
1

CMP325
Operating Systems

Lecture 13, 14

S/W Based and H/W Based
CSP Solutions

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of Previous Lecture.

• Possible Solutions of CS Problem
• SW Based Solutions

• Strict Alternation

• Use of flags

• Dekker’s Algorithm

• Peterson Algorithm

• Busy Waiting and sleep() & wakeup()

• Bakery Algorithm

• HW Based Solutions
• Disabling Interrupts

• TSL

• Swap

• Thread Synchronization using mutex
2

3

Critical Section Timeline - Example

Software Based

Solutions

4

5

General Structure of CS Problem Solution

do {

ENTERY SECTION

<CS> //Access shared variables

EXIT SECTION

<RS> //Do other work

}while(1);

6

Algorithm Using Strict Alternation

Process P0
do {

while (turn!=0) ;//Entry Section

<CS>

turn = 1;//ExitSection

<RS>

} while (1);

Process P1
do {

while (turn!=1) ; //Entry section

<CS>

turn = 0; //ExitSection

<RS>

} while (1);

 Given by a Dutch mathematician Dekker for two processes
P0 and P1.

 turn is a global/shared variable initialized to zero.

 If turn = i then Pi can enter in its CS otherwise it will wait.

7

Algorithm Using Flags

Process P0
do {

flag[0] = true;
while (flag[1]== true]);

<CS>

flag [0] = false;//ExitSection

<RS>

} while (1);

Process P1
do {

flag[1] = true;
while (flag[0]==true);

<CS>

flag [1] = false; //ExitSection

<RS>

} while (1);

 The limitation of strict alternation is solved in this algo.

 Instead of a single variable turn, take an array of two Boolean variables,
boolean flag[2]; and initialize them to false; flag [0] = flag [1] = false;

 A process set its flag to true (showing its intention that it want to enter its
CS) and check for the other process flag, if the other process flag is true
keep spinning in loop.

8

Use of Flags - Improved

Process P0
do {

flag[0] = true;
while (flag[1]) {

flag[0] = false;

wait(randno());

flag[0] = true;

}

<CS>
flag [0] = false;

<RS>

} while (1);

Process P1
do {

flag[1] = true;
while (flag[0]) {

flag[1] = false;

wait(randno());

flag[1] = true;

}

<CS>
flag [1] = false;

<RS>

} while (1);

 The limitation of previous algorithm is solved in this algo.

 Instead of waiting/spinning indefinitely in the while loop, the process set

its flag to false, wait for a random period of time, set its flag back to true

and then again try the while loop condition.

9

Peterson Algorithm
 The algorithm is given by Peterson, the person who wrote

the first edition of our text book “OS concepts” in 1984.

 It combines the shared variables of previous algorithms.

 Keep two Boolean flags one for each process and a shared

integer variable turn.

Boolean flag[2]; // initialized to false

int turn = 0;

 Before entering CS, each process set its flag to true and

make turn equal to other process ID. (I am interested to go

to my CS but if U wanna go, you go first). It then enters the

while loop and checks whether the other process wants to

enter its CS and is it his turn? if yes spin.

10

Peterson Algorithm (cont…)
Process P0

do {

flag[0] = true;

turn = 1;
while (flag[1] && turn == 1)

; //spin

<CS>
flag [0] = false;

<RS>

} while (1);

Process P1
do {

flag[1] = true;

turn = 0;
while (flag[0] && turn ==0)

; //spin

<CS>
flag [1] = false;

<RS>

} while (1);

11

Problem: Busy-Waiting
• Busy waiting means that a process is waiting for a condition

to be satisfied, sitting in a tight loop, w/o relinquishing the

CPU.

• Lets see a bigger picture:

• Suppose that instead of only two, there are 100

cooperating processes.

• One out of them is executing in its CS and the rest 50

out of 99 wants to get inside their CS.

• So these 50 processes will be executing the while loop

of their entry section.

• Whenever the CPU is scheduled to them they keep

spinning for the allocated time quantum. Thus wasting a

very useful resource.

12

Problem: Busy-Waiting (…)
• Busy waiting not only waste precious CPU cycles, but it can

also have unexpected effects like priority inversion
problem.
• Consider a computer with two cooperating processes, H

(high priority) and L (low priority).
• The scheduling rules are such that H is run whenever it

is in ready state.
• At a certain moment, L is in its CS, and H becomes ready

to run. So L is preempted from it CS, and H executes.
• H now begins busy waiting, now due to low priority L is

never scheduled while H is running, L never gets the
chance to leave its CS and execute the Exit section, so
H loops forever.

• This situation is referred to as the priority inversion
problem.

13

Problem: Busy-Waiting (…)
• Spin Locks are not appropriate for single CPUs. Why?

• Spin locks are not appropriate for single processor

systems because the condition that would break a

process out of the spin lock can be obtained only by

executing a different process. If the spinning process is

not relinquishing the CPU, other processes do not get

the opportunity to execute and set the condition

required by the spinning process to come out of loop.

• In a multi processor system, other processes execute on

other CPUs and thus set the condition required by the

spinning process to come out of loop.

14

Sleep and Wakeup
• In busy waiting whenever a process wants to enter its CS, it

checks to see if the entry is allowed. If it is not, the process

just sits in a tight loop waiting until it is.

• Busy waiting can be avoided by making a process sleep by

relinquishing the CPU (in a queue) and block on a condition and

wait to be awakened at some appropriate time in the future.

• Busy waiting can be avoided but incurs the overhead

associated with putting a process to sleep (in a queue) and

having to wake it up when the appropriate program state is

reached.

• sleep() is a system call that causes the caller to block, that is,

be suspended until another process wakes it up.

• The wakeup() call has one parameter, the process to be

awakened.
• Next slide shows the producer consumer problem that uses these calls.

15

Sleep and Wakeup

$100 QUESTION

• Is there a race condition in the Producer
Consumer code shown on previous slide?
Justify.

16

17

Solution to N-Process CS Problem
 Suppose there are n-cooperating processes P0, P1, P2, P3, …, Pn-1. Each

process has a segment of code called a CS in which the process may

change shared data.

 Bakery Algorithm. (by Leslie Lamport)

 Consider a bakery and whenever a person enters the bakery, he is given a

token number (Tnumber). The person with the smallest token number is

served first.

 Let the bakery has two doors, each with a separate Tnumber dispenser.

 Two persons enter the bakery exactly at the same time from the two doors

and both are allocated the same Tnumber; e.g. 54.

 When the man at the counter announces the number, 54, two persons get up

and goes to the counter. Who is to be served first?

 Ladies first.

 Senior Citizen first.

18

Solution to N-Process CS Problem
 Bakery Algorithm (cont…).

 If the bakery is your system and the persons inside are

processes and the same thing happens; What to do?

 Lets serve the process with the smaller ID.

 Before entering its CS, every process gets a Tnumber.

Holder of smaller Tnumber enters to its CS. If process

Pi and Pj gets the same number then

if i < j then

Pi is served first;

else

Pj is served first;

19

Bakery Algorithm (cont…)
Example. Consider following six cooperating processes, with

a Tnumber assigned to each. Give the sequence in which
they will enter their CSs.

PID Tnumber

P0 8

P1 5

P2 0

P3 5

P4 6

P5 2

The required sequence is < P5 P1 P3 P4 P0 >

20

Bakery Algorithm (cont…)
Algorithm Semantics.
 Ticket numbering scheme always generate numbers in the

increasing order of enumeration, i.e. 1, 2, 3, 3, 4, 5, … So
every upcoming process is given a bigger number.

 Notations

 (Tnumber, PID) is an ordered pair.

 (a, b) < (c, d) if (a < c) OR (a == c & b < d)

 Max(…) is a function that is passed the existing Ticket
numbers and it will return the largest out of them.

 Data Structures

 Boolean choosing[n];for each process there is a slot in this array initialized to false

 int Tnumber[n]; for each process there is a number in this array initialized to zero

21

Bakery Algorithm
do {

choosing[i] = true;

Tnumber[i] = max(Tnumber[0], Tnumber[1], …, Tnumber [n – 1]) + 1 ;

choosing[i] = false;

for (j = 0; j < n; j++) {

while (choosing[j]) ;

while ((Tnumber[j] != 0) && (Tnumber[j],j) < (Tnumber[i],i)) ;

}

<CS>

Tnumber[i] = 0;

<RS>

} while (1);

This loop is going to compare the
(no, id) pair of Pi with (no, id)
pair of all other processes and
finally selects which process
goes to the CS

If Process Pj is in the
process of getting a ticket
number lets wait.

Before choosing a Tnumber,
every process will first set its
choosing to true and later
will set it to false.

After leaving the CS, Pi set its
Tnumber to 0, showing that it is
now not interested to enter its
CS

If Pj is interested to go to its CS, then check its
ordered pair, with ordered pair of Pi. If Pj’s (no,
id) pair is less than Pi’s pair then Pi wait in this
loop, else move up to for loop, increment j and
check next process.

If Pj is having a Tnumber equal to 0, i.e.
Pj is not interested to enter its CS. So
break this while loop, go back to for
loop, increment j and check next
process

22

Bakery Algorithm

1 boolean choosing[n];

2 int Tnumber[n];

3 do{

4 choosing[i] = true;

5 Tnumber[i] = max(Tnumber[0],Tnumber[1],...,Tnumber[n-1]) + 1;

6 choosing[i] = false;

7 for (j = 0 ; j < n ; j++){

8 while (choosing[j])

9 ; // do nothing

10 while ((Tnumber[j] != 0)&&(Tnumber[j], j) < (Tnumber[i],i)))

11 ; // do nothing

12 }

13 < CRITICAL SECTION >

14 Tnumber[i] = 0;

15 < REMAINDER SECTION >

16 }

$100 QUESTION

Why does Lamport used a variable called choosing? What will happen

if we don’t use it?

23

Scenario: Assume line # 1, 4, 6, 8 are commented
1. Lets assume there are two processes (Po and P1) are executing concurrently, and both reaches the

line containing max function (line#5) at the same time.
2. Max function returns zero for both processes (addition is yet not done by any of the processes).
3. Let at this instant of time P0 is interrupted and P1 continues its execution.
4. P1 assigns 1 to its Tnumber[1] slot.
5. P1 continues its execution and reaches line #10, For j = 0, the first condition of the while loop will

evaluate to false. For j = 1 the second condition of while loop condition will be evaluated and that
will also be false. For j =2,3,4 the first condition of while loop will be evaluated to false. So P1
enters its CS. All is fine up till now.

6. Lets assume that P1 is preempted in its CS and now P0 which is there at line #5 starts its execution.
7. P0 also assigns 1 to its Tnumber[0] slot.
8. P0 continues its execution and reaches line #10, for j=0 and 1 the second condition of the while

loop is evaluated to false. For j =2,3,4 the first condition of the while loop is evaluated to false. So
P0 also enters its CS. ME violated.

Assume line # 1, 4, 6, 8 are there
1. P1 will wait at line #8 until P0 is also given Tnumber (of course 1). Remember both P0 and P1 has

same Tnumber i.e. 1.
2. Now if P1 executes line #10 first, it will check the second condition of while loop and wait.
3. If P0 executes line #10, and will successfully enters the CS being senior most i.e. having the smallest

ID.
4. Once it leaves the CS, it will set its Tnumber to 0, and P1 who is waiting at line#10 will come out of

the loop and enter CS.
The reason of choosing is to prevent the second while loop (line #10) to be executed while a process
Pj is in the process of getting its ticket number. So the process loops in the first while loop, i.e.
while(choosing[j]);

Hardware Based

Solutions

24

25

Disabling Interrupts
 H/W solution does not mean that we are using some IC to handle the CS

problem. It basically mean that we are using instructions specified in
the Instruction Set Architecture of a processor to handle CSP.

 In a uni-processor environment, we can handle CSP, if we forbid/mask
interrupts (by setting MI bit to 1), while some shared variable is being
modified.

 However, if a user level program is given the ability to disable
interrupts, then it can disable the timer interrupt. Thus context
switching will not take place, thus allowing it to use the CPU w/o
letting other processes to execute.

 In a multi-processor environment, it is not feasible to disable
interrupts, because

 It will only prevent processes from executing on the CPU in which
interrupts are disabled. Processes can execute on other CPUs and
therefore does not guarantee mutually exclusive access to program
state.

 Disabling interrupts on all CPUs gives a great performance loss.

 Disabling interrupts works, but safe to use only inside OS/kernel.

26

Structure of CS Problem by Disabling Interrupts

do {

Disable Interrupts

<CS> //Access shared variables

Enable Interrupts

<RS> //Do other work

}while(1);

27

Preemptive and Non Preemptive Kernels
• A preemptive kernel allows a process to be preempted while it is

running in kernel mode, while a non preemptive kernel does not
allow.

• A non preemptive kernel is free form race conditions on kernel
data structures, because only one process is active in the kernel
at a time.

• Preemptive kernels are difficult to design specially for SMP
architectures (since two instructions from two different kernel
mode processes can run simultaneously thus making race
conditions difficult to handle).

• Why preemptive kernel?
• More suitable for real time programming, as it will allow a real

time process to preempt a process currently running in the
kernel.

• More responsive.
• Examples. Windows 2000 and XP have non preemptive kernels.

Linux 2.6 onwards, kernel is preemptive.

28

TSL (Test-Set-Lock) Instruction

boolean TestAndSet(boolean &lock)

{

boolean rv = lock; //READ

lock = true; //MODIFY

return rv; //RETURN

}

 TSL instruction is always executed atomically. Thus if two

TSL instructions are executed simultaneously (each on a

different CPU), they will be executed sequentially in some

arbitrary order.

 TSL instruction returns whatever (T/F) is passed to it and

sets the lock to true.

29

Solution to CSP usingTSL

boolean lock = false;

Process Pi
do {

while (TestAndSet(lock))

;

<CS>
lock = false;

<RS>

} while (1);

Process Pj
do {

while (TestAndSet(lock))

;

<CS>
lock = false;

<RS>

} while (1);

boolean TestAndSet(boolean & lock)

{

boolean rv = lock; //READ

lock = true; //MODIFY

return rv; //RETURN

}

Mutual Exclusion and Progress holds but

Bounded wait doesn’t. HOW? & WHY?

30

SWAP Instruction

void swap(boolean &a, boolean &b)

{

boolean temp = a;

a = b;

b = temp;

}

 swap instruction is always executed atomically. Thus if two

swap instructions are executed simultaneously (each on a

different CPU), they will be executed sequentially in some

arbitrary order.

31

Solution to CSP using SWAP

boolean lock = false;

Process Pi
do {

boolean key = true;

while (key == true)

swap(lock, key);

<CS>
lock = false;

<RS>

} while (1);

Process Pj
do {

boolean key = true;

while (key == true)

swap(lock, key);

<CS>
lock = false;

<RS>

} while (1);

Mutual Exclusion and Progress holds but

Bounded wait doesn’t. HOW? & WHY?

void swap(boolean &a, boolean &b)

{

boolean temp = a;

a = b;

b = temp;

}

32

Achieving Bounded wait using TestAndSet
boolean lock = false;

boolean waiting[n]; // all set to false

do{

waiting[i] = true;

boolean key = true;

while (waiting[i] && key)

key = TestAndSet(lock);

waiting[i] = false;

< CRITICAL SECTION >

j = (i+1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

< REMAINDER SECTION >

}while(1);

33

Achieving Bounded wait using SWAP
boolean lock = false;

boolean waiting[n]; // all set to false

do{

waiting[i] = true;

boolean key = true;

while (waiting[i] && key)

swap(lock, key);

waiting[i] = false;

< CRITICAL SECTION >

j = (i+1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

< REMAINDER SECTION >

}while(1);

34

35

void * inc(void * arg){

for(long i=0;i<100000000;i++)

balance++;

pthread_exit(NULL);

}

Example (Race Condition)
long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL); pthread_join(t2,NULL);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * dec(void * arg){

for(long i=0;i<100000000;i++)

balance--;

pthread_exit(NULL);

}

36

Thread Synchronization using Mutexes
• The pthread library provides three synchronization

mechanisms; mutexes, joins and condition variables

• Mutex

• A mutex is used to achieve both mutual exclusion as well

as serialization.

• A mutex is a special type of lock that only one thread

may lock at a time.

• If a thread locks a mutex and later a second thread also

tries to lock the same mutex, the second thread is

blocked. When the first thread unlocks the mutex, the

second thread is allowed to resume execution.

• Linux guarantees that race condition do not occur among

threads attempting to lock a mutex.

37

Typical way to use a mutex
1. Create an initialize a mutex variable

2. Several threads attempt to lock the mutex

3. Only one thread succeed and that thread owns the

mutex

4. The owner thread carry out operations on shared data.

5. The owner thread unlock the mutex

6. Another thread acquires the mutex and repeats the

process

7. Finally the mutex is destroyed

38

Important Library Calls
Mutex Initialization:
static pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_lock(pthread_mutex_t * mptr);

• Calling thread will lock the mutex object referenced by

mptr. If mutex is already locked, the calling thread

shall block until the mutex become available.

• Used when a thread is going to enter its CS.

int pthread_mutex_unlock(pthread_mutex_t * mptr);

• This call should be made only by the owner thread. This

will release the mutex object referenced by mptr. If

there are threads blocked on the mutex object

referenced by mptr when the unlock() is called, the

scheduling policy shall determine which thread shall

acquire the mutex

• Used when a thread comes out of the CS

39

Example (Solution Race Condition)
long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

pthread_mutex_t mut;

int main(){

pthread_t t1, t2;

pthread_mutex_init(&mut, NULL);

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL); pthread_join(t2,NULL);

pthread_mutex_destroy(&mut);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * dec(void * arg){

for(long i=0;i<100000000;i++){

pthread_mutex_lock(&mut);

balance--;

pthread_mutex_unlock(&mut);

}

pthread_exit(NULL);

}

void * inc(void * arg){

for(long i=0;i<100000000;i++){

pthread_mutex_lock(&mut);

balance++;

pthread_mutex_unlock(&mut);

}

pthread_exit(NULL);

}

40

Mutex Mistakes

• Only the owner of the mutex should unlock the

mutex

• Do not lock a mutex that is already locked

• Do not unlock a mutex that is already unlocked

• Do not destroy a locked mutex

SUMMARY

41

We’re done for now, but
Todo’s for you after this
lecture…

42If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 6.1 to 6.4

• Try to make an understanding about the non determinism
of concurrent multi threaded programs.

• Try hand/mind execution of the sample programs
discussed in class to see whether they fulfill the
characteristics of CS problem solution.

• Write a multithreaded C program that is passed two
filenames as command line arguments. It counts the
number of characters in those two files in a global
variable. Create two threads for the task. Handle race
condition.

