
CMP325
Operating Systems

Lecture 08

Thread Management

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of previous lecture

• Concurrent and Parallel Programming

• Introduction to Threads

• Multi threading

• Merits and Demerits of Threads

• User Level vs Kernel Level Threads

• Threading Models

– Many to One

– One to One

– Many to Many

• Using POSIX pthread library calls to create multi-
threaded programs

2

3

Concurrent / Parallel Programming

Sequential Programming

4
4Punjab University College Of Information And Technology (PUCIT)

Sequential Programming
Instructor:Arif Butt

1

3

2

Suppose we want to add eight numbers x
1
, x

2
, x

3
, x

8

There are seven addition operations and if each
operation take 1 CPU cycle, the entire operation will
take seven cycles

 x
1
+ x

2
 + x

3
+ x

4
 + x

5
+ x

6
 + x

7
+ x

8

7

.

.

.

Concurrent / Parallel Programming

5

5Punjab University College Of Information And Technology (PUCIT)

Concurrent/Parallel Programming
Instructor:Arif Butt

Suppose we have 4xCPUs or a 4xCore CPU, the seven addition
operations can now be completed in just three CPU cycles, by
dividing the task among different CPUs

CPU4

x
1
 + x

2

CPU 1

CPU1 CPU3CPU2

CPU2

CPU1

1st CPU cycle

2nd CPU cycle

3rd CPU cycle

x
3
 + x

4
x

5
 + x

6
x

7
 + x

8

R
1
+ R

2
R

3
+ R

4

R
5
+ R

6

Ways to Achieve Concurrency

6

7

Overview of Threads

Processes and Threads

8

9

main()

{

…

f1(…);

…

f2(…);

…

}

f1(…)

{ … }

f2(…)

{ … }

Thread

Process
Terminated

f2

f1

Single Threaded Process

Thread Concept

10

 Previous slide is an example of a process with a single
thread

 Suppose we want that f1 and f2 should be executed by
separate threads, while main function is executed
concurrently by another thread

 Multi threading refers to the ability of an OS to
support multiple threads of execution with in a single
process. A single program made up of a number of
different concurrent activities; sometimes called
multitasking, as in Ada

 Multithreading works similar to multiprogramming. The
CPU switches rapidly back and forth among threads
providing the illusion that threads are running in parallel

Multi Threaded Process

11

main()

{

…

thread(t1,f1);

…

thread(t2,f2);

…

}

f1(…)

{ … }

f2(…)

{ … }

main t2t1

Process Address Space

PC

PC

PC

12

Single and Multithreaded Processes

13

(a) Three processes, each with one thread
(b) One process with three threads

executionEnvironment (resource)

Processes are used to group resources together; Threads are the
entities scheduled for execution on the CPU.

Single and Multithreaded Processes

14

Multi-Threaded Process

15

Single and Multithreaded Processes

16

• Each thread stack contains one frame for each procedure that has been called but not yet
returned from

• This frame contains the procedure’s local variables and their return address to use when
the procedure call has finished

• For example, if procedure X calls procedure Y and this one calls procedure Z, while Z is
executing the frames for X, Y, Z will be on the stack

• Each thread will generally call different procedures and thus has a different execution
history

Each Thread has its own Stack

Threads vs Processes

17

Similarities

 A thread can also be in one of many states like new,
ready, running, blocked, terminated

 Like processes only one thread is in running state
(single CPU)

 Like processes a thread can create a child thread

Differences

 No “automatic” protection mechanism is in place for
threads—they are meant to help each other

 Every process has its own address space, while all
threads within a process operate within the same
address space

Benefits of Threads

18

 Responsiveness. Multi-threaded servers (e.g., browsers)
can allow interaction with user while a thread is formulating
response to a previous user query (e.g., rendering a web page)

 Resource sharing. Process resources (code, data, etc.)
are shared by all threads. OS resources (PCB, PPFDT, etc.) are
also shared by all threads

 Economy. Take less time to create, schedule, and
terminate a thread. Solaris 2: Thread Creation is thirty times
faster than Process Creation and Thread Switching is five
times faster than process switching

 Performance. In multi-processor and multi-threaded
architectures (e.g., Intel’s P-IV HT) each thread may run on a
different processor in parallel

Disadvantages of Threads

19

 Problems due to Shared memory
 Race Problem

 Mutual Exclusion needs to be implemented on shared
memory to allow multiple threads to access data for
write/update

 Many library functions are not Thread Safe
 For resource sharing, synchronization is needed

between threads

 Lack of Robustness
 A severe error caused by one thread (e.g. segmentation

fault) terminates the whole process

Thread Usage: Web Server

20

• Dispatcher thread reads incoming requests from the NW.
• After examining the request, it chooses an idle worker thread and hands it the

request. It also wakes up the worker from blocked state to ready state.
• Worker now checks to see if the request can be satisfied from the Web page

cache, to which all threads have access. If not, it starts a read() operation to
get the page from the disk and blocks until the disk operation completes. When
the thread blocks on the disk operation, another thread is chosen to run,
possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

Request for pages
comes in and the
requested page is
sent back to the
client.

21

User Threads vs Kernel Threads

User Threads

22

 Thread management is done by user-level threads
libraries (eg, POSIX Pthread, Win32 threads, Java
threads, Solaris2 Threads, Mach C Threads) and
Kernel is not aware of the existence of threads

 An application can be programmed to be multithreaded
by using user level thread library, which contains code
for:
 Thread creation and termination
 Thread scheduling
 Saving and restoring thread context
 Passing messages and data between threads

 By default an application begins with a single thread,
within a process managed by Kernel. Later the
application may spawn a new thread within the same
process by invoking spawn utility in the thread library

User Threads vs Kernel Threads

23

Implementing Threads in User Space

24

User-level Threads

• Thread library used.
• Thread table maintained in

user space.
• All thread management is

done in user space by library
• Kernel knows nothing about

threads.

E.g.: pthread library

Kernel Threads

25

 Thread management done by kernel and
Kernel is aware of threads

 Kernel level threads are supported in almost
all modern operating systems:
 Windows NT/XP/2000

 Linux

 Solaris

 Tru64 UNIX

 Mac OS X

 There must be a relationship between user threads
and kernel threads. There exist three common
models of this interaction (1:1, M:1 and M:N)

Implementing Threads in the Kernel

26

Kernel-level Threads

• OS knows about
individual threads within
each process.

• Thread table maintained
by kernel.

• E.g.: Windows 2K/XP

27

Thread Implementation Models

Thread Implementation Model (M:1)

28

Thread Implementation Model (1:1)

29

Thread Implementation Model (M:N)

30

31

Thread Libraries

32

 Thread libraries provides programmers with API for
creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by OS

 Pthreads may be provided either as user-level or kernel-
level. Pthread is a POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

 Java Threads managed by the JVM. Typically
implemented using the threads model provided by
underlying OS. Java threads may be created by: Extending
Thread class, or by implementing the Runnable interface.
If underlying OS is Windows, then implemented using
Win32 API; if it is Linux, then Pthreads.

33

Call Description

pthread_create() Similar to fork()

pthead_join() Similar to waitpid()

pthread_exit(void *status) To terminate a thread

Thread Management

Important POSIX System Calls

• Thread operations include thread creation, termination,
synchronization (joins, blocking), scheduling, data
management and process interaction.

• A thread does not maintain a list of created threads, nor
does it know the thread that created it.

34

Thread Creation

35

Thread Termination

36

Joining a Thread

Example 0

37

void f1();

void f2();

int main(){

f1();

f2();

printf("\nBye Bye from main\n");

return 0;

}

void f1(){

for(int i=0; i<5; i++){

printf("%s", "PUCIT");

sleep(1);

}

}

void f1(){

for(int i=0; i<5; i++){

printf("%s", ”ARIF");

sleep(1);

}

}

Example 1

38

void* f1(void*);

void* f2(void*);

int main(){

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, f1, NULL);

pthread_create(&tid2, NULL, f2, NULL);
pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

printf("\nBye Bye from main thread\n");

return 0;

}

void * f1(void * arg){

for(int i=0; i<5; i++){

printf("%s", "PUCIT");
fflush(stdout);

sleep(1);

}

pthread_exit(NULL);

}

void * f2(void * arg){

for(int i=0; i<5; i++){

printf("%s", "ARIF");

fflush(stdout);

sleep(1);

}

return NULL;

}

39

Compiling a multi-threaded Program
 Multi-Threaded program need to be linked with the

thread library /usr/lib/libpthread.so

$ gcc -c t1.c -D_REENTRANT

$ gcc t1.o -o t1 –lpthread

$./t1

PUCITARIFARIFPUCITARIFPUCITPUCITARIFPUCITARIF

Bye Bye from main thread

Question: What are the advantages of compiling multi-
threaded programs using the –D_REENTRANT flag?

Example 2

40

int main(){

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, f1, NULL);

pthread_create(&tid2, NULL, f2, NULL);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

printf("\nBye Bye from main thread\n");

return 0;

}

void * f1(void * arg){

for(int i=0; i<1000;i++)

fprintf(stderr, "%c",'X');

pthread_exit(NULL);

}

void * f2(void * arg){

for(int i=0; i<800;i++)

fprintf(stderr, "%c",’O');

pthread_exit(NULL);

}

Example 3

41

int main(int argc, char* argv[]){

int countofX = atoi(argv[1]);

int countofO = atoi(argv[2]);

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, f1, (void*)&countofX);
pthread_create(&tid2, NULL, f2, (void*)&countofO);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

printf("\nBye Bye from main thread\n");

return 0;}

void * f1(void * arg){

int ctr = *((int*)arg);

for(int i=0; i<ctr; i++)

fprintf(stderr, "%c", 'X');

pthread_exit(NULL);

}

void * f2(void * arg){

int ctr = *((int*)arg);

for(int i=0; i<ctr; i++)

fprintf(stderr, "%c", ’O');

pthread_exit(NULL);}

Example 4

42

struct mystruct{

char character; int count;

};

void * f1(void *);

int main(){

pthread_t tid1, tid2;

struct mystruct t1_args, t2_args;

t1_args.character = 'X'; t1_args.count = 1000;
pthread_create(&tid1, NULL, f1, (void*)&t1_args);

t2_args.character = 'O'; t2_args.count = 800;

pthread_create(&tid2, NULL, f1, (void*)&t2_args);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

printf("\nBye Bye from main thread.\n");

return 0;}

void * f1(void * args){

struct mystruct p = *(struct mystruct*)args;

for (int i = 0; i < p.count; i++)

putc(p.character,stdout);

pthread_exit(NULL);

}

Example 5

43

int main(int argc, char* argv[]){

if(argc != 3){

printf("Must pass two file names.\n");

exit(1);

}

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, func, (void*)argv[1]);

pthread_create(&tid2, NULL, func, (void*)argv[2]);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

printf(”Bye Bye from main thread\n");

return 0;

}

void* func(void* args){

char* filename = (char*)args;

int ctr = 0; char ch;

int fd = open(filename, O_RDONLY);

while((read(fd, &ch, 1)) != 0)

ctr++;

close(fd);

printf("Characters in %s: %d\n", filename, ctr);

pthread_exit(NULL);}

44

void * inc(void * arg){

for(long i=0;i<100000000;i++)

balance++;

pthread_exit(NULL);

}

Example 6 (Race Condition)
long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL); pthread_join(t2,NULL);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * dec(void * arg){

for(long i=0;i<100000000;i++)

balance--;

pthread_exit(NULL);

}

45

Points to Ponder

Points to Ponder

46

Points to Ponder

47

Points to Ponder

48

Points to Ponder

49

SUMMARY

50

We’re done for now, but
Todo’s for you after this
lecture…

51
If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 4.1, 4.2, 4.3, 4.4

• Write down the programs discussed in class in vim editor and execute
them. Make variations in the programs and understand the underlying
details

• Try to understand why program in Example 6 gives different results when
run multiple times

• Understand the difference between fork() and clone() system call

• Study books and understand the concept of

• Thread Pool

• Thread Cancellation

• Signal handling in multithreaded programs

