. It can’t be blocked, ignored, or
caught by a handler; thus, it always stops a process

SIGTSTP(20) This is the job-control stop signal, sent to stop the foreground
process group when the user types the suspend character
(usually <Control+Z>) on the keyboard.. The name of this
signal derives from “terminal stop”

Default Behavior: Stop

Default Behavior: Cont
SIGCHILD(17) This signal is sent (by the kernel) to a parent process when

one of its children terminates (either by calling exit() or as

a result of being killed by a signal). It may also be sent to a
process when one of its children is stopped or resumed by a
signal

SIGCONT(18) When sent to a stopped process, this signal causes the process
to resume (i.e., to be rescheduled to run at some later time).
When received by a process that is not currently stopped, this
signal is ignored by default. A process may catch this signal,
so that it carries out some action when it resumes

55

Ignoring Signals & Writing Signal Handlers
• trap command can be used to ignore the signals

$ trap ‘’ 2

$ sleep 1000

<CTRL + C>

• Similarly trap command can be used to mention a different

signal handler to a signal.

$ trap ‘date’ 2

$<CTRL+C> Thu Sep 27 09:38:22 PKT 2018

56

Masking of Signals

57

Job Control States

Foreground and Background Processes
• On a system, there is always one foreground process

that is holding the terminal (VDU and keyboard).
Example is vim or may be a less program

• On a system, there can be many processes which are
running in the background. They usually neither need
user input nor requires to give output on the monitor.
Example is an audio player playing an audio song, or a
find program searching a file from a huge file system.
Such programs run in the background so that the
terminal is available to the user for execution of other
commands

• On GUI a user can simply minimize an application and
run other applications, while on a CLI we need to make
use of commands to move processes in these two
states 58

Command

Command &

Terminated

Suspended

1. <Ctrl+c> (SIGINT)

2. <Ctrl+\> (SIGQUIT)

Running in

foreground

Running in

background

bg (SIGCONT)

kill(SIGSTOP)
Stopped in

background

f
g

(
S
I
G
C
O
N
T
)

k
i
l
l

59

Job Control States

SUMMARY

60

We’re done for now, but
Todo’s for you after this
lecture…

61

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 3.4, 3.6.3

• Go through Unix The Text Book Sections: 12.1 to 12.15

• Practice all the commands discussed in slides

• Get ready for Lab Quiz

