,;:15**’54*@;% Jé\%\\ CMP 3 2 5
Operating Systems
Wy 6> Lecture 06, 07

I/0 Redirection & IPC
Muhammad Arif Butt, PhD

Note:

Some slides and/or pictures are adapted from course text book and Lecture slides of
Dr Syed Mansoor Sarwar

Dr Kubiatowicz

Dr P. Bhat

Dr Hank Levy

Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:

OS with Linux:

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ W1HADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdIPAQTVIW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda

Review of previous lecture
File Management in Linux
IO Redirection
Cooperating Processes
Taxonomy of Inter Process Communication
Persistence of IPC Objects

Use of Pipes on the Shell

Use of FIFOS on the Shell

Use of Signals on the Shell

Connection of an Opened File

File Management in Linux

Following are the four key system calls for performing file I/0
(programming languages and software packages typically employ these
calls indirectly via I/0 libraries):

fd = open(pathname, flags, mode) opens the file identified by
pathname, returning a file descriptor used to refer to the open file in
subsequent calls. If the file doesn't exist, open() may create it,
depending on the settings of the flags bit. The flags argument also
specifies whether the file is to be opened for reading, writing, or
both. The mode argument specifies the permissions to be placed on
the file if it is created by this call. If the open() call is not being used
to create a file, this argument is ignored and can be omitted

numread = read(fd, buffer, count) reads at most count bytes from
the open file referred to by fd and stores them in buffer. The read()
call returns the number of bytes actually read. On eof, read() returns
0.

numwritten = write(fd, buffer, count) writes up to count bytes from
buffer to the open file referred to by fd. The write() call returns the
number of bytes actually written, which may be less than count

status = close(fd) is called after all I/0 has been completed, in order
to release the file descriptor fd and its associated kernel resources

File Descriptor to File Contents

a b N = o

\V/ I

System Wide File Table Inode Table
File Status Inode Type | Pmns | Owner | Locks
offset flags pointer
0
PPFDT
13
Fd File ptr 12
flags
54 N
/ g3 _
/
75
93
File Descriptor Purpose POSIX Name stdio Stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT _FILENO stdout
2 Standard error STDERR_FILENO stderr

File Descriptor to File Contents

Each process in UNIX has an associated PPFDT, whose size
is equal o the number of files that a process can open
simultaneously

File descriptor is an integer returned by open() system call,
and is used as an index in the PPFDT

File descriptor is used in read(), write() and close() system
call

Kernel uses this descriptor to index the PPFDT, which
contain a pointer to another table called System Wide File
Table

In the System Wide File Table, other than some
information there is another pointer to a table called Inode
Table

The inode table contains a unigue Inode to every unique file
on disk

Standard Descriptors in UNIX / Linux

* Three files are automatically opened for every process to
read its input from and to send its output and error
messages to.

* These files are called standard files:

« 0 - Standard Input (stdin). Default input to a
program is from the user terminal (keyboard), if no file
hame Is given.

« 1 - Standard Output (stdout). A simple program's
output normally goes to the user terminal (monitor), if
no file name is given.

« 2 - Standard Error (stderr). Default output of error
messages from a program normally goes to the user
terminal, if no file name is given.

« These numbers are called File Descriptors - System calls
use them to refer to files.

Examples - File Handling

int main () {
char buff[256];
read (0, buff, 255);,
write(1l, buff, 255);
return 0;

int main () {
char buff[256],
while (1) {
int n = read(0, buff, 255);
write(l, buff, n);
}

return 0;

Example - File Handling

int main () {
char buff[2000];
int fd = open ("/etc/passwd", O RDONLY) ;
int n;
for(;;){
n = read(fd, buff, 1000) ,
if (n <= 0){
close (fd) ;
exit(-n);,
}
write(l, buff, n);
}

return 0;

Example - File Handling

int main() {

int n;
char buff[1024];
int

fd=open ("file.txt",0 CREAT|O TRUNC|O RDWR,0666) ;
for(;;){
n = read (0, buff, 1023);,;
if (n <= 0){
printf ("Error in reading kb.\n'");
exit(-n);,
}
write (fd, buff, n);
}
close (fd) ;
return 0;

|/O Redirection

Stdin and Stdout for Commands

Example 1:

$ cat

This is GRS
This is GRS
<CTRL + D>

$

Example 2:
S sort
rauf
arif
kamal
<CTRL+D>
arif
kamal
rauf

$

W N P O

OPENMAX-1

PPFDT

Fd flags

File ptr

— stdin

—p stdout

—) stderr

12

Redirecting Input of a Command (O<)

By default, cat and sort commands takes their input
form the standard input, i.e. key board. We can
detach the key board from stdin and attach some
file to it; i.e. cat command will now read input from
this file and not from the key board

cat O0< fl.txt
sort 0< fl.txt

PPFDT

Fd flags | File ptr

—(— fl.txt
— stdout

—>» stderr

a_ b W N PP O

OPENMAX-1

Redirecting Output of a Command (1>)

Similarly, by default cat and sort commands sends
their outputs to user terminal. We can detach the
display screen from stdout and attach a file to it; i.e.
cat command will now write its output to this file and
not to the display screen

cat 1> fl.txt

PPFDT

Fd flags | File ptr

—(— stdin
—] .txt

—>» stderr

a_ b W N PP O

OPENMAX-1

Redirecting Error of a Command (2>)

Similarly, by default all commands send their error
messages oh stderr, which is also connected to the
VDU. We can detach the VDU from the error stream
and can connect it to a file instead. This is called
error redirection

cat nofile.txt 2> errors.txt
PPFDT

Fd flags | File ptr

— Stdin
— stdout

$» errors.txt

— nofile.txt

a_ b W N PP O

OPENMAX-1

Redirecting Input, Output and Error

S cat 0< fl.txt 1> £2.txt 2> £3.txt

PPFDT

Fd flags | File ptr

_9 fl.txt
— 2. txt

— £3.txt

Ul) W N i)

OPENMAX-1

Duplicating a File Descriptor

S cat 0< fl.txt 1> f£2.txt 2>¢&l

PPFDT

Fd flags | File ptr

0 — £1 . txt
1 —> f2.txt
2 _,———’i'

)

4

5

OPENMAX-1

Draw PPFDT of following Commands

« Differentiate between following two commands (if file2 do not exist)
cat < filel > file?

cp filel file2

Differentiate between following two commands (if labl do not exist)
cat labl.txt 1> output.txt 2> error.txt

cat 0< labl.txt 1> output.txt 2> error.txt

W o W W»

Differentiate between following two commands
find /etc/ -name passwd 2> fl 1>&2

find /etc/ -name passwd 2> fl 2>&1

Explain behavior of following commands

cat 1> output.txt 0< input.txt 2> error.txt
cat 2> error.txt 1> output.txt 0< input.txt
cat fl.txt 2>&1 1> f2.txt

cat O0< fl.txt 1> f2.txt 2>&l1

cat 2>&1 1> f2.txt 0O< fl.txt

cat 1> fl.txt 2>&1 0< fl.txt

n n

Ur U Uy O U U

Quiz 03

Question 1: Assume that file f1, f2 and f3 do
not exist. Draw the PPFDT of following
command. Will f1 and f2 be created and what
will be their contents?

S cat f1 1> f2 2> £3

Question 2: Assume that file f1, f2 and f3 do
not exist. Draw the PPFDT of following
command. Will f1 and f2 be created and what
will be their contents?

S cat 0< f1 1> f2 2> £3

Taxonomy of
Inter Process Communication

20

Cooperating Processes

+ Independent process is a process that cannot
affect or cannot be affected by the execution of
another process. A process that does not share
data with another process is independent

» Cooperating process is a process that can affect
or can be affected by the execution of another
process. A process that share data with other

process 1s a cooperating process * 4
w

» Advantages of Cooperating processes:
— Information sharing
— Computation speed up
— Modularity
— Convenience

21

Application Design

 Option 1. One huge monolithic program that does
every thing

* Option 2: Multi_threaded programs

« Option 3: Multiple programs using fork() that
communicate with each other using some form of
Inter Process Communication (IPC)

Ways to Share Information among Processes

Shared
Process Process Process Process Process Process
memory

Processes can access shared memory
Kernel Buffer without involvement of kernel at all

Taxonomy of IPC

S e

« Communication: These facilities are concerned with
exchange of data among cooperating processes

 Synchronization: These facilities are concerned with
synchronizing actions among cooperating processes

« Signals: Although signals are primarily for other purposes,
they can be used as synchronization primitives in certain
circumstances

24

Taxonomy of IPC

« Data Transfer: One process writes data to the IPC facility
and other process reads the data. It has destructive read

semantics and synchronization between the reader and
writer is implicit

« Shared Memory: A region of memory that is shared by
cooperating processes is established. Processes can then
exchange information by reading and writing data to the
shared region. In shared memory reading is hon-
destructive, however synchronization is not implicit rather
is the baby of the programmer ”

Taxonomy of IPC

Taxonomy of IPC

IlIlI(_
i
i

Taxonomy of IPC

F

S T

Persistence of IPC Objects

Process
Persistence

.Exists as long as it is held open by a process
.Pipes and FIFOs

.TCP, UDP sockets

-Mutex, condition variables, read write locks
.POSIX memory based semaphores

Kernel
Persistence

File system
Persistence

.Exists until kernel reboots or IPC objects Is

explicitly deleted
.Message Queues, semaphores & shared memory

are at least kernel persistent

.Exists until IPC objects is explicitly deleted, or file

system crashes
.Message gqueues, semaphores & shared memory

can be file system persistent if implemented using
mapped files

Use of Pipes on the Shell

UNIX IPC Tool: Pipes

= Pipes are used for communication between
related processes (parent-child-sibling) on
the same UNIX system.

) Pipe

UNIX/Linux System

UNIX IPC Tool: Pipes

 History of Pipes: Pipes history goes back to 3™ edition of UNIX
in 1973. They have no name and can therefore be used only
between related processes. This was corrected in 1982 with the
addition of FIFOs

* Byte stream: When we say that a pipe 1s a byte stream, we mean
that there 1s no concept of message boundaries when using a pipe.
Each read operation may read an arbitrary number of bytes
regardless of the size of bytes written by the writer. Furthermore,
the data passes through the pipe sequentially, bytes are read from
a pipe 1n exactly the order they were written. It 1s not possible to
randomly access the data in a pipe using 1seek ()

e Pipes are unidirectional: Data can travel only in one direction.
One end of the pipe 1s used for writing, and the other end 1s used
for reading

UNIX IPC Tool: Pipes

« The UNIX system allows stdout of a command to
be connected to stdin of another command using

the pipe operator |.
cmdl | emd2 | emd3 | ... | cmdN

e Stdout of cmdl is connected to stdin of cmd?2,
stdout of cmd?2 is connected to stdin of cmd3, ...
and stdout of cmdN-1 is connected to stdin of

cmdN.

pipe

ﬁ———-ﬁ

pipe

Question: On a shell, how many commands can be connected using pipes?

UNIX IPC Tool: Pipes

S cat fl.txt | wc

cat fl.txt wC

stdin stdout

User Space

Kernel Space

PPFDT of cat Uni-directional PPFDT of wc
—>
flags | ptr Byte Stream flags | ptr

0 stdin 0 £4[0]

1 £fd[1] 1 stdout
2 stderr 2 stderr
3 f1.txt 3

4 4

OPENMAX-1 OPENMAX-1

UNIX IPC Tool: Pipes

« Example Write a command that displays the
contents of /etc/ directory, one page at a time

$Is -I /Jetc/ 1> temp
$less O0< temp

This will display the contents of file femp on screen one page at a time. After
this we need to remove the temp file as well.

$ rm temp

So we needed three commands to accomplish the task, and the command
sequence is also extremely slow because file read and write operations are
involved.

Lets use the pipe symbol
$Is -l /Jetc/ | less

The net effect of this command is the same. It does not use a disk to connect
standard output of Is -l to standard input of less because pipe is implemented in
the main memory.

UNIX IPC Tool: Pipes

- Example Write a command that will sort the file
friends.txt and display its contents on stdout
after removing duplication if any

S sort friends.txt | sort

« Example Write a command that will count the
number of lines in the man page of Is

S man 1ls | wc -1

« Example Write a command that will count the
number of lines containing string Is in the man page
of Is

S man 1s | grep 1ls | wc -1

Try drawing the above commands pictorially and also draw their respective
PPFDTs for better understanding

UNIX IPC Tool: tee

tee command reads from stdin and writes to stdout
$ tee

tee command reads from stdin and writes to stdout as well
as the two files fl.txt and f2.txt

$ tee fl.txt f2.txt

tee command is used to redirect the stdout of a command
to one or more files, as well as to another command

cmdl | tee filel ... fileN | cmd2

Stdout of cmdl is connected to stdin of tee, and tee sends
its output to files filel, ... fileN and also to stdin of cmd?2

$ who | tee who.txt

Pipe, tee and I/O Redirection
« Example Write a command that reads a file f1.tx+t
and stores the line containing string pucit in
another file f2.txt by using pipes and I/0
redirection

S cat fl.txt | grep pucit 1> f2.txt

« Example Repeat above command so that the output
is also displayed on stdout as well

S cat fl.txt | grep pucit | tee f2.txt | cat

Try drawing the above commands pictorially and also draw their respective PPFDTs for better understanding

Use of Named Pipes on the Shell

UNIX IPC Tool: FIFO

= Named pipes (FIFO) are used for
communication between related or unrelated
processes on the same UNIX system.

n e EE

>]

N

FIFO

UNIX/Linux System

40

UNIX IPC Tool: FIFO

* Pipes have no names, and their biggest disadvantage 1s that they can be
only used between processes that have a parent process in common
(ignoring descriptor passing)

e UNIX FIFO 1s similar to a pipe, as it is a one way (half duplex) flow of
data. But unlike pipes a FIFO has a path name associated with it
allowing unrelated processes to access a single pipe

 FIFOs/named pipes are used for communication between related or
unrelated processes executing on the same machine

e A FIFO 1s created by one process and can be opened by multiple
processes for reading or writing. When processes are reading or writing
data via FIFO, kernel passes all data internally without writing it to the
file system. Thus a FIFO file has no contents on the file system; the
file system entry merely serves as a reference point so that processes
can access the pipe using a name 1in the file system

UNIX IPC Tool: FIFO

S echo “Hello PUCIT” 1> fifol S cat fifol

- - - - - - - - - - - - - - - - - e - - - -

Uni-directional
—>

Byte Stream

/S mkfifo fifol

t $ sudo mknod fifol p

= TIsany data written on the fifo?
= Why echo, or cat blocks while writing or reading on fifo

= What if there are multiple readers on this fifo, who gets the data? .

Use of Signals on the Shell

Introduction to Signals

e Suppose a program 1s running in a while (1) loop and you press
Ctrl+C key. The program dies. How does this happens?

e User presses Ctrl+C

e The tty driver receives character, which matches intr
e The tty driver calls signal system

e The signal system sends SIGINT (2) to the process

e Process receives SIGINT (2)

* Process dies

e Actually by pressing <ctrl+c>, you ask the kernel to send SIGINT

to the currently running foreground process. To change the key
combination you can use stty (1) or tcsetattr (2) to replace

the current intr control character with some other key combination

Introduction to Signals

e Signal 1s a software interrupt delivered to a process by OS because:
e The process did something (SIGFPE (8), SIGSEGV (11), SIGILL (4))
e The user did something (SIGINT (2), SIGQUIT (3), SIGTSTP (20))

* One process wants to tell another process something (SIGCHILD (17))

e Signals are usually used by OS to notity processes that some event
has occurred, without these processes needing to poll for the event

 Whenever a process receives a signal, it is interrupted from whatever 1t
i1s doing and forced to execute a piece of code called signal handler.
When the signal handler function returns, the process continues
execution as 1f this interruption has never occurred

A signal handler is a function that gets called when a process receives
a signal. Every signal may have a specific handler associated with it. A
signal handler 1s called in asynchronous mode. Failing to handle
various signals, would likely cause our application to terminate, when it
receives such signals

45

Synchronous and Asynchronous Signals

e Signals may be generated synchronously or asynchronously

* Synchronous signals pertains to a specific action in the program
and 1s delivered (unless blocked) during that action. Examples:

e Most errors generate signals synchronously

e Explicit request by a process to generate a signal for the same
process

* Asynchronous signals are generated by the events outside the
control of the process that receives them. These signals arrive at
unpredictable times during execution. Examples include:

e External events generate requests asynchronously

e Explicit request by a process to generate a signal for some
other process

Signhal Delivery and Handler Execution

Program Code

Start of program T Signal Handler
=
®))
o @ oY
= MO
= X
@ 5 A |
= \ke“\e\C Code of signal
Signal delivery INStruction n \/ handler is
> executed

Instruction n+1

1y return

exit ()

Signal Numbers and Strings

e Every signal has a symbolic name and an integer value associated with
it, defined in /usr/include/asm-generic/signal.h

* You can use following shell command to list down the signals on your
system:

$ kill -1

e Linux supports 32 real time signals from SIGRTMIN (32) to
SIGRTMAX (63). Unlike standard signals, real time signals have no
predefined meanings, are used for application defined purposes. The
default action for an un-handled real time signal is to terminate the
recerving process. See also $ man 7 signal

Sending Signals to Processes

A signal can be 1ssued in one of the following ways:

Using Key board

e <Ctrl+c>gives SIGINT (2)

e <<Ctrl+\>gives SIGQUIT (3)
e <Ctrl+z>gives SIGTSTP (20)

Using Shell command

e kill -<signal> <PID> OR kill -<signal> %<jobID>

e If no signal name or number 1s specified then default 1s to send
SIGTERM (15) to the process

e Do visit man pages for jobs, ps, bgand fg commands
e bggives SIGTSTP (20) while fg gives STGCONT (18)
Using kill () or raise () system call

Implicitly by a program (division by zero, issuing an invalid addr, termination of a child process)

Signal Dispositions

Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal: [$man 7 signal]

1.

The signal is ignored; that is, it is discarded by the kernel and has no
effect on the process. (The process never even knows that it occurred)

The process Is terminated (killed). This is sometimes referred to as
abnormal process termination, as opposed to the normal process
termination that occurs when a process terminates using exit ()

A core dump file is generated, and the process is terminated. A core
dump file contains an image of the virtual memory of the process,
which can be loaded into a debugger in order to inspect the state of the
process at the time that it terminated

The process is stopped—execution of the process iIs suspended
(SIGSTOP, SIGTSTP)

Execution of the process Is resumed which was previously stopped
(SIGCONT, SIGCHLD)

Signhal Dispositions
e Each signal has a current disposition which determines how the
process behave when the OS delivers it the signal

e If you install no signal handler, the run time environment sets up a set
of default signal handlers for your program. Different default actions
for signals are:

TERM Abnormal termination of the program with exit () i.e, no
clean up. However, status is made available to wait () &
waitpid () which indicates abnormal termination by the
specified signal

CORE Abnormal termination with additional 1mplementation
dependent actions, such as creation of core file may occur

STOP Suspend/stop the execution of the process
CONT Default action 1s to continue the process if it 1s currently stopped

Important Sighals (Default Behavior: Term)

SIGHUP (1)

SIGINT (2)

SIGKILL (9)

SIGPIPE (13)

SIGALRM(14)

SIGTERM (15)

Informs the process when the user who run the process logs out. When a
terminal disconnect (hangup) occurs, this signal is sent to the controlling
process of the terminal. A second use of SIGHUP is with daemons. Many
daemons are designed to respond to the receipt of SIGHUP by
reinitializing themselves and rereading their configuration files.

When the user types the terminal interrupt character (usually <Control+C>,
the terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

This is the sure kill signal. It can’t be blocked, ignored, or caught by a
handler, and thus always terminates a process.

This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the IPC
channel

The kernel generates this signal upon the expiration of a real-time timer set
byacalltoalarm() or setitimer ()

Used for terminating a process and is the default signal sent by the Kill
command. Users sometimes explicitly send the SIGKILL signal to a
process, however, this is generally a mistake. A well-designed application
will have a handler for SIGTERM that causes the application to exit
gracefully, cleaning up temporary files and releasing other resources
beforehand. Killina a process with SIGKILL bypasses SIGTERM handler.

Important Signals (Default Behavior: Core)

SIGQUIT (3)

SIGILL (4)

SIGFPE (9)
SIGSEGV (11)

When the user types the quit character (Control+\) on the keyboard, this
signal is sent to the foreground process group. Using SIGQUIT in this
manner is useful with a program that is stuck in an infinite loop or is
otherwise not responding. By typing Control-\ and then loading the
resulting core dump with the gdb debugger and using the backtrace
command to obtain a stack trace, we can find out which part of the program
code was executing

This signal Is sent to a process If it tries to execute an illegal (i.e.,
Incorrectly formed) machine-language instruction module

Generate by floating point Arithmetic Exception

Generated when a program makes an invalid memory reference. A
memory reference may be invalid because the referenced page
doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-
only memory (e.g., the program text segment or a region of mapped
memory marked read-only), or the process tried to access a part of
kernel memory while running in user mode. In C, these events often
result from dereferencing a pointer containing a bad address. The
name of this signal derives from the term segmentation violation

Important Signals

Default Behavior: Stop

SIGSTOP (19)

SIGTSTP (20)

This is the sure stop signal. It can’t be blocked, ignored, or
caught by a handler; thus, it always stops a process

This is the job-control stop signal, sent to stop the foreground
process group when the user types the suspend character
(usually <Control+Z>) on the keyboard.. The name of this
signal derives from “terminal stop”

Default Behavior: Cont

SIGCHILD (17)

SIGCONT (18)

This signal is sent (by the kernel) to a parent process when
one of its children terminates (either by calling exit () oras
a result of being killed by a signal). It may also be sent to a
process when one of its children Is stopped or resumed by a
signal

When sent to a stopped process, this signal causes the process
to resume (i.e., to be rescheduled to run at some later time).
When received by a process that is not currently stopped, this
signal is ignored by default. A process may catch this signal,
so that it carries out some action when it resumes

Ignoring Signals & Writing Signal Handlers

* trap command can be used to ignore the signals
$ trap " 2

$ sleep 1000

<CTRL + C»>

 Similarly trap command can be used to mention a different
sighal handler to a signal.

$ trap ‘date’ 2
$<CTRL+C> Thu Sep 27 09:38:22 PKT 2018

55

Masking of Signals

e A signal 1s generated by some event. Once generated, a signal is later
delivered to a process, which then takes some action in response to the
signal. Between the time 1t 1s generated and the time it 1s delivered, a
signal is said to be pending. Normally, a pending signal is delivered to
a process as soon as it 1s next scheduled to run, or immediately 1f the
process 1s already running (e.g., if the process sent a signal to itself).
There can be at most one pending signal of any particular type, 1.€.,
standard signals are not queued

e Sometimes, however, we need to ensure that a segment of code 1s not
interrupted by the delivery of a signal. To do this, we can add a signal to
the process’s signal mask—a set of signals whose delivery 1s currently
blocked. If a signal is generated while it is masked/blocked, it remains
pending until it 1s later unmasked or unblocked (removed from the
signal mask)

Job Control States

Foreground and Background Processes

On a system, there is always one foreground process
that is holding the terminal (VDU and keyboard).
Example is vim or may be a less program

On a system, there can be many processes which are
running in the background. They usually neither need
user input nor requires to give output on the monitor.
Example is an audio player playing an audio song, or a
find program searching a file from a huge file system.
Such programs run in the background so that the
terminal is available to the user for execution of other
commands

On GUT a user can simply minimize an application and
run other applications, while on a CLT we need to make
use of commands to move processes in these two
states

Job Control States

Running in
orearoune ___.1.<Ctrlic> (SIGINT) _. -
|C0mmand| 2. <Ctrl+\> (SIGQUIT) ,%lTerm'natedl
A A
h :
LQ 1
—_ A
n 1
A =
Q 1
Q 1
z 1
= '
/< bg (SIGCONT) :
Command &| >|Suspended| Stopped in
kill (SIGSTOP) background

Running in
background

SUMMARY

We're done for now, but
Todo's for you after this
lecture...

« 6o through the slides and Book Sections: 54 3.6.3
* 6o through Unix The Text Book Sections: 12.1 t0 12.15

* Practice all the commands discussed in slides

* Get ready for Lab Quiz

If you have problems visit me in counseling hours. . . .

61

