
CMP325
Operating Systems

Lecture 16

Synchronization using Monitor

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of Previous Lecture

• Compiler Based Solutions

– Critical Regions/Statement

• Producer Consumer Problem using Critical Region

– Monitors

• Why monitors

• Introduction to Monitors

• Condition variables

• Producer Consumer Problem using Monitors

• Dining Philosopher Problem using Monitors
2

3

High Level Language Constructs
• Semaphores are good synchronization primitives since they don’t waste

CPU time through busy waiting

• However, the correctness of a program which uses semaphores depends
crucially on correct calls to wait() and signal() operations. The
responsibility is completely on the programmer to issue these calls
correctly

• We have seen that wrong initialization/placement of wait() and
signal() in semaphores may cause:

• Violation of mutual exclusion

• Dead lock

• Starvation

• Solution of above problem is:

• Shift the responsibility of enforcing mutual exclusion from
programmer to compiler

• Critical Regions

• Monitors

A C.R/Monitor are High Level Synchronization construct that allows
safe sharing of an ADT among concurrent cooperating processes

4

Critical Regions
• A region statement is a high level synchronization construct

that allows safe sharing of an ADT among concurrent
cooperating processes

• Critical section solution using region statement has two parts

• Variables that must be accessed under mutual exclusion

• A new language statement(construct) that identifies a critical
region in which the variables are accessed

• Variable v is a shared variable of type T

• The region statement says that the shared variable v can be
accessed by a process inside the critical region S, iff the
condition B is evaluated to true and there is no other process
executing inside the critical region S. If condition B is false or
there is another process executing inside S, the process is
delayed until B becomes true and no other process is in the
region associated with v

v: shared T;
region v when B do S;

Bounded Buffer Problem (using region statement)

5

#define BUFFER_SIZE 5

typedef struct{ ---- } item;

item buffer[BUFFER_SIZE];

int in = 0; //points to location where next item will be placed, will

be used by producer process

int out = 0; //points to location from where item is to be consumed,

will be used by consumer process

int ctr = 0;

Producer Process

item nextProduced;

while(1)

{

region buffer when (ctr<BUFFER_SIZE)

{

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

ctr++;

}

}

Consumer Process

item nextConsumed;

while(1)

{

region buffer when (ctr>0)

{

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

ctr--;

}

}

6

Introduction to Monitors
• Monitors can be thought of as an object-oriented

extension of the idea of a semaphore

• A monitor is similar to a language class that ties
data and operations together

• A monitor is similar to a class in the sense that its
private data can only be accessed by its methods

• A monitor is different from a class in the sense
that it allows only a single process at a time to
execute its procedure

• It contains:

• Procedures

• Initialization code

• Shared data

7

Introduction to Monitors (…)
• The monitor construct has been implemented in a

number of programming languages, including
Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3
and Java

• Main characteristics of a monitor are:
• The local data variables are accessible only by the

monitor’s procedures and not by any other external
procedure

• A process enters the monitor by invoking one of its
procedures

• Only one process may be executing in the monitor at
a time; any other processes that have invoked the
monitor are blocked, waiting for the monitor to
become available

8

Monitors & Mutual Exclusion
• By enforcing the discipline of one process at a time,

the monitor is able to provide a mutual exclusion

facility. The data variables in the monitor can be

accessed by only one process at a time

• Thus, a shared data structure can be protected by

placing it in a monitor

• Compiler implements the mutual exclusion on

monitor. Programmer does not have to be aware of

how the compiler arranges for mutual exclusion

• Turn critical sections into monitor procedures, no

two processes shall execute their critical sections

at same time

9

Monitors & Java
• The Java synchronized construct implements a limited form

of monitor
• In order to turn a java class into a monitor:

• Make all data private
• Make all methods synchronized

Class MyQueue{

private ….; // queue data

public void synchronized addToQueue(Item a){

put the item a in the queue;

}

public item synchronized removeFromQueue(){

if (queue is not empty){

remove item;

return item;

}

}

}

10

Monitors in General
Lock lock;

Queue queue;

addToQueue(item) {

lock.Acquire(); // Lock shared data

queue.enqueue(item); // Add item

lock.Release(); // Release Lock

}

removeFromQueue() {

lock.Acquire(); // Lock shared data

item = queue.dequeue();// Get next item or null

lock.Release(); // Release Lock

return(item); // Might return null

}

Lets suppose the queue is empty, and a process calls removeFromQueue
method, acquires lock and starts waiting until something is there in
queue?

11

Monitors & Java (cont…)

• Logically, we want to go to sleep inside of the monitor

• But if the process go to sleep inside the monitor, then

other threads cannot access the queue. So no thread can

call the addToQueue() method. So the thread that has

called the removeFromQueue() method could sleep forever

• Solution:

• Use condition variables

• Condition variables enable a thread to sleep inside a

critical section

• Any lock held by the thread is atomically released

when the thread is put to sleep

100$ Question: How can we change removefromQueue()
to wait until something is in queue?

12

Condition Variables
• A monitor supports synchronization by the use of condition

variables that are contained within the monitor and
accessible only within the monitor

• A condition variable is a queue of threads waiting for
something inside a critical section

• Condition variables are a special data type in monitors,
which are operated on by two functions

• cwait(x) The process that called the monitor procedure
containing this statement is suspended on a FIFO queue associated
with x. The monitor is now available for use by another process. The
process invoking this operation remain suspended until another
process invokes csignal(x)

• csignal(x) Resumes exactly one suspended process at the head
of the queue associated with x. If no process is suspended, this
operation has no effect. (This is unlike the signal() operation on a
semaphore, where a signal operation always increments value of
semaphore by one)

Structure of a Monitor

13

14

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure

– Always release after finishing with shared data

– Lock initially free

• Condition Variable: a queue of threads waiting for something inside
a critical section
– Key idea: make it possible to go to sleep inside critical section by

atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Monitors Architecture

15

What happens after a Signal
• Hoare-Style Monitor. Most text books discuss

Hoare-Style monitors. If there is a process in a condition
queue, a process from that queue runs immediately when
another process issues a csignal for that condition. Thus,
the process issuing the csignal must either immediately
exit the monitor or be blocked on the monitor.

• Draw backs of Hoare Monitor
1. If the process issuing the csignal has not finished with the

monitor, then two additional process switches are required:
a) One to block this process
b) Other to resume it when the monitor becomes available

2. Process scheduling associated with a signal must be perfectly
reliable. When a csignal is issued, a process from the
corresponding condition queue must be activated immediately and
the scheduler must ensure that no other process enters the
monitor before activation. Otherwise, the condition under which
the process was activated could change

16

What happens after a Signal (…)
• Mesa-Style Monitor. Lampson and Redell developed a different

definition of monitors for the language Mesa. Java and most real OS

follow Mesa-style monitors. csignal primitive is replaced by cnotify.

When a process executing in a monitor executes cnotify(x), it causes

the x condition queue to be notified, but the signaling process continues

to execute. The result of the notification is that the process at the

head of the condition queue will be resumed at some convenient future

time when the monitor is available.

• One useful refinement that can be associated with the cnotify(x)

primitive is a watchdog timer associated with each condition primitive. A

process that has been waiting for the maximum timeout interval will be

placed in a Ready state regardless of whether the condition has been

notified. When activated, the process checks the condition and

continues if the condition is satisfied. The time out prevents the

indefinite starvation of a process in the event that some other process

fails before signaling a condition.

Producer Consumer Problem
using

Monitor

17

18

Producer Consumer (Bounded Buffer)
monitor ProducerConsumer{

condition full, empty;

int count;

void placeItem(item){

if(count == BUF_SIZE) wait(full);

PLACE ITEM IN THE BUFFER;

count++;

if(count == 1) signal(empty);

}

item takeItem(){

if (count == 0) wait(empty);

REMOVE ITEM FROM THE BUFFER;

count--;

if(count == BUF_SIZE -1) signal(full);

}

end monitor;

19

Producer Consumer (…)

Consumer

do{

item = ProducerConsumer.takeItem();

consumeItem(item);

}while(1);

Producer

do{

item = produceItem();

ProducerConsumer.placeitem(item);

}while(1);

20

• Only one process is allowed to execute a monitor procedure
at any time. In this case, the producer may execute
placeItem() and the consumer may execute takeItem(), but
not both at the same time. This ensure mutually exclusive
access to the shared variables.

• This solution is more structured compared to semaphores
due to two reasons.
• The data and procedures are encapsulated in a single

module.
• Mutual exclusion is provided automatically and without

user involvement in the code.
• The Producer and Consumer processes only see the abstract

implementation of the procedures takeItem() and
placeItem() and need not know the details of the
implementations or data.

Producer Consumer (…)

Dining Philosopher Problem
using

Monitor

21

22

Dining Philosopher (using Monitor)
monitor dp{

enum {thinking, hungry, eating} state[5];

condition self[5];

void pickup(int i){

state[i] = hungry;

test(i);

if(state[i] != eating)

self[i].wait();

}

void putdown(int i){

state[i] = thinking;

test((i+4)%5);

test((i+1)%5);

}

void init(){

for(int i = 0 ; i < 5 ; i++)

state[i] = thinking;

}

void test(int i){

if((state[(i+4)%5]!=eating)&&

(state[i] == hungry) &&

(state[(i+1)%5] != eating)){

state[i] = eating;

self[i].signal();

} }

Pi
do{

think();

pickup(i);

eat;

putdown(i);

}while(1);

23

1.state is an array of enum type, that can have one out of these three
values. Every philosopher can in one of these three states. A philosopher
can set state[i] = eating iff her two neighbors are not eating.

2.Five condition variables, one for each philosopher. A philosopher uses his
condition variable to delay himself inside monitor when he is hungry, but
is unable to obtain the chopsticks he needs.

3.Pickup function. Every philosopher call the pickup function to pick up the
chopsticks. First of all it change its state to hungry, and then call the
test function, which may set the state of the philosopher to eating.
After calling test function, if the state of the process has not been set
to eating, then the calling process i, will suspend itself on condition
variable self[i].

4.Putdown function. After eating the philosopher calls the putdown
function. First of all it changes its state back to thinking, call test on its
left and then right neighbors.

5. init function sets the state of the philosopher to thinking mode.
6.Test function first checks if my left philosopher is not eating and if I

am hungry and if my right philosopher is not eating then set the state of
the calling philosopher process (i) to eating and send a signal to this
process.

Dining Philosopher (cont…)

Reader Writer Problem
using

Monitor

24

25

Reader Writer (using Monitor)
Monitor ReadersWriters{

condition OKtoRead, OKtoWrite;

int readerCount = 0;

boolean busy = false;

void startReading(){

if (busy)//if db is not free, block

OKtoRead.wait();

readerCount++;//inc readcount

OKtoRead.signal();

}

void endReading(){

readerCount--;//dec readcount

if (readerCount == 0)

OKtoWrite.signal();

}

void startWriting (){

if (busy || readerCount != 0)

OKtoWrite.wait();

busy = true;

}

void endWriting(){

busy = false;

if(OKtoRead.Queue)

OktoRead.signal();

else

OKtoWrite.signal();

}

void reader(){

while(1){

ReadersWriters.startReading();

readDatabase();

ReadersWriters.endReading();

}

}

void writer(){

while(1){

make_data(&info);

ReaderWriters.startWriting();

writeDatabase();

ReaderWriters.endWriting();

}

}

SUMMARY

26

We’re done for now, but
Todo’s for you after this
lecture…

27

• Go through the slides and Book Sections: 6.7

• Devise pseudo code for the Barber Shop Problem and
Smokers Problem using Region statements and Monitors

• Google out the system calls available in POSIX and
System-V for the use of condition variables to achieve
synchronization

