
CMP325
Operating Systems

Lecture 15

Synchronization using Semaphore

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides, 
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW


Today’s Agenda
• Review of Previous Lecture
• Semaphores (OS Based solution)

– Introduction to semaphores
– Mutual Exclusion using Binary and Counting Semaphores
– Serialization using Semaphores
– Problems with Semaphores
– Solving Standard Synchronization Problems using 

Semaphores
• Producer Consumer Problem
• Dinning Philosopher Problem
• Readers Writers Problem
• Sleeping Barber Problem
• Smokers Problem

2



3

Introduction to Semaphores
• Till date, we have been designing protocols that 

processes /threads can use to coordinate their 

activities when one wants to go to its CS

• Semaphores are a kind of generalized lock, first 

defined by Dijkstra in late 60s

• Real Life Definition. A semaphore is a system of 

signals used to communicate visually using flags 

lights or some other mechanism

• CS Definition. A data structure that is useful for 

solving a variety of synchronization problem



4

Introduction to Semaphores (…)
A semaphore is an integer variable, with three differences

• When you create a semaphore, you can initialize it to any 

integer value, but after that you can perform only two 

operations on it namely increment and decrement

• When a process/thread decrements the semaphore, if the 

result is negative, the thread blocks itself (notifies the 

scheduler that it cannot proceed) and cannot continue until 

another thread increments the semaphore

• When a process increments the semaphore, if there are 

other threads waiting , one of the waiting threads gets 

unblocked. Which one?

• Strong semaphore

• Weak Semaphores



5

Introduction to Semaphores (…)
Value of Semaphore

• Zero value means  there are no threads 

waiting, but if a thread tries to decrement, 

it will block

• Positive value represents the number of 

threads that can decrement without blocking

• Negative value represents the number of 

threads that have blocked and are waiting



6

Introduction to Semaphores (…)
• Implementation of semaphores is normally available as part of Operating 

System’s “System calls”. That’s why it is known as OS based solution to CSP.

• Semaphore Initialization

• To achieve mutual exclusion we initialize semaphore with 1 and for 

synchronization it is initialized to zero.

semaphore   s = 1;

• Semaphore Operations

• signal(). An atomic operation that increments the semaphore by 1 and wake 

up a waiting Process, if any

s.increment();                  s.signal();                  s.V();

s.increment_and_wake_a_waiting_process_if_any();

• wait(). An atomic operation that decrements the semaphore by 1 and 

blocks the calling process if the result is negative.

s.decrement();                  s.wait();                  s.P();

s.decrement_and_block_if_the_result_is_negative();

• Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to 

increment) in Dutch



7

Introduction to Semaphore(…)

Value=2Value=1Value=0Value=1Value=0Value=2

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource 

control:



8

N Process CSP Solution using Semaphores

semaphore mutex = 1;

Process Pi
do {

wait (mutex) ;

<CS>
signal (mutex);

<RS>
} while (1);

//entry to CS of a process is 
controlled by wait operation

wait(semaphore s) {

while(s<=0) ;

s--;

}
//exit from CS is signaled by signal  
operation

signal(semaphore s){

s++;

}

Binary Semaphores.

• Mutex will either be 0 (means there is a 
process inside its CS)

• Mutex will either be 1 (means no process is 
inside its CS.

• Mutex will never be negative or greater than 1



9

Atomic Execution of wait and signal operation
• wait() and signal() operations should be indivisible

/executed atomically; i.e. when one process modifies the

semaphore value, no other process can simultaneously

modify that semaphore value.

• wait() and signal() are not machine instructions, Operating

Systems ensure that they are executed atomically. HOW?
• In a uni-processor environment, disable interrupts (MI bit)

before executing code for wait() and signal().

• In a bus based multiprocessor environment, lock the data bus

before executing wait and signal and release the bus

afterwards.

• Since wait() and signal() are just like CSs, so another option is

to use the software solution, i.e. put the code of Bakery

algorithm before the wait and signal operation.



10

New Definition of Semaphores
Semaphore is not a simple integer variable, rather is 
an integer variable with a list of processes 
associated with it.

typedef struct{

int value;

struct process * L;

}semaphore;

Two simple ops are used:
• block()  is a system call to kernel that 

will place the calling process in a 
waiting queue.

• wakeup(P) is a system call to kernel 
that will remove the process P from 
the waiting queue and place it in the 
ready queue.

void wait(semaphore s) {
s.value--;
if(s.value < 0) {

add caller process to list L;
block();

}
}

void signal(semaphore s) {
s.value++;
if(s.value <= 0) {

remove process P from list;
wakeup(P);

}
}



11

Counting Semaphores

counting semaphore S = 5; //max 5 processes can enter into a particular piece of code

int c = 5; //c will contain the current value of S at any instant of time

semaphore s1 = 1; //A b.s used to get hold of c mutually exclusively

semaphore s2 = 0; //A b.s used to achieve synchronization. A process Pi waiting on S 
will actually be waiting on b.s s2

• Binary semaphores allows only one process at a time to access the 
shared resource.

• Counting semaphores allows N > 1 processes to access the resource 
simultaneously.

• Lets implement a counting semaphore S using two binary semaphores s1 

and s2.

void wait(semaphore S) {
wait(s1);
c--;
if (c < 0) {

signal(s1);
wait(s2);  }

else
signal(s1);

}

void signal(semaphore S) {
wait(s1);
c++;
if (c <= 0) 

signal(s2);
signal(s1);

}



12

Uses of Semaphores
• To ensure Mutual Exclusion of a Critical

Section (as locks)

• To control access to a shared pool of

resources (using counting semaphores)

• To cause a thread/process to wait for a

specific action to be signaled by another

thread/process (serialization)



13

Synchronization using Semaphores
• Semaphores provide a powerful OS tool that are used to achieve 

synchronization between processes, other than achieving mutual 
exclusion.

• Example 1. Consider two processes Pi and Pj with statements A and B in 
them respectively. We want that statement B in Pj should be executed 
after statement A in Pi is executed. Give a semaphore based solution.

• Example 2. Consider three processes P1, P2 and P3. Instruction A in P1 

executes after instruction B in P2 is executed. Instruction B in P2

executes after instruction C in P3 has executed. Give a semaphore based 
solution. (C < B < A)

Pi Pj. .. .. .
A wait(s);
signal(s); B. .. .. .



14

Problems with Semaphores
• Semaphores provide a powerful synchronization 

tool, but:
• wait() and signal() operations are scattered 

among several processes. It is difficult to 
understand their effects

• Usage must be correct in all the processes
• One bad process (i.e. one programming error) can 

kill whole system
• Wrong initialization or placement of wait and signal 

may cause following problems:
• Violation of M.E
• Dead Lock
• Starvation



15

Problems with Semaphores (…)
• Violation of Mutual Exclusion.

• By mistake the programmer has placed the signal 
operation before the wait operation in P0.

• S is initialized to 1.
• Let P1 executes first, decrements s to 0 and enter its 

CS.
• Let P0 now executes, and instead of a wait gives a signal 

to s, increments s to 1 and enter it Cs.
• Both p0 and p1 are in Cs (M.E violated)

P0 P1
signal(s); wait(s);

<CS> .<CS>
wait(s); signal(s);. .. .. .



16

Problems with Semaphores (…)
• Dead Lock.

• A set of processes are said to be in a state of dead lock, 
if every process is waiting for an event that can be 
caused only by another process in the set.

P0 P1
wait(s1); wait(s2);
wait(s2); wait(s1);. .. .. .
signal(s1); signal(s2);
signal(s2); signal(s1);. .. .. .

P0 P1

signal(s1)

signal(s2)



17

Problems with Semaphores (…)
• Starvation.

• Indefinite blocking due to unavailability of a resource

P0 P1
wait(s); wait(s);. .. .. .
nothing/wait(s); signal(s);. .. .. .



18

Solution of Wrong use of Semaphores
• Problem. Using semaphores for achieving 

serialization and M.E is error prone due to tandem / 
wrong use of wait and signal operations by 
programmer.

• Solution.  Use high level language constructs, i.e. 
shift the responsibility of enforcing M.E / 
serialization form the programmer to the compiler. 
These constructs will be available in compilers and 
will release the application programmer of the 
hustle of using semaphores to achieve 
synchronization.  Examples of such constructs are:
• Critical Regions
• Monitors



19

Producer Consumer (Unbounded Buffer)
binary semaphore mutex = 1; //To access buffer mutually exclusively

counting semaphore full = 0; //counts the no of slots that are full

int in = 0, out = 0;

void placeItem(buffer, item){

buffer[in] = item;

in = in + 1;}

item takeItem(buffer){

item = buffer[out];

out = out + 1;

return item;}

Producer
do{

item = produceItem();

wait(mutex);

placeItem(buffer,item);

signal(mutex);

signal(full);

}while(1); 

Consumer
do{

wait(full);

wait(mutex);

item = takeItem(buffer);

signal(mutex);

consumeItem(item);

}while(1); 



20

Producer Consumer (Bounded Buffer)
#define N 5
item buffer[N];

binary semaphore mutex = 1; //To access buffer mutually exclusively

counting semaphore full = 0; //counts the no of slots that are full
counting semaphore empty = N; //counts the no of slots that are empty

int in = 0, out = 0;

void placeItem(buffer, item){

buffer[in] = item;

in = (in + 1) % N;}

item takeItem(buffer){

item = buffer[out];

out = (out + 1) % N;

return item;}

Producer
do{

item = produceItem();

wait(empty);

wait(mutex);

placeItem(buffer,item);

signal(mutex);

signal(full);

}while(1); 

Consumer
do{

wait(full);

wait(mutex);

item = takeItem(buffer);

signal(mutex);

signal(empty);

consumeItem(item);

}while(1); 



Dining Philosopher Problem

21

• Five Chinese philosophers, who spend their lives just thinking and eating

• Sit on a round table with five plates of rice and five chopsticks

• A philosopher requires two chopsticks to eat (so at a time a maximum of 

two philosophers can eat)

• Protocol used for eating:

• Picks up left chopstick and then right chopstick, one at a time in 

either sequence

• If successful in acquiring two chopsticks, the philosopher eats for a 

while, then puts down the chopstick and continues to think

• One fine day all became hungry at a time. All pick up the left chopstick 

first and then look for the right chopstick, which was not there. They 

did not fight like us but waited and waited and waited and finally 

starved to death. Sad day in China….

“Allocate several resources among processes in deadlock free, 

starvation free manner”



Dining Philosopher Problem

22



23

semaphore chopstick[5];  //all initialized to 1

Pi
do{

think();

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

eat;

signal(chopstick[(i+1)%5]);   

signal(chopstick[i]);

}while(1); 

Dining Philosopher Problem
Lets code the protocol using which Chinese Philosopher 
starved to death

Limitation: All philosophers start simultaneously, picking up 
their left chopstick; look for the right, which is not available, 
so started waiting and finally starved to death



24

semaphore chopstick[5];  //all initialized to 1

binary semaphore mutex = 1; 

Pi
do{

think();

wait(mutex);

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

eat;

signal(chopstick[(i+1)%5]);   

signal(chopstick[i]);

signal(mutex);

}while(1); 

Dining Philosopher Problem (Solution-A)



25

semaphore chopstick[5];  //all initialized to 1

counting semaphore table = 4;

Pi
do{

think();

wait(table);

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

eat;

signal(chopstick[(i+1)%5]);   

signal(chopstick[i]);

signal(table);

}while(1); 

Dining Philosopher Problem (Solution-B)



26

semaphore chopstick[5];  //all initialized to 1

Pi
do{

think();

if ((i % 2) == 1){

wait(chopstick[(i+1)%5]);

wait(chopstick[i]);

}

else

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

}

EAT;

signal(chopstick[(i+1)%5]);   

signal(chopstick[i]);

}while(1); 

Dining Philosopher Problem (Solution-C)



27

semaphore chopstick[5];  //all initialized to 1

boolean flag[5]; //initialized to false; i.e. all are available

Pi
do{

if(!(flag[i] OR flag[(i+1)%5])){

flag[i] = true;

flag(i+1)%5] = true;

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

EAT;

signal(chopstick[(i+1)%5]);   

flag(i+1)%5] = false;

signal(chopstick[i]);

flag[i] = false;

}

else 

think(); 

}while(1); 

Dining Philosopher Problem (Solution-D)



Reader Writer Problem

28

R
R

R

W

• For successful read-write operations, following conditions 

must be satisfied:

• Two or more readers can access shared data 

simultaneously

• Only one writer can access it at a time

• If a writer is writing to the file, no reader may read it



Readers have Priority

• If one or more readers are reading a shared resource and 
some other readers and writers also want to access that 
shared resource; we will let the readers read and writers 
wait until there is no reader reading the shared resource

• If a reader want to read, it wait for a minimum amount of 
time

Writers have Priority

• If one or more readers are reading a shared resource and 
some other readers and writers also want to access that 
shared resource; we will NOT let any further readers to 
come in and read, rather let the old readers finish reading 
and let a writer write

• If a writer wants to write, it waits for minimum amount of 
time

Reader Writer Problem

29



Readers have priority

30

int readCount = 0;

binary semaphore mutex = 1; //To access readCount mutually exclusively

binary semaphore wrt = 1; //Used by writer process so that only 

//one writer process can enter the writing phase at a time

Writer
do{

wait(wrt);

WRITING IS PERFORMED

signal(wrt);

}while(1); 

Reader
do{

wait(mutex);

readCount++;

if (readCount == 1)

wait(wrt);

signal(mutex);

READING IS PERFORMED

wait(mutex);

readCount--;

if (readCount == 0)

signal(wrt);

signal(mutex);

}while(1); 



Writers have priority

31

int readCount, writeCount = 0;

binary semaphore x,y,z = 1; //y,x is for writecount,readcount

binary semaphore wrt, read  = 1; 

Writer
do{

wait(y); 

writeCount++; 

if (writeCount==1)

wait(read);

signal(y); 

wait(write); 

<DO WRITING>; 

signal(write); 

wait(y); 

writeCount--; 

if (writeCount==0)

signal(read); 

signal(y);

}while(1); 

Reader
do{

wait(z);

wait(read); 

wait(x); 

readCount++; 

if (readCount==1) 

wait(write); 

signal(x); 

signal(read); 

signal(z); 

<DO READING>; 

wait(x); 

readcount--; 

if (readcount==0) 

signal(write); 

signal(x);

}while(1); 



Sleeping Barber Problem

32

• A barber shop consists of a room with n 
waiting chairs and one barber chair
• If there are no customers to be served 

the barber goes to sleep
• If a customer arrives and the barber is 

asleep, the customer wakes up the 
barber

• If the barber is busy, but chairs are 
available, then the customer sits on one 
of the free chairs

• If a customer enters the barber shop 
and all chairs are occupied, then the 
customer leaves the shop

Customer

– Check if chair available, if not leave

– Inform barber that I have arrived

– Wait until barber cuts his hair

Barber

– Sleep until  a cust wakes him up

– Service cust (during that remember to 
update available chairs

– Tell cust to leave after finished

– Repeat for other customers



33

Sleeping Barber Problem (Solution)
const int N = 5
int chairs_occupied = 0;

binary semaphore mutex = 1; //To access chairs_occupied mutually exclusively

counting semaphore barber_finished = 0;
counting semaphore cust_arrived = 0;

Customer
do{

wait(mutex);

if (chairs_occuupied < N)

chairs_occupied ++;

else

{

signal(mutex);

exit(0);

}

signal(mutex);

signal(cust_arrived);

wait(barber_finished);

}while(1); 

Barber
do{

wait(cust_arrived);

wait(mutex);

chairs_occupied --;

signal(mutex);

cut_hair();

signal(barber_finished);

}while(1); 



Smokers Problem

34

• Ingredients (Resources) Tobacco, Paper, Match Box.

• 3 x Smokers (Applications) sits around a table. Each one 
has one of the three ingredients/resources (tobacco, paper, 
match box)

• 1 x Agent (Operating System) has infinite supply of all 
three materials.

• Protocol
• Agent places two of the ingredients (at random) on the 

table.

• The smoker who has the remaining third ingredient 
makes and smokes the cigarette.

• After smoking/completion signals the agent.

• The agent then puts out another two of the three 
ingredients and cycle repeats.



Smokers Problem (…)

35

Smoker with match box

do{

wait(tobacco);

wait(paper);

SMOKE

signal(agent);

}

Smoker with tobacco

do{

wait(paper);

wait(match);

SMOKE

signal(agent);

}

Smoker with paper

do{

wait(tobacco);

wait(match);

SMOKE

signal(agent);

}

binary semaphore tobacco = 0;

binary semaphore match = 0;

binary semaphore paper = 0;

binary semaphore agent = 1;



Smokers Problem

36

Agent Process
do{

wait(agentSem);

//Pick two ingredients, if ingredients are tobacco and paper then

signal(tobacco);

signal(paper);

// else if ingredients are paper and match then

signal(paper);

signal(match);

// else if ingredients are tobacco and match then

signal(tobacco);

signal(match);

}



SUMMARY

37



We’re done for now, but 
Todo’s for you after this 
lecture…

38

• Go through the slides and Book Sections: 6.5, 6.6

• Google the standard synchronization problems discussed 
in the slides and understand the pros and cons of the 
pseudo code/algorithm.

• Google out the system calls available in POSIX and 
System-V for the use of semaphores to achieve 
synchronization


