
1

CMP325
Operating Systems

Lecture 28

File System Architecture

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Seven File Types in UNIX
• Concept of Files and Directories
• Directory Structures

– Single Level Directory Structure
– Two Level Directory Structure
– Tree Directory Structure
– Acyclic Graph Directory Structure
– General Graph Directory Structure

• Keeping Track of File’s Data Blocks
– Contiguous Allocation
– Linked Allocation
– Indexed Allocation Technique
– UNIX Allocation Technique

• Keeping Track of Free Data Blocks
– Bit Vector
– Linked List
– Grouping
– Counting

• File System Architecture
– Creating a File
– Accessing a File
– File Descriptor to File Contents
– Introduction
– Disk Scheduling

• File Sharing and Links in UNIX 2

Concept of Files and
Directories

3

FILE TYPES IN UNIX

• Regular file (-) Files that contain information entered in them by a
user, an application program or a system utility program.

• Directory (d) Contains a list of file names plus pointers to associated
i-nodes. Directories are actually ordinary files with special write
protection privileges so only the file system can write into them, while
read access is available to user programs.

• Symbolic Link (l) Links let you give a file more than one name.

• Block Special File (b) A block special file consists of as sequence of
numbered blocks. The key property of the block special file is that each
block can be individually addressed and accessed, i.e. we can directly
access block 154 without first having to read blocks 0 to 153. Block
special files are typically used for disks. E.g. /dev/hda1, /dev/lp.

• Character Special File (c) Used to communicate with h/w that input
or output one character at a time. Keyboard, printers, mice, plotters,
networks are examples of character special files.

• Named Pipe (p) A file that passes data between processes. It stores no
data itself, but passes data between process writing data into pipe and
process reading from pipe. ls –l /dev | less

• Socket (s) A stylized mechanism for inter-process communications
4

FILE NAMING

• When a process creates a file it gives the file a name. When the
processes terminates the file continues to exist and can be accessed
by other processes using its name.

• The naming rules vary from system to system. Most OS allow strings
of one to eight characters as legal file name allowing digits and some
special characters. Some File Systems distinguish between upper and
lower case letters while others do not.

• WINDOWS
– File names up to 255 characters
– Not case sensitive. File1, file1 and FILE1 all refer to same file.
– Aware of file extensions, when a user double clicks on a file name

, the program assigned to this file extension is launched with the
file as parameter.

• UNIX
– File names up to 255 characters, all acceptable except ‘/’.
– Case sensitive. File1, file1 and FILE1 refer to three different

files.
– File extensions are just conventions and are not enforced by the

OS.
5

FILE ATTRIBUTES

• Every file has a name and its data.

• In addition, all OS associate certain other information with each
file, we call these extra items the file’s attributes. List of
attributes varies from system to system.

• Basic Information

– File Name.

– File Type.

– File Organization.

• Address Information

– Starting address.

– Size used.

• Access Information

– Owner.

– Access List.

– Permitted Actions.

• Usage Information.

– Date of Creation. -- Date of last update access.

– Date of last read access. -- ID of last modifier.

– ID of last reader. -- File current usage. 6

COMMON FILE TYPES
• A common technique for

implementing file types is
to include the type as part
of the file name – name and
an extension as used in
Windows.

• UNIX recognizes no file
types, rather it uses a
magic number stored at
the beginning of a file.
Magic number identifies
the file as an executable
file to prevent the
accidental execution of a
file not in this format.

• UNIX does not record the name of the creating program, either.
• It does allow file name extension , but these are not enforced by OS,

rather are mostly to aid users in determining the type of contents of
the file.

INTRODUCTION TO DIRECTORIES

• Systems store millions of files on terabytes of disk. To
manage such a huge amount of data we need to
organize them. This organization can be done by
partitioning the disk and by the concept of directory:

• Device Directory - The main function of directory
system is to map the ASCII name of the file onto
the information needed to locate the data. A
directory is a collection of directory entries. Each
directory entry contains information like name,
location, size and type for all files within that
directory. It provides mapping between file names and
applications. It’s a special file owned by OS and
accessible by file management system. In UNIX a
directory is a file that holds the inode numbers and
names of files in it.

8

IMPLEMENTING DIRECTORIES
• The information about the files within a directory can be stored

directly in a directory entry as discussed on previous slides. In
this simple design, a directory consists of a list of fixed size
entries, one per file, containing a fixed length file name, a
structure for the file attributes and one or more disk addresses
telling where the disk blocks are. This approach is used in MS-
DOS / Windows.

• For systems that uses i-nodes (UNIX), another possibility for
storing the attributes is in the i-nodes, rather than in the
directory entries. In that case, the directory entry can be
shorter: just a file name and an i-node number. The i-node
number points to a Data Structure (a specific entry in the i-node
table) that contains the file attributes and one or more disk
addresses telling where the disk blocks are.

File1 Attributes

File2 Attributes

File3 Attributes

File4 attributes

File1

File2

File3

File4

DS containing
the attributes

WHERE FILE ATTRIBUTES ARE STORED

• In DOS / Windows the file attributes are stored in the
Directory structure as part of the Directory entry for the
file.

• In UNIX a separate data structure is used for this purpose
known as Inode Tables. However some information is kept
inside the directory structure like file names and inode
numbers for the file.

File Name Type FAT Pointer

File Name Inode #

10

Overview of
Directory Structures

11

DIRECTORY STRUCTURE

While designing directory structure consider following:
• Efficient searching.
• Naming – convenient to users.

– Two or more users can have same name for different files.
– One file can have several different names (links) in

different directories.
• Grouping – logical grouping of files by properties, (e.g., all C++

programs, all java programs, all music files, all games, …)

Possible structures are:
• Single Level Directory.
• Two Level Directory.
• Tree Structured Directory.
• Acyclic Graph Directory.
• General Graph Directory.

12

SINGLE LEVEL DIRECTORY

• A single directory for all users.

• Naming problem

• Grouping problem

13

TWO LEVEL DIRECTORY

• Separate directory for each user.

• Path name

• Can have the same file name for different user, because each user
has a separate directory.

• Efficient searching

• No grouping capability - A user cannot have separate directories for
Linux, Data comm., music files, etc

14

TREE STRUCTURED DIRECTORIES

15

TREE STRUCTURED DIRECTORIES (cont…)

• Efficient searching

• Grouping Capability - Allows users to create their own sub directories
and to organize their files accordingly.

• Current directory (working directory) - Each user has a current
working directory. When reference is made to a file, the current
directory is searched. If a file is not there in the current directory,
then the user either change the directory or specify a path name, e.g.
cd /spell/mail/prog/

• Path Names

– Absolute Path is a complete road map starting from the root
directory down to the specified file, giving directory names on the
path.

– Relative Path defines a path from the current directory.

• Creating / Deleting files / directories
– Creating a new file is done in current directory. touch <file name>

– Delete a file rm <file-name>

– Creating a new subdirectory is done in current directory. mkdir <dir-name>

– Deleting “mail”  deleting the entire sub tree rooted by “mail”. rm –r <dir name>
16

ACYCLIC GRAPH DIRECTORIES
• A tree structure prohibits the sharing of files / directories. An acyclic

graph allows directories to have shared subdirectories and files. In other
words, different pathnames can be used to access a file.

• Any changes made by one person in a file are immediately visible to the
other.

• Similarly in shared subdirectories, a new file created by one person will
automatically appear in all the shared subdirectories.

• Shared files can be implemented using:
– Links.
– Duplicating Directory entries.

17

ACYCLIC GRAPH DIRECTORIES (cont…)

Problems

• A file may have multiple absolute paths. If we are trying to
traverse entire file system we will be visiting the shared files /
directories more than once e.g. count file is there in dict directory
as well as in spell directory.

• If count inside the dict directory is deleted and also the file, then
the count inside the spell directory will point to some thing that
doesn’t exits. (dangling pointer)

Solutions

• Back pointers - While deleting a file that is pointed to from many
locations use back pointers to delete all the pointers to this file
and then delete the file so after deleting we do not have any
dangling pointer.

• Link count - Some systems like Linux maintain link count. When a
user deletes a file its link count is decremented by one. If it
becomes zero that means the file is not referenced by any other
pointer so the file is deleted else file is not deleted only the
directory entry is deleted and link count is decremented.

18

GENERAL GRAPH DIRECTORY

• General Graph directory structure is not necessarily acyclic, i.e. it may
contains cycles.

book -> avi ->book

• When you will traverse a directory tree or back up a directory tree you may
get into a cycle.

19

GENERAL GRAPH DIRECTORY (cont…)

• How do we guarantee no cycles?

– Allow only links to files and not to subdirectories.

– Every time a new link is added use a cycle detection
algorithm to determine whether it is OK.

– Garbage collection. If at all cycles are created or links
exists that does not refer to files, use garbage
collector. (A utility used in Java also)

20

Keeping Track of File’s Data
Blocks

21

CONTIGUOUS ALLOCAITON

• One of the most important issues in implementing file storage is
keeping track of which disk blocks go with which file. Various methods
(contiguous allocation, Linked list allocation, Indexed allocation) are
used in different operating systems.

• In contiguous allocation each file occupies a set of contiguous blocks
on the disk.

• Directory entry contains starting block # and file size (number of
blocks). E.g. if 1st block# is 15 and the file size is 6 blocks so 15 – 20
(both inclusive), then the directory entry will contain (15,6) for that
particular file.

• Merits:

– Good sequential and Random access. E.g. if you want to go 20 Bytes ahead just add
20 and get there.

• Demerits.

– Wasteful of space / External Fragmentation (dynamic storage-allocation problem).
Here instead of compaction we use de-fragmentation.

– User has to declare file size before creating it.

– Expensive file growth, i.e. if a file is of 100 blocks it doesn't have a free block
ahead or at its tail and you need to add a block to it. You have to move the entire
file to another location.

• Contiguous allocation is still used in some old systems like PIC.
22

CONTIGUOUS ALLOCATION (cont…)

Contiguous allocation of disk space 23

LINKED ALLOCATION

• Each file is a linked list of disk blocks: blocks may be scattered anywhere on
the disk. The first word of each block is used as a pointer to the next one.
The rest of the block is for data.

• Unlike contiguous allocation every disk block can be used in this method and
no space is lost due to disk fragmentation (no external fragmentation).
However internal fragmentation exist in the last block.

• Reading a file sequentially is straightforward, random access is extremely
slow. Its like a link list, e.g. if the file size is of 100 blocks and you want to
add a block after the 50th block. You have to traverse fifty nodes and then
readjust the pointers of the link list .

File

Block

0

File

Block

1

File

Block

2

File

Block

3

0

File

Block

4

Physical
Block 9 16 1 10 25

• In the figure a file is shown that uses disk blocks 9, 16, 1, 10 and 25 in that
order. Block 9 is the starting block and block 25 is the last block of the file.
The above information can be kept in a table called File Allocation Table.

24

LINKED ALLOCATION (cont…)

Why the end pointer is kept?
25

LINKED ALLOCATION (cont…)

Why the end Pointer is kept?

• If you want to append at the end of a file, in absence of end pointer you will

have to traverse entire link list from the start pointer onwards. Traversing

link which are on disk blocks is of course very expensive.

• For Example. Consider a file of 100 blocks, and you want to append at the

end of this file. Hit the last block using end pointer directly. Allocate a new

block and place its address in the previous end block and make the new

block the end block and make its entry in the directory.

• Merits:

– Can grow files dynamically

• Demerits.

– Bad sequential access (a seek required between each block)

– Very bad random access

– Lose one block, lose rest of the file

26

LINKED ALLOCATION (cont…)

10

16

25

1

-1

Physical
Block

0

1

9

10

16

25

File Allocation Table
• File-allocation table (FAT) uses linked allocation.

• MS-DOS and OS/2 uses this scheme.

• Links not in pages, but in FAT

• FAT contains an entry for each block on that disk

• FAT entries corresponding to blocks of a file are linked together

• Access Properties

• Sequential access expensive unless FAT cached in memory

• Random access expensive always, but really expensive if FAT not

cached in memory

• The primary advantage is traversing among the blocks is efficient.

Although the chain must still be followed to find a block within a file but

since the chain is entirely in memory so it can be followed without

making any disk references.

• The primary disadvantage of this method is that the entire table must

be in memory all the time to make it work.

• With 20 GB disk and a 1 KB block size, the table needs 20 million entries, one for each of the 20

million disk blocks. The table can be paged in a paged system to conserve memory but still it will occupy

a great deal of virtual memory and disk space as well as generating extra paging traffic.

LINKED ALLOCATION (cont…)

File Allocation Table

INDEXED ALLOCATION
• Our last method for keeping track of which blocks belong to which file is to

associate with each file a data structure called an i-node (index node).

• Pointers of all file blocks are kept at one place called index table. Logical view
is shown below.

• In the figure on the next slide you see block # 19 is the index block or index
table. The directory entry gives you the block # of the index block. Inside the
index block you get the pointers of block #s of all the blocks where file’s data
resides.

• Supports sequential access. You can traverse sequentially over the blocks as
they are there in the index block.

• Supports random access, i.e. if you want to go to 6th block directly you can go
easily by getting the 6th entry of index block.

index table

• Suppose we can store 512 pointers in a block. If file size
grows more than 512 blocks then the index block can’t come
in one block. For that we need more than one index block.

• To link more than one index block for a file we have two
ways:

– Linked Scheme.

– Multilevel Index Tables.

– Combined Scheme. 29

INDEXED ALLOCATION (cont…)

30

INDEXED ALLOCATION (cont...)



1st Index Block
2nd Index Block

Directory Entry

Points to 1ST Index block

LINKED SCHEME
• It’s a linked list of index blocks.
• Suppose each block is of size 512 Bytes.
• First 511 pointers of every index block will point to data
blocks of file and last pointer will point to next index table.



31

INDEXED ALLOCATION (cont...)



1st Level Index Block

2nd Level Index Block File Blocks

Directory Entry

Points to Outer Index block

TWO LEVEL INDEX TABLE
• 512 pointers of 1st level index table points to 512 inner level index tables.
• So there are 512 2nd level index tables each pointing to 512 disk blocks.
• So we can manage a file size of 512 X 512 blocks using two level index table.

32

COMBINED SCHEME - UNIX (2K bytes per
block)

• If filesize <= 10 blocks then system will use only
direct blocks.

• if filesize > 10 blocks then the 11th pointer called
single indirect is used that points to an index block
having 512 ptrs pointing to 512 data blocks, so we
got a total of 522 data blocks.

• if we also use double indirect the file size can be of
10 + 512 + 5122 blocks

• If we also use triple indirect the file size can be of
10 + 512 + 5122 + 5123 blocks

i-node has a total of 13 pointers. Efficient for small files, but still allow big files

Pointer size is of 4 Bytes, so one 2KB block can point to 512 data blocks

33

EXAMPLE

• Consider a UNIX system with 4 KB disk

Block and size of disk pointer is 4 Bytes. If

the system uses only 10 direct pointers,

what will be the size of the file? What can

be the maximum file size? What is the

amount of space needed to store pointers?

34

Keeping Track of Free Data
Blocks

35

BLOCK SIZE
• Files are normally stored on disk. Two general strategies are possible for

storing an n byte file:

– n consecutive bytes of disk space are allocated.

– File is split up into fixed size blocks that need not to be adjacent.

• The size of a block can be equal to a sector, track, cylinder or even a page.

• Having a large allocation unit, like a cylinder means that every file even a 1
Byte file will occupy a space of entire cylinder.

• Having a small allocation unit means that each file will consist of many
blocks. Reading each block normally requires a seek and a rotational delay, so
reading a file consisting of many small blocks will be slow.

• Small blocks are bad for performance but good for disk space utilization.

• As per a study on UNIX system most of the files are of 2 KB size. So
keeping a 2 KB block size, it is expected to have a less number of space
wasted.

• In reality, a very few files are a multiple of the disk block size, so some
space is always wasted in the last block of a file.

• Once a block size has been chosen, the next issue is how to keep track of
free blocks, that is discussed on next slides.

36

FREE SPACE MANAGEMENT

• To keep track of free disk space, the system maintains a
free space list.

• When a new file is created (in a free space), that free
space is removed from free space list.

• When a file is deleted, its disk space is added to the
free space list.

• There are different methods of Free space management
that are discussed on next slides:

– Bit Vector / Bit Map.

– Linked List.

– Grouping.

– Counting.

37

FREE SPACE MANAGEMENT - BIT VECTOR

• For every free block we allocate a bit. A disk with n blocks requires a
bitmap with n bits. So a n bit vector is required.

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

• To check the status of block #154, index the bit vector with 154.

• Overhead to maintain bitmap:

– Block size is 4 KB. Disk Size is 40 GB. Then the overhead for
bitmap will be 40 x 230 / 212 = 40 x 218 bits. So the bit vector size
will be 1280 KB.

– Bit map require less space, i.e. one bit per block

38

FREE SPACE MANAGEMENT – BIT VECTOR (cont...)

• Bit map must be kept on disk

– Copy in memory and disk may differ.

– Cannot allow for block[i] to have a situation where bit[i] = 0 in memory and
bit[i] = 1 on disk.

• Solution:

– Set bit[i] = 0 in disk.

– Allocate block[i]

– Set bit[i] = 0 in memory

• Block Number Calculation

Sequentially check each word in the bit map to see whether that value is not 0,
since a 0-valued word has all 0 bits and represents a set of allocated blocks.
The first non-0 word is scanned for the first 1 bit, which is the location of the
first free block. The calculation of block number is shown below:

(number of bits per word) * (number of zero valued words) + offset of the first 1
bit

• Example

– Consider a disk where block 2, 3, 4, 5, 8, 9, 10, 11, 12, 17 are free and rest
are allocated. The free space bit map would be

0011110011111000010000000000……
39

FREE SPACE MANAGEMENT – Linked List

Linked List / Free List

• Another approach to free space

management is to link together all the

free disk blocks, keeping a pointer to

the first free block in a special

location on the disk and caching it in

memory.

• Maintain a link list of free blocks, i.e.

first block contains a pointer to the

next free disk block and so on.

• Cannot get contiguous space easily, so

its not good for contiguous allocation.

• No waste of space, overhead is the

number of pointers used to maintain

free space. (For every block there will

be a pointer to another disk block)
40

FREE SPACE MANAGEMENT

Grouping
• A variation of linked list. Instead of having a link list on disk, we

collect all the pointers and place them in one block. Just like index
block. The difference is the pointers in index block points to data
blocks while here the pointers will point to free blocks.

• First (n-1) pointers points to free blocks and last pointer points to
another such block.

• Problem. How many pointers can be stored in one block. If total
number of pointers for free blocks can’t be accommodated in one
block, we can use multilevel indexing technique.

Counting
• Another variation of linked list. An entry of index block contains two

fields: address of the first free block and number of free
contiguous blocks that follow the first block- good for contiguous
allocation e.g.

means block# 20, 21, 22, 23, 24 are free.20 5

41

COMPARISON BETWEEN SPACE ALLOCATION
TECHNIQUES

Example

Consider a system in which the directory entry block, bitmap block and

index block are all in the main memory. Also consider a file that is of

size 100 blocks. Find out the total number of I/O operations

(inserting, deleting, reading a file block) required for the following

actions. (Calculate for contiguous, index and linked allocation

techniques).

• Inserting a block after the 50th block.

• Read 50th block.

• Insert after the 10th block.

• Delete 50th block.

42

DISK QUOTAS

• To prevent users from using too much disk space multi-user OS
often provide a mechanism for enforcing disk quotas.

• System administrator allocate each user a maximum number of
files and blocks and the OS ensure that the users do not exceed
their quotas.

Attributes

Disk addresses

Userid = 54

Quota Pointer

Soft Block Limit

Hard Block Limit

Current # of Blocks

Block Warning Left

Soft File Limit

Hard File Limit

Current # of files

File Warnings Left

Open file table Quota table




Quota record for
User 54

Differentiate between Soft limit and hard limit.

File System Architecture

44

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of MBR
contain partition table, which gives the starting and ending
address of each partition. One of the partitions in the table
is marked as active & is called active partition.

• When a computer is powered up it needs to have an initial
program to run. This initial program is called bootstrap
program. In most computers the bootstrap program is
located on ROM.

• The main job of bootstrap program is to initialize all
aspects of the system from CPU registers to device
controllers and contents of main memory and then go to
sector 0 of the disk and executes the MBR. The first thing
the MBR program does is locate the active partition, and
read its first block called the boot block, brings it in main
memory and then executes it. The program in the boot
block loads the OS contained in that partition.

FILE SYSTEM ARCHITECTURE

45

FILE SYSTEM ARCHITECTURE (cont…)

• File systems are stored on disks. Most disks are divided into one
or more partitions, with independent file system on each
partition.

• Sector 0 of the disk is called the MBR (Master Boot Record)
and is used to boot the computer. The end of MBR contain
partition table, which gives the starting and ending address of
each partition.

• One of the partitions in the table is marked as active & is called
active partition. When the computer boots, the BIOS reads in
and executes the MBR. The first thing the MBR program does is
locate the active partition, and read its first block called the
boot block and executes it. The program in the boot block loads
the OS contained in that partition.

Boot Block Super Block Free Space Mgmt I-Nodes Data Blocks

MBR Partition 1 Partition 2 Partition 3

MBR P 1 P 2 P 3 P 4

Boot Block Super Block Data Blocks

size Free blocks Bad blocks owner group type pmn time address

Schematic Structure of UNIX File System

47

FILE SYSTEM ARCHITECTURE (cont…)
ON DISK STRUCTURES

• Boot Block - Contains information needed by the

system to boot an OS from that partition. In

UNIX it is called boot block. In NTFS, it is

called partition boot sector.

• Super Block - It contains partition details, like

the numbers of blocks in the partition, size of

blocks, free block count & free block pointers,

and free FCB count and free FCB pointers. In

UNIX this is called super block. In NTFS it is

called Master File Table. Destruction of

superblock will render the file system

unreadable.

• Directory Structure.

File Permissions

File Dates

(create, access, write)

File Owner, Group,
ACL

File Size

File Data Blocks

Hard Link Count

File Control Block

• File Control Block - The way a Process Control Block is used for
keeping the attributes of a process, similarly a File Control Block is
used for keeping the attributes of a file. In UNIX it is called inode.

FILE SYSTEM ARCHITECTURE (cont…)

IN MEMORY DATA STRUCTURES

• Partition Table - It contains information about each
mounted partition.

• Directory Structure - It holds the directory information
of recently accessed directories.

• System Wide Open File Table - It contains a copy of the
FCB of each open file, as well as other information.

• Per Process File Descriptor Table - It contains a
pointer to the appropriate entry in the system wide open
file table, as well as other information.

Structure of UNIX Inode Block

9Punjab University College Of Information And Technology (PUCIT)

Structure of UNIX Inode

Instructor:Arif Butt

File System in Practice (Creating a File)

What happens when a user creates a file. The kernel
stores the contents of the file in the data area, the
properties of the file in an inode, and the name in a
directory. So creating a new file involves the
following four main operations:

• Store file’s properties in a free inode

• Store file’s data in free data blocks

• Record addresses of data blocks (in inode)

• Add file name to directory (inode, filename)

File System in Practice (Creating a File)

10Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Creating a file)

Instructor:Arif Butt

 - - - - B A - - - C
47

$ echo “This is text......” 1> /home/arif/f1.txt

54 .

6 ..

47 f1.txt

125 f2.txt

34 dir1

/home/arif/

150 600 700

Data Block numbers

Inode number

Owner

Group

Time Stamps

File Size

Permissions

10 x Dir Ptrs

...

...

...

Single I.D ptr

Double I.D ptr

Triple I.D ptr

inode Block # 47

File System in Practice (Understanding Directories)

11Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

y

demodir

x

a

x

c

copytox

d2

hltox

d1

13Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

demodir

a

457 .

351 ..

038 a

039 c

033 y

038 .

457 ..

040 x

039 .

457 ..

041 d1

042 d2

c

041 .

039 ..

040 hltox

042 .

039 ..

043 copytox

d1 d2

File System in Practice (Accessing a File)

File System in Practice (Accessing a File)

Connection to an Opened File

56

FILE DESCRIPTOR TO FILE CONTENTS

16Punjab University College Of Information And Technology(PUCIT)

File Descriptor to File Contents

Instructor:Arif Butt

Fd flags File ptr

PPFDT

0

1

2

3

4

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

File Descriptor Purpose POSIX Name stdio Stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

Access mode flags
O_RDONLY, O_WRONLY, O_RDWR

Open time flags
O_CREAT, O_TRUNC, O_EXCL

Operating mode flags
O_APPEND, O_SYNC, O_NONBLOCK

File Status Flags

FILE DESCRIPTOR TO FILE CONTENTS

FILE DESCRIPTOR TO FILE CONTENTS

FILE DESCRIPTOR TO FILE CONTENTS

Relationship Between fd and Open Files

17Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files

Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1

2

3

4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling open() twice, then there will

be two different entries in PPFTD as well as in SWFT for that single file

Relationship Between fd and Open Files

19Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files

Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1

2

3

4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Process B

0

1

2

3

4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If two different processes opens the same file by calling open(),

there will be two different entries in SWFT

Relationship Between fd and Open Files

20Punjab University College Of Information And Technology(PUCIT)

Relationship between fd and Open files

Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1

2

3

4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Child Process of A

0

1

2

3

4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If a process opens a file by calling open(), and later fork(), then

there will be only one entry in SWFT

Relationship Between fd and Open Files

18Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files

Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1

2

3

4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling dup(), then there will be two

entries in PPFDT but only one entry in SWFT

File Sharing and links in
UNIX

Please view the video lecture on hard and soft links at the following link:

https://www.youtube.com/watch?v=g8xZgtuYiWI&t=4s

65

FILE SHARING

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through

• Duplicating files.

• Common login for members of a team.

• Setting appropriate access permissions.

• Common groups for members of a team.

• Links.

66

LINKS IN UNIX - Hard Links

67

• A directory entry for the existing file is created. No new data block or
inode block

• The hard link is represented as a regular file (-), and has the same
inode number as that of the original file, and both has the same set of
permissions, if you see its long listing

• With the creation of every hard link, the link count is incremented. By
deleting a hard link or even the original file only the link count is
decremented. You can still access the data, only directory entry is
deleted. The data block and inode block are freed only when the link
count reaches zero

• You touch one link, the timestamps of all hard links change

• A Regular user cannot have hard link to directories.

• You cannot have hard link across the file systems / partitions

LINKS IN UNIX – Soft Links

ln –s existingfile linkname

• A directory entry, inode block and a data block are created

• Soft link is represented as (l), and has the different inode

number as that of the original file. The permissions on the

symlink are irrelevant, since the permissions of the target apply

• The link count remains one

• Deletion of a link does not affect the original file; only the link is

removed. If the original file is deleted, the space for the file is

de-allocated, leaving the links dangling which can easily be

searched and deleted by the administrator

• Whether you touch the file or soft link the time stamp of

original file change

• You can have symbolic link to directories

• You can have symbolic link across the file systems / partitions

because they share an inode number and an inode table is unique

to a file system
68

LINKS IN UNIX – Soft Links

• A directory entry, inode block and a data block are created

• Soft link is represented as (l), and has the different inode

number as that of the original file. The permissions on the

symlink are irrelevant, since the permissions of the target apply

• The link count remains one

• Deletion of a link does not affect the original file; only the link is

removed. If the original file is deleted, the space for the file is

de-allocated, leaving the links dangling which can easily be

searched and deleted by the administrator

• Whether you touch the file or soft link the time stamp of

original file change

69

LINKS IN UNIX

Question: Why can’t we have hard links to directories?

Allowing hard links to directories would break the directed acyclic

graph structure of file system. This will create directory loops

which will make fsck(8), find(1) and other file tree walkers error

prone

Question: Why can’t we have hard links across partitions?

A hard link let us have multiple file names that point to the same

inode. This can work only if the two hard links are on the same

partition or file system

A symbolic link instead points to the file name, which is then linked

to the inode holding the file’s data

70

RAID

71

FILE SYSTEM RELIABILITY

• Loss of data in a file system can have catastrophic effect. Need to
ensure reasonable level of safety against data loss in the event of
system failures. Three threats are:

• Accidental or malicious deletion of data by user
• Media (disk) failure
• System crash during file system modifications, leaving data on disk

in an inconsistent state
• Solutions are:

• Back up
• RAID disks
• Versioning File Systems
• Versioning File Systems - File System created a new version every

time a file is modified. Old versions are kept until explicitly deleted.
After a system crash in the middle of a FS operation, FS metadata
may be in an inconsistent state, e.g., a file was deleted, but its disk
blocks have not yet been added to the free list.

REDUNDANT ARRAY OF INDEPENDENT DISKS

CPU Disk
Conotroller

CPU Disk
Conotroller

Multiple disks in a system provides following advantages:
• Large disk space
• Performance

• Increase Bandwidth
• Lower latency, because smaller disk spins faster

• Reliability
• Ability to recover from failure
• By storing redudent information on multiple disks
8/3/2024 73CMP320 PUCIT Arif Butt

REDUNDANT ARRAY OF INDEPENDENT DISKS
• The term RAID was originally coined in a paper by a group

of researchers at the University of California at Berkeley.
The RAID strategy replaces large capacity disk drives with
multiple smaller capacity disks and distribute data on them
in such a way that could be used to improve disk
performance, reliability or both. Peterson (one of the
researcher) defined RAID as “Redundant Array of
Inexpensive Disks”, but later industry defined I as
“Independent” instead of “Inexpensive”.

• The basic idea behind a RAID is to install a box full of disks
next to the computer, typically a large server, replace the
disk controller card with a RAID controller. A RAID should
look like a SLED (Single Large Expensive Disk) to the OS
but have better performance and better reliability.

8/3/2024 74CMP320 PUCIT Arif Butt

RELIABILITY IN RAID
Improvement of Reliability via Redundancy
• The chance that some disk out of a set of N disks will fail is much

higher than the chance that a specific single disk will fail.
• Suppose mean time of failure of a single disk is 100,000 hours(4166

days). In an array of 100 disks the mean time of failure of a disk will
be 100,000 / 100 = 1000 hrs (41.6 days). This is not acceptable, the
solution to the problem of reliability is to introduce redundancy; we
store extra information that is not needed normally, but that can be
used in the event of failure of a disk to rebuild the lost information.

• The simplest but most expensive approach of introducing redundancy is
to duplicate every disk. This technique is called mirroring / shadowing.
A logical disk consists of two or more disks and every write is carried
out on both disks. If one of the disks fails, the data can be read from
the other. Data will be lost only if second disk fails before the first
failed disk is replaced.

• Mean time to failure of a mirrored disk depends on two factors:
– Mean time to failure of individual disk
– Mean time to repair. (Time it takes to replace a failed disk and to

restore the data on it)

8/3/2024 75CMP320 PUCIT Arif Butt

PERFORMANCE IN RAID
Improvement of Performance via Parallelism.
• With disk mirroring, the speed at which the read requests are

handled is doubled, since the read requests can be sent to either
disks.

• However, the transfer rate of each read is the same as in single
disk system, but the number of reads per unit time has doubled.

• We can improve the transfer rate as well, by stripping data
across multiple disks, called Data Stripping. This stripping can be
at bit level or block level.

• For example in bit level stripping, if we have an array of eight
disks, we write bit i of each byte to disk i. The array of eight
disks can be treated as single disk with sectors that are eight
times the normal size, and more important that have eight time
the access rate.

Note: Mirroring provides high reliability but it is expensive.
Stripping provides high data transfer rates, but it does not
improve reliability.

8/3/2024 76CMP320 PUCIT Arif Butt

RAID - 0
• It is also called Non-redundant stripping. RAID 0 is not a true

member of the RAID family, because it does not include
redundancy to improve performance.

• Stripping (Distributing data over multiple disks) is done at the
level of blocks, but without any redundancy (of data or parity
bits).

• The user and system data are distributed across all of the disks
in the array. Thus if two different I/O requests are pending for
two different blocks of data, then there is a good chance that
these requested blocks are on different disks. Therefore the two
requests can be issued in parallel, reducing the I/O queuing time.

• Disadvantages

– Works worst with OS that habitually ask for data one sector /
block at a time. The result will be correct but there is no
parallelism and hence no performance gain.

– The other disadvantage is low mean time to failure.

8/3/2024 77CMP320 PUCIT Arif Butt

RAID - 0 (cont…)

Data Mapping for a RAID level 0 Array

Strip 0

Strip 4

Strip 8

Strip 1

Strip 5

Strip 9

Strip 2

Strip 6

Strip 10

Strip 3

Strip 7

Strip 11

Strip 0

Strip 1

Strip 2

Strip 3

Strip 4

Strip 5

Strip 6

Strip 7

Strip 8

Strip 9

Logical Disk
Physical
Disk 0

Physical
Disk 1

Physical
Disk 2

Physical
Disk 3

Array

Arrangement

software

8/3/2024 78CMP320 PUCIT Arif Butt

RAID - 1
• RAID 1 is also known as Disk Mirroring / Shadowing.
• In RAID 1 redundancy is achieved by simply duplicating the data. Data stripping

is used as in RAID 0, but this time each logical strip is mapped to two separate
physical disks so that every disk in the array has a mirror disk that contains
the same data. In the figure an array of four disks is shown, there are four
primary disks and four back up disks.

• A read request can be serviced by either of the two disks that contains the
requested data, whichever involves less seek time plus rotational latency.

• A write request requires that both corresponding strips be updated, but this
can be done in parallel. The write performance is dictated by the slower of the
two writes. However, there is no “write penalty” with RAID 1.

• Fault tolerance is excellent; if a drive crashes, the copy is simply used instead.
• The principal disadvantage of RAID 1 is the cost; it requires twice the disk

space of the logical disk that it supports.

Strip 0

Strip 4

Strip 8

Strip 1

Strip 5

Strip 9

Strip 2

Strip 6

Strip 10

Strip 3

Strip 7

Strip 11

Strip 0

Strip 4

Strip 8

Strip 1

Strip 5

Strip 9

Strip 2

Strip 6

Strip 10

Strip 3

Strip 7

Strip 11

8/3/2024 79CMP320 PUCIT Arif Butt

RAID - 2
• RAID 2 is also known as Memory Style Error Correcting Code Organization.
• Error Correcting schemes store two or more extra bits, and can reconstruct the

data if a single bit gets damaged. Typically Hamming code is used, which is able
to correct single-bit errors and detect double bit errors.

• Consider a four disk RAID array, first bit of each byte could be stored in disk 1,
the second bit in disk2, and so on until the fourth bit is stored in disk 4, and the
error-correction bits are stored in further three disks.

• If one of the disks fails, the remaining bits of the byte and the associated
error correction bits can be read from other disks and be used to reconstruct
the damaged data.

• On a single read, all disks are simultaneously accessed. On a single write, all data
disks and parity disks must be accessed for the write operation.

• RAID 2 is only used in an environment in which many disk errors occur. (normally
not implemented).

P P P

8/3/2024 80CMP320 PUCIT Arif Butt

RAID - 3
• RAID 3 is also known as Bit Interleaved parity organization.
• RAID 3 is organized in a similar fashion to RAID 2. The difference is

that RAID 3 requires only a single redundant disk, no matter how large
the disk array is.

• RAID 3 employs parallel access, with data distributed in small strips.
• A single bit is used for error correction as well as for detection.
• Parity Calculation

– X4 = X3 + X2 + X1 + X0

• Suppose X1 has failed.
– X1 = X4 + X3 + X2 + X0

P

8/3/2024 81CMP320 PUCIT Arif Butt

RAID - 4
• RAID 4 is also known as Block Interleaved parity organization.
• RAID 4 uses block level stripping and in addition keeps a parity block on

a separate disk for corresponding blocks from N other disks.
• If one of the disks fails, the parity block can be used with the

corresponding blocks from the other disks to restore the blocks of the
failed disk.

• A block read accesses only one disk, so multiple read accesses can
proceed in parallel.

• In order to write, both the old value of the parity block and the old
value of the data block being written have to be read for the new parity
to be computed. This is known as read-modify-write. So write of a
block, need two read and two write operations.

P

8/3/2024 82CMP320 PUCIT Arif Butt

RAID - 5
• RAID 5 is also known as Block Interleaved distributed parity

organization.

• RAID 5 differs from RAID 4 by spreading data and parity among
all disks, rather storing data in n disks and parity in one disks.

• A parity block cannot store parity for blocks in the same disk,
e.g. the parity for data blocks of first three disks is stored in
the fourth disk.

PPPPP

8/3/2024 83CMP320 PUCIT Arif Butt

RAID - 6
• RAID 6 is also known as P + Q redundancy scheme.

• RAID 6 is much like RAID 5, but stores extra redundant information to
guard against multiple disk failures.

• Instead of parity it uses the Read-Solomon code.

8/3/2024 84CMP320 PUCIT Arif Butt

H/W RAID vs S/W RAID

• Hardware RAID

– Separate physical disks combined into one or more logical disks by the disk

controller or disk storage cabinet hardware.

• Software RAID

– Noncontiguous disk space combined into one or more logical partitions by

the fault-tolerant software disk driver, FTDISK

– Software RAID implements RAID 1 (Disk mirroring) and RAID 5 (Disk

duplexing)

8/3/2024 85CMP320 PUCIT Arif Butt

DISK ATTACHMENT
Computers access disk storage in two ways.

– Host attached Storage.
– Network Attached Storage.

Host Attached Storage
Storage accessed via local I/O ports. These ports are available in several

technologies. Typical are:
– IDE
– EIDE
– SCSI

Network-Attached Storage (NAS)
• A NW-attached storage device is a special purpose storage system

that is accessed remotely over a data network.
• Clients access NAS via a remote-procedure-call interface such as NFS

for UNIX systems, or CIFS (Common Internet File System) for
Windows machines.

• NAS provides a convenient way for all the computers on a LAN to
share a pool of storage with the same ease of naming and access
enjoyed with local host attached storage.

8/3/2024 86CMP320 PUCIT Arif Butt

DISK ATTACHMENT (cont…)
Storage-Area Network (SAN)
• One drawback of NAS systems is that the storage I/O operations consume

bandwidth on the data NW.
• A SAN is a private network (using storage protocols rather than networking

protocols) among the servers and storage units, separate from the LAN /
WAN that connects the servers to the clients.

• SAN systems are available but are not well standardized or interoperable.

RAID

Data Server

Tape Library

SAN
LAN / WAN

SERVER

SERVER

RAID
CLIENT

CLIENT

CLIENT

8/3/2024 87CMP320 PUCIT Arif Butt

Summary

88

We’re done for now, but
Todo’s for you after this
lecture…

89

• Go through the related video lectures # 20 and 21.

• Practice, practice and practice…

