Y CMP325
Operating Systems
rpor Lecture 08

Thread Management

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
Dr Syed Mansoor Sarwar
Dr Kubiatowicz
Dr P. Bhat
Dr Hank Levy
Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:

OS with Linux:

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ W1HADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdIPAQTVIW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda

Review of previous lecture
Concurrent and Parallel Programming
Introduction to Threads

Multi threading

Merits and Demerits of Threads
User Level vs Kernel Level Threads
Threading Models

— Many to One

— One 1o One

— Many to Many

Using POSIX pthread library calls to create multi-
threaded programs

Concurrent / Parallel Programming

Sequential Programming

Suppose we want to add eight numbers X , X , X, ... X

8

There are seven addition operations and If each
operation take 1 CPU cycle, the entire operation will
take seven cycles

X+X + X +X + X +X + X *+X
1 72 3 4 5 76 7 78

Concurrent / Parallel Programming

Suppose we have 4xCPUs or a 4xCore CPU, the seven addition
operations can now be completed In just three CPU cycles, by
dividing the task among different CPUs

X1+X2 X3+X4 X5+X6 X7+X8

CPU1 CPU2 CPU3 CPU4 1% CPU cycle
R +R R +R

1 2 3 4

5 6

2" CPU cycle

|1

3" CPU cycle

Ways to Achieve Concurrency

Multiple single threaded processes
 Use fork() to create a new process for handling every new
task, the child process serves the client process, while the parent
listens to the new request
 Possible only 1f each slave can operate in 1solation
* Need IPC between processes
e Lot of memory and time required for process creation

Multiple threads within a single process
e Create multiple threads within a single process
* Good 1f each slave need to share data
e Cost of creating threads 1s low, and no IPC required

Single process multiple events
e Use non-blocking or asynchronous I/O, using select () and

poll () system calls

Overview of Threads

Processes and Threads

Every process has two characteristics:

* Resource ownership- process includes a virtual address
space to hold the process i1mage

e Scheduling- follows an execution path that may be
interleaved with other processes

These two characteristics are treated independently by the
operating system. The unit of resource ownership is referred to
as a process, while the unit of dispatching is referred to as a
thread

A thread 1s an execution context that 1s independently scheduled,
but shares a single addresses space with other threads of the
same pProcess

Single Threaded Process

main ()

{
El (...):;

£2 (...);

£1(...)
{ .. }

£2(...)
{ ... }

Thread
f1
f2
Process
Terminated

Thread Concept

Previous slide is an example of a process with a single
thread

Suppose we want that f1 and f2 should be executed by
separate threads, while main function is executed
concurrently by another thread

Multi threading refers to the ability of an OS to
support multiple threads of execution with in a single
process. A single program made up of a number of
different concurrent activities; sometimes called
multitasking, as in Ada

Multithreading works similar to multiprogramming. The
CPU switches rapidly back and forth among threads
providing the illusion that threads are running in parallel

Multi Threaded Process

main ()

{
thread (tl,£fl) ;

thread (t2,£2) ;

£1(...)
{ ..}

£2(..)
{ ..}

Process Address Space

main t1

=

PC

t2

PC

Virtual memory address
(hexadecimal)

O0xCO000000

argo, enuviron

Stack for main thread

Stack for thread 3
Stack for thread 2
Stack for thread 1

Shared libraries,
0Xx40000000 shared memory

TASK_UNMAPPED_ BASE

A Heap
&
2 Uninitialized data (bss)
O
= Initialized data
= .
— -a— thread 3 executing here
= . .
= -%— main thread executing here
=
= Text (program code) -— thread 1 executing here
R
S
E) 0Xx08048000 -«— thread 2 executing here

0x00000000

Single and Multithreaded Processes

Process 1 Process 1 Process 1 Process

\ | | |

User {
space

Thread Thread
Kernel Kernel
space Kernel erne
Envir'onmen/‘t (resource) (a) execution (b)

(a) Three processes, each with one thread
(b) One process with three threads

Processes are used to group resources together; Threads are the
entities scheduled for execution on the CPU.
13

Single and Multithreaded Processes

code

data

files

registers

PC

stack

thread—— ;

code data files
registers| | |registers| | [registers
stack stack stack
PC PC PC
<

— thread

single-threaded process

multithreaded process

14

Multi- Threaded Process

Threads within a process share : Threads have their own:
« PID, PPID, PGID, SID, UID, GID e Thread ID
* Controlling Terminals e CPU Context (PC, and other registers)
e Code and Data Section o Stack
» Global Variables o State

e Open files via PPFDT
 Signal Dispositions

e The errno variable
* Priority
e CPU affinity

e Signal mask

 Umask value

e Current Working Directory

e Interval Timers

e CPU time consumed

* Resource Limits

e Nice value

e Record locks (using fecntl ())

Single and Multithreaded Processes

Each Thread has its own StackThfe‘aCI 2

Thread 1 Thread 3
\ /

EER

Thread 1's >B E E*
StaCk \/

Kernel

_— Process

Thread 3's stack

Each thread stack contains one frame for each procedure that has been called but not yet
returned from

This frame contains the procedure’s local variables and their return address to use when
the procedure call has finished

For example, if procedure X calls procedure Y and this one calls procedure Z, while Z is
executing the frames for X, Y, Z will be on the stack

Each thread will generally call different procedures and thus has a different execution
history

Threads vs Processes

= A thread can also be in one of many states like new,
ready, running, blocked, terminated

= Like processes only one thread is in running state
(single CPU)
= Like processes a thread can create a child thread

= No "automatic” protection mechanism is in place for
threads—they are meant to help each other

= Every process has its own address space, while all
threads within a process operate within the same
address space

Benefits of Threads

= Responsiveness. Multi-threaded servers (e.g., browsers)
can allow interaction with user while a thread is formulating
response to a previous user query (e.g., rendering a web page)

= Resource sharing. Process resources (code, data, etc.)
are shared by all threads. OS resources (PCB, PPFDT, etc.) are
also shared by all threads

= Economy. Take less time to create, schedule, and
terminate a thread. Solaris 2: Thread Creation is thirty times
faster than Process Creation and Thread Switching is five
times faster than process switching

= Performance. In multi-processor and multi-threaded
architectures (e.qg., Intel's P-IV HT) each thread may run on a
different processor in parallel

Disadvantages of Threads

= Problems due to Shared memory
= Race Problem

= Mutual Exclusion needs to be implemented on shared
memory to allow multiple threads to access data for
write/update

= Many library functions are not Thread Safe

= For resource sharing, synchronization is needed
between threads

= Lack of Robustness

= A severe error caused by one thread (e.g. segmentation
fault) terminates the whole process

Thread Usage: Web Server

Web server process

Dispatcher thread

'

Worker thread

Web page cache

Kernel

Network
connection

%

o

;

User
space

Kernel
space

\
\&E
Request for pages D
comes in and the Pl —
requested page is

sent back to the

client.

Dispatcher thread reads incoming requests from the NW.

After examining the request, it chooses an idle worker thread and hands it the
request. It also wakes up the worker from blocked state to ready state.
Worker now checks to see if the request can be satisfied from the Web page
cache, to which all threads have access. If not, it starts a read() operation to
get the page from the disk and blocks until the disk operation completes. When
the thread blocks on the disk operation, another thread is chosen to run,
possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

20

User Threads vs Kernel Threads

User Threads

= Thread management is done by user-level threads
libraries (eg, POSIX Pthread, Win32 threads, Java

threads, Solaris2 Threads, Mach C Threads) and
Kernel is not aware of the existence of threads

= An application can be programmed to be multithreaded
by using user level thread library, which contains code
for:

Thread creation and termination

Thread scheduling

Saving and restoring thread context

Passing messages and data between threads

= By default an application begins with a single thread,
within a process managed by Kernel. Later the
application may spawn a new thread within the same
process by invoking spawn utility in the thread library

User Threads vs Kernel Threads

:

user threads

S ¢

:

:

3

kernel threads

:

user
space

kernel
space

23

Implementing Threads in User Space

Process Thread

_/

i \
* Thread library used.

* Thread table maintained in
User user space.

space < e All thread management is
done in user space by library

e Kernel knows nothing about
/ threads.

-

Kernel E.g.: pthread library
space Kernel
X

Run-time Thread Process
system table table

User-level Threads

24

Kernel Threads

= Thread management done by kernel and
Kernel is aware of threads

= Kernel level threads are supported in almost
all modern operating systems:
= Windows NT/XP/2000
= Linux
= Solaris
Tru64 UNIX
= Mac OS X

= There must be a relationship between user threads
and kernel threads. There exist three common
models of this interaction (1:1, M:1 and M:N)

Implementing Threads in the Kernel

Process Thread

__ /

3

* OS knows about
individual threads within
each process.

e Thread table maintained
by kernel.

e E.g.: Windows 2K/XP

Kernel =
—
Process Thread
table table

Kernel-level Threads

Thread Implementation Models

Thread Implementation Model (M:1)

In Many-to-one (M:1) threading implementation, all of the details of
thread creation, termination, scheduling, synchronization, and so on are
handled entirely within the user-space. Kernel knows nothing about the
existence of multiple threads within the process

Advantages:
e Thread operations are fast as no mode switch is required

e User level threads can be used even if the underlying platform does not
support multithreading

Disadvantages:

 When a user-level thread makes a blocking system call, e.g., read (),
the entire process is blocked

e Since the kernel 1s unaware of the existence of multiple threads within
the process, it CANNOT schedule separate threads to different CPUs
on multiprocessor hardware

user threads
user

space

'-__h““‘:>>ﬁfﬁf:"""’-t

kernel
space

kernel threads

Thread Implementation Model (1:1)

In one-to-one (1:1) threading implementation, each thread maps onto a
separate kernel scheduling entity (KSE). All of the details of thread
creation, termination, scheduling, synchronization and so on are handled
by system calls inside the kernel

Advantages:

 When a kernel-level thread makes a blocking system call, e.g., read (),
only that thread is blocked

» Since the kernel 1s aware of the existence of multiple threads within the
process, 1t can schedule separate threads to different CPUs on
multiprocessor hardware

Disadvantages:
e Thread operations are slow as a switch into kernel mode 1s required

* Overhead of maintaining a separate KSE for each of the threads in an
application place a significant load on the kernel scheduler, degrading
overall system performance serthreads

user
space

kernel
space

kernel threads

Thread Implementation Model (M:N)

The many-to-many (M:N) threading implementation, aim to combine the
advantages of the 1:1 and M:1 models, while eliminating their
disadvantages. Each process can have multiple associated KSEs, and
several threads may map to each KSE

Disadvantages:

e The major disadvantage of M:N model is its complexity. The task of
thread scheduling i1s shared between the kernel and the user-space

threading library, which must cooperate and communicate information
with one another

user threads
user
. : ' f space
= ——

kernel
space

kernel threads

- LIVE FREE OR DIE

UN IX*

¢ TRADEMARK OF BELL [ABS" ¢ =

31

Thread Libraries

Thread libraries provides programmers with APT for
creating and managing threads

Two primary ways of implementing
= Library entirely in user space
= Kernel-level library supported by OS

Pthreads may be provided either as user-level or kernel-
level. Pthread is a POSIX standard (IEEE 1003.1¢) APT for
thread creation and synchronization

Java Threads managed by the JVM. Typically
implemented using the threads model provided by
underlying OS. Java threads may be created by: Extending
Thread class, or by implementing the Runnable interface.
If underlying OS is Windows, then implemented using
Win32 APT; if it is Linux, then Pthreads.

Important POSIX System Calls
Thread Management

Call Description
pthread_create() Similar to fork()
pthead_join() Similar to waitpid()
pthread_exit(void *status) | To ferminate a thread

« Thread operations include thread creation, termination,
synchronization (joins, blocking), scheduling, data
management and process interaction.

* A thread does not maintain a list of created threads, nor
does it know the thread that created it.

Thread Creation

int pthread create(pthread t *tid, const pthread attr t
*attr, void *(*start) (void *), wvoid *arg) ;

e This function starts a new thread in the calling process. The new
thread starts its execution by invoking the start function which i1s
the 3" argument to above function

* On success, the TID of the new thread is returned through 1*
argument to above function

la

e The 2" argument specifies the attributes of the newly created
thread. Normally we pass NULL pointer for default attributes.

* The 4™ argument is a pointer of type void which points to the value
to be passed to thread start function. It can be NULL 1f you do not
want to pass any thing to the thread function. It can also be address
of a structure 1f you want to pass multiple arguments

Thread Termination

void pthread exit(void *status);

 This function terminate the calling thread
e The status value 1s returned to some other thread in the calling

process, which 1s blocked on the pthread join () call
e The pointer status must not point to an object that 1s local to

the calling thread, since that object disappears when the thread
terminates

Ways for a thread to terminate:
» The thread function calls the return statement

e The thread function calls pthread exit ()
e The main thread returns or call exit ()
e Any sibling thread calls exit ()

Joining a Thread

int pthread join(pthread t tid, void **retval);

* Any peer thread can wait for another thread to terminate by
calling pthread join () function, similar to waitpid() .
Failing to do so will produce the thread equivalent of a zombie
process

* The 1* argument is the ID of thread for which the calling thread
wish to wait. Unfortunately, we have no way to wait for any of
our threads like wait ()

e The 2" argument can be NULL, if some peer thread is not

interested in the return value of the new thread. Otherwise, it can
be a double pointer which will point to the status argument of the
pthread exit ()

Example O

void f1();
volid f£2 () ;
int main () {
£1 ()7
£2();
printf ("\nBye Bye from main\n");
return O;

void f1(){ void f1(){
for(int 1i=0,; 1i<b,; 1i++){ for(int i=0,; 1<5,; 1++){
printf("%s", "PUCIT") ; printf("$s", ”ARIF");
sleep (1), sleep (1),
} }
} }

void* f1 (void¥®);
void* f2 (void*) ;
int main () {
pthread t tidl, tidZ;

Example 1

pthread create(&tidl, NULL, £1, NULL);
pthread create(&tid2, NULL, f2, NULL);

pthread join(tidl, NULL);
pthread join(tidZ, NULL);

printf ("\nBye Bye from main thread\n");

return 0;

void * fl1(void * arg){
for(int 1=0,; 1i<5; 1i++){
printf("ss", "PUCIT"),
fflush (stdout) ;
sleep (1),
}
pthread exit (NULL) ;

}

void * f2(void * arg){
for(int 1i=0,; 1i<5,; 1i++){
printf ("ss", "ARIF");,
fflush (stdout) ;
sleep (1),

}
return NULL;

38

Compiling a multi-threaded Program
= Multi-Threaded program need to be linked with the
thread library /usr/lib/libpthread.so

$ gcc -c tl.c -D REENTRANT

S gcc tl.o -o tl —-lpthread

S./tl
PUCITARIFARIFPUCITARIFPUCITPUCITARIFPUCITARIF

Bye Bye from main thread

Question: What are the advantages of compiling multi-
threaded programs using the -D_REENTRANT flag?

39

Example 2
int main () {

pthread t tidl, tidZ;

pthread create(&tidl, NULL, £1, NULL);
pthread create(&tid2, NULL, £2, NULL);
pthread join(tidl, NULL);

pthread join(tid2Z, NULL);

printf ("\nBye Bye from main thread\n");

return 0;

}

void * fl1(void * arg){
for(int 1=0,; 1<1000;1i++)
fprintf (stderr, "3c",'X");
pthread exit (NULL) ;
}

void * f2(void * arg){
for(int 1=0,; 1<800,1++)
fprintf (stderr, "%c",’0'");
pthread exit (NULL) ;

/

40

int main(int argc, char* argv[]) {
int countofX = atoi(argv/[1l]);
int countofO = atoi(argv[2]);

pthread t tidl, tidZ;

pthread create(&tidl, NULL, f1,
pthread create(&tid2, NULL, £2,

pthread join(tidl, NULL);
pthread join(tidZ, NULL);

Example 3

(void*) &countofX) ;

(void*) &countofO) ;

printf ("\nBye Bye from main thread\n");

return 0;}

void * fl1(void * arg){
int ctr = *((int*)arqg);
for(int 1i=0,; i<ctr,; 1++)
fprintf (stderr, "$c'", 'X');
pthread exit (NULL) ;
}

void * f2(void * arg){
int ctr = *((int*)arqg);
for(int 1=0, i<ctr; 1i++)
fprintf (stderr, "%c", 70'");
pthread exit (NULL) ;}

41

Example 4
struct mystruct{

char character; int count;
} i
void * f£1 (void *);
int main () {
pthread t tidl, tidZ;
struct mystruct tl args, t2 args;

tl args.character = 'X'; tl args.count = 1000;
pthread create(&tidl, NULL, f1, (void*)é&tl args);
tZ2 args.character = '0O'; tZ2 args.count = 800;

pthread create(&tid2, NULL, f1, (void*)&t2 args);
pthread join(tidl, NULL);

pthread join(tid2, NULL);

printf ("\nBye Bye from main thread.\n");

return 0;}

void * fl1(void * args){
struct mystruct p = *(struct mystruct*)args;
for (int i = 0, 1 < p.count; 1++)
putc (p.character,stdout) ;
pthread exit (NULL) ;

/

Example 5

int main(int argc, char* argv[]) {
if (argc !'= 3) {

}

printf ("Must pass two file names.\n");
exit (1) ;
}
pthread t tidl, tid2;
pthread create(&tidl, NULL, func, (void*)argv[1l]);
pthread create(&tid2, NULL, func, (void*)argv[2]);
pthread join(tidl, NULL);
pthread join(tid2, NULL) ;
printf ("Bye Bye from main thread\n");
return 0;

void* func (void* args) {

char* filename = (char*)args;

int ctr = 0; char ch;

int fd = open(filename, O RDONLY) ;

while ((read(fd, &ch, 1)) !'= 0)
ctr++;

close (fd) ;

printf ("Characters in %s: %d\n", filename, ctr);
pthread exit (NULL) ;}

Example 6 (Race Condition)

long balance = 0;

volid * 1nc(void * arqg);

volid * dec(void * arqg);

int main () {
pthread t tl, t2;
pthread create(&tl, NULL, inc,NULL);
pthread create(&t2, NULL, dec,NULL);
pthread join(tl,NULL); pthread join (t2,NULL);
printf ("Value of balance is :%1d\n", balance);
return 0;

}

vold * inc(void * arqg) {
for(long i=0,;1<100000000; i++)
balance++;
pthread exit (NULL) ;
}
volid * dec(void * arqg) {
for(long i=0,;1<100000000; i++)
balance—--;
pthread exit (NULL) ;

Points to Ponder

Points to Ponder

If a signal 1s sent to a multi-threaded process. Which
thread will receive that signal?

The UNIX signal model was designed with the UNIX process model in
mind, so there are some significant conflicts between the signal and thread
models. Combining signals and threads 1s complex and should be avoided
whenever possible. Some key points to be kept in mind are:

 Signal handlers are per-process
 Signal masks are per-thread

e Sending a signal using kill (1) or kill (2) will terminate the
process. You can use pthread kill (3) to send a signal to another
thread in the same process

e [f one thread 1gnores a signal, then that signal 1s 1ignored by all threads

Points to Ponder

If one of the threads executes the exec () system %

call, what happens? A DN
ey
{(//\;’-‘___-—/\ :

e When any thread calls one of the exec () functions, the calling
program 1s completely replaced and all threads, except the one that
called exec (), vanish immediately

 None of the threads executes destructors for thread-specific data or

calls cleanup handlers

 All the pthread objects (mutexes and condition variables) disappear as
the new program overwrites the memory of the process

o After an exec () the thread ID of the remaining thread 1s unspecified

Points to Ponder

If one thread executes the fork () system call, does the @_

new process duplicate only the calling thread or all A\
threads? Is the child process single threaded or multi- r ‘ﬂ@
threaded?

* The child process i1s created with a single thread — the one that called th
fork ()

e It is recommended that a fork (), in a multithreaded process should always
be followed by an immediate exec () call, so that all the global variables as

well as all pthread objects (mutexes and condition variables) disappear, as
the child program overwrites the memory of the process
o If there 1s no exec () after the fork (), then the state of global variables as

well as all pthread objects (mutexes and condition variables) are preserved in
the child, which may cause problems in the child program. So for programs
that uses fork () that is not followed by an exec (), the pthreads API
provides a mechanism for defining fork handlers using the function
pthread atfork (). These fork handlers are preserved after a fork (),
but not preserved after an exec ()

Points to Ponder

What if the main thread want to cancel another thread or
threads? Suppose multiple threads are searchmg through
a database, 1f one thread returns data, remaining threads
might need to be cancelled

(o \
« A thread can call pthread cancel () to request that another thread be
cancelled by mentioning the TID of the target thread

* This cancellation may cause a problem if the target thread 1s holding some
resources which 1t must free later

* To counter this possibility, it is possible for a thread to make itself cancellable
or un-cancellable by calling a function pthread setcancelstate ()

 Moreover, a cancellable thread may also set its cancel type by calling a
function pthread setcanceltype (), which can be asynchronous, 1.¢.,
thread may be cancelled at any point in i1ts execution or deferred, in which
case the cancellation request is queued, until the target thread reaches next

cancellation point. (Places in a thread's execution where it can be cancelled are
called cancellation points)

SUMMARY

We're done for now, but - A
Todo's for you after this _ J¥% 2
lecture... =T

6o through the slides and Book Sections: 4.1, 4.2, 4.3, 4.4

Write down the programs discussed in class in vim editor and execute
them. Make variations in the programs and understand the underlying
details

« Try to understand why program in Example 6 gives different results when
run multiple times

« Understand the difference between fork() and clone() system call
« Study books and understand the concept of

* Thread Pool

« Thread Cancellation

« Signal handling in multithreaded programs

If you have problems visit me in counseling hours. . . .
51

