

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 2.13 Android App Pen-Testing- II

Setting-up the Lab Environment

Reverse Engineering & Static Analysis

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Setting up Lab Environment for Pen Testing Android Apps

Option 1: (Download/Install a Pre-built AVM from osboxes) https://www.osboxes.org/android-x86/
You can download a pre-built virtual machine image (.vdi file) of your choice from osboxes, install and run it
inside Virtual Box or VMware in an isolated environment. Its limitation is that these .vdi files are typically
x86/x64 builds, and ARM based Android images require additional emulation layer to run on emulators like
Qemu.

Option 2: (Use AVD inside Android Studio) https://developer.android.com/studio/run/managing-avds
You can use Android Studio Device Manager, having a built-in Android Emulator that allows you to emulate
different Android Virtual Devices (AVDs), each having different Android OS versions, screen sizes and so on for
a controlled testing environment. This allows developers and security researchers to test apps or perform
penetration testing without needing a physical Android device.

Option 3: (Use Genymotion) https://genymotion.com/product-desktop/
• Genymotion is a user-friendly Android emulator primarily used by developers and security researchers to

simulate Android devices for app development, debugging, and pen-testing. It offers a variety of pre-configured
virtual devices running different Android versions. Genymotion can run on desktop (Windows, macOS, Linux)
or in the cloud, and it integrates well with tools like Android Studio and Android Debug Bridge (ADB). Unlike
Android Emulator, it is known for its speed, performance, and ease of use, especially when testing on multiple
device types w/o needing physical hardware.

• Download Genymotion for Personal Use for your host Windows-11 machine from
above link. When you click Download, it will give you two options: Genymotion +
VirtualBox and Genymotion Desktop only. Since we already have our VirtualBox
installed, so we will select Genymotion Desktop only. Once you install it, do create
an account and do select personal use for free.

• Once installed, start Genymotion, and create a new virtual device of your choice
(Samsung Galaxy S10), the Android version (Android 10.0) and other options like
h/w resources, display options, android options. In the Hypervisor option do not
forget to select the Network mode to NAT.

• Once done you will see a new virtual device inside the left panel of your Virtual Box.
You may have to make a bit of NW settings for the Android virtual device inside your
Virtual Box. It will have Adapter1 set to Host-only Adapter, let it be like that. You need to set the Adapter2 to
the same NAT Network which your Kali Linux machine is using.

• Start the Galaxy S10 virtual machine from Virtual Box.
• Start Genymotion, and boot the virtual device (Samsung Galaxy S10).

This may take a while and finally will display the UI of the Android
device on your host Windows 11 OS.

• By default, Google Play Store is not installed on your virtual device. To
install it click Open GApps icon on the right panel of your virtual device,
install it, sign in on Google using some temporary account and then you
can download and install apps from Play Store like chrome and others
on this virtual device.

• Click Settings icon on device to check the IP of your phone:
192.168.43.101:5555. Now from Kali Linux machine try pinging the
Android device to check connectivity.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Android Debug Bridge (adb) and its Commands
ADB is a command-line tool (client-server program) that lets you
communicate with Genymotion emulator, Android studio emulator
as well as with physical Android device. It is mainly used for
debugging apps, install/uninstall APKs, file transfers, accessing
system logs, and execute shell commands directly on the device.

Overview of ADB Architecture:

• ADB Client (on Kali Linux): It is a tool used to interact with the
Android device by issuing commands from Kali Linux terminal
to ADB server.

• ADB Server (on Kali Linux): It is a server process that runs and
listens on a local port usually 5037, waiting for connections from
the ADB client. Its job is to manage the communication between the ADB client on Kali and the
ADB daemon on Android device. When we issue a command via ADB client, it forwards the request
to the ADB server running on Kali, which further forwards the request to ADB daemon.

• ADB Daemon (on Android emulator): The ADB daemon (adbd), runs on every connected Android
device (physical or virtual). It listens for incoming connections from the ADB server at port 5555
and processes commands from the client.

Hands-On Practice of adb Commands:

• I assume that both our virtual Kali Linux machine and the virtual Android device (Samsung
Galaxy S10) are both up and accessible to each other. This can be verified by running the ping
command from Kali Linux:
$ ping 192.168.43.101

• To install adb on our Kali Linux machine using the following command:
$ sudo apt install adb
$ adb –-version

Android Debug Bridge version 1.0.41
Running on Linux 6.8.11-amd64 (x86_64)

• After successfully installing adb on your Kali Linux machine, now let us start the ADB server,
which will also run a listener daemon at tcp port 5037:

$ adb kill-server
$ adb start-server
$ netstat -antlp | grep adb

tcp 0 0 127.0.0.1:5037 0.0.0.0:* LISTEN <PID>/adb
The output shows that ADB server is running at local host and listening for incoming requests
at port 5037.

• Let us use the adb connect command and pass it the socket address of the virtual android device.
The ADB client will forward this request to ADB server running on Kali, which will further send
this request to the ADB Daemon running on Android device.

$ adb connect 192.168.43.101:5555

• To check the connectivity, we can use the adb devices command as shown:
$ adb devices
List of devices attached
192.168.43.101:5555 device (in case of a virtual device you get the socket address)
7f2a756529862a6b device (in case of a physical device you get the serial number)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

• The connection can further be verified using the netstat command:
$ netstat -antlp | grep adb
tcp 0 0 127.0.0.1:5037 0.0.0.0:* LISTEN <PID>/adb
tcp 0 0 10.0.2.15:57590 192.168.43.101:5555 ESTABLISHED <PID>/adb

• This time in the output of netstat, you can see one established connection, while the ADB server is
still listening for incoming requests.

• Now, it is time to open an interactive shell from our Kali Linux machine to the connected emulated
Android device. In case of multiple connected devices, you need to pass the Serial no of the device
as well:

$ adb get-serialno
192.168.43.101:5555
$ adb [-s 192.168.43.101:5555] shell
vbox86p:/ #

• In case of a rooted device, you get a root prompt and have access to entire file system, otherwise,
you may be sandboxed in some other directory. Remember regular apps can only access their own
directories inside /data/data/<package>/ and only root user can access/modify files in other
directories. Even root may have restrictions on modifying some directories due to SELinux
enforcement.

• By default, the ls command inside adb gives you a black/white output, which is difficult to
differentiate between directories and files. So, you can add an alias to change this default settings
as shown in the screenshot below (echo $KSH_VERSION):

To Do: A brief summary of Android File Hierarchy Standard and adb commands are given
on next page. Please spend some time and make your hands dirty to have a practical understanding
of the file system of the virtual Android device connected with your Kali Linux machine. Do remember
that our virtual device is by default rooted so you can move around anywhere inside the file system.
This will not be the case if you are connected to a non-rooted physical device. More on this later J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Summary of adb Commands

Commands Description
$ adb version Display the version of installed adb version
$ adb --help Display help about different adb commands
$ adb kill/start-server Stops/Start the adb server running on your Kali machine
$ adb connect/disconnect 192.168.43.101:5555 Connects/disconnect to a specific device over WiFi
$ adb devices List connected devices
$ adb push <Kali> <device> Copies a file from Kali Linux to the device
$ adb pull <device> <kali> Copies a file from device to Kali Linux
$ adb install <app-name>.apk Install an application
$ adb uninstall <package-name> Uninstall an application
$ adb logcat -v color Display logs of all apps. To get help about different

options use adb logcat -h
The following commands should either be given from Android Korn Shell or use adb shell followed by command

$ adb shell
vbox86p:

Will spawn MIRBSD KSH for Android, from where you
can give the Linux/Android commands directly without
preceding it with the adb shell prefix.

$ adb shell <cmd> Run individual commands like ls, pwd, mkdir, cp,
rm, mv, uname, ps, reboot inside Android OS

$ adb shell screencap /sdcard/screen.png Captures a screenshot and save it in a local file
$ adb shell screenrecord /sdcard/video.mp4 Record the screen and save it in a local file
$ adb shell pm list packages
$ adb shell pm path <pkg-name>
$ adb shell pull <path-to-apk-file>

The package manager command is a versatile command
used for many purposes. For example: list packages
will list all the installed packages, dump will display
package information like permissions, activities,
services, etc.

$ adb shell am start -n <pkg-name>/<activity> The activity manager command is also a versatile
command used for many purposes like launching an app

Android File Hierarchy Standard

Directory Description
/data/ Stores user-installed apps, app data, databases, and settings. Usually requires root to access.
/data/data/ Each application has its own directory inside /data/data/, named by the app’s package name, e.g.,

com.arif.login. Used to store private data related to each app. To access it the device must be rooted.
/data/app/ This directory stores APK files for installed applications on the device.
/system/ Contains system apps, core files, libraries, and configurations that the system needs to function (similar

to /usr in Linux).
/system/app/ This directory contains pre-installed system apps that are bundled with the Android OS.
/mnt/ Itis a general-purpose mount point for various file systems, including external storage devices, network

file systems, and temporary storage. However, it is not the primary storage directory for user data.
/sdcard/ This is the primary location for user data (downloads, photos, and media) on Android devices. Despite

the name, it doesn’t necessarily refer to an external SD card, rather can also refer to a partition
of internal storage. Remember this is world readable.

/bin/ Stores binaries and essential shell commands (like ls, cp, mv).
/storage/ Contains external storage devices (like SD cards or USB drives).
/etc/ Stores system configuration files (though most Android settings are in /system/etc/).
/lib/ Holds shared libraries (.so files) needed for system binaries (on some devices).
/boot/ Contains the bootloader and kernel (usually not visible in all devices).
/init/ This directory contains a soft link named init to /system/bin/init program (first process when

Android boots).
/proc/ Virtual filesystem with system and process information (like /proc in Linux).
/dev/ Virtual directory for device files (e.g., input devices, sensors, cameras).
/sys/ Exposes hardware and kernel parameters (used for tuning system performance).
/vendor/ Holds vendor-specific drivers, firmware, and HALs (Hardware Abstraction Layers).

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Installing/Uninstalling Android Apps on AVD via ADB

• You can try installing all the Android apps that you have built yourself in Android Studio (in

HO#2.12), or you can download APKs from the following links and install them on your Android
devices:

o https://f-droid.org/
o https://apkpure.com/
o https://www.apkmirror.com/
o https://androidapks.com/

• You can also download publicly available apk files along with their source codes from github:
o https://github.com/payatu/diva-android
o https://github.com/JimishKhokhar/Tic-Tac-Toe-APK/blob/master/app-debug.apk

• It is always recommended to download apps from Google Play Store. To do this on your AVD inside
Genymotion, click Open GApps icon on the right panel of your AVD, install it, sign-in on Google
using some temporary account and then you can download and install apps from Play Store on
your AVD directly.
$ ls ~/IS/module2/2.13/apk-files/
helloworld.apk login-app.apk tictactoe.apk diva-beta.apk flappy-bird.apk

• Connect your Kali machine with the AVD running inside Genymotion, and let me install the
famous game of my childhood tictactoe

$ adb start-server
$ adb connect 192.168.43.101:5555
$ adb install tictactoe.apk
Performing Streamed Install
Success

• Remember to the adb install command, we need to give the apk name, while

to the adb uninstall command, we need to give the package name. From an
apk file, you can check the package name using the Android Asset Packaging
Tool (aapt), that shows the app’s metadata, permissions, resources, and
package information. For already installed applications, you can view the
contents of the /data/data/ subdirectory, having one directory each, named
by the app’s package name, that is used to store private data related to each
app, or use the package manager command.
$ aapt dump permissions| badging|resources|strings tictactoe.apk
package: com.example.tictactoe

$ adb shell ls /data/data/
$ adb shell pm list packages | grep tictactoe

• Once installed, you can run the app by either clicking its icon or directly from adb by giving the
following command:

$ adb shell am start -n com.example.tictqctoe/.MainActivity
Starting: Intent {cmp=com.example.tictactoe/.MainActivity}

Play the game & break your childhood records J

• Once done, you may like to uninstall the app and verify:

$ adb uninstall com.example.tictactoe
Success

• To verify that the app is successfully uninstalled from the AVD:
$ adb shell ls /data/data/ | grep tictactoe
$ adb shell pm list packages | grep tictactoe

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Reverse Engineering and Static
Analysis of apk Files

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Reverse Engineering Android Apps

Reverse engineering in cybersecurity refers to the process of analyzing and disassembling binaries to
understand their inner working, with the goal of extracting valuable information, identifying
vulnerabilities, and malicious behaviour.
• Static analysis involves decompiling, reverse engineering and analyzing the APK file without

executing it. It allows you to understand the app’s structure, code, resources, and potential
vulnerabilities. Some static analysis tools are apktool, jadx, dex2jar, jd-gui and MobSF. If the
apk is obfuscated (using tools like R8, Proguard), you may need to de-obfuscate using tools like
Zguard and Procyon.

• Dynamic analysis involves running the APK and observing its runtime behaviour, which
includes network traffic, memory manipulation, API calls etc. Some dynamic analysis tools are
Frida, Drozer, Wireshark and BurpSuite.

Unzipping APK, & Decompiling using d2j-dex2jar, jd-gui

By now, we all know that an APK is the package
format used by Android to distribute & install applications.
It is a compressed archive (similar to .zip) that contains all
the necessary files for an Android app, including
the compiled code (DEX files), resources, assets, and
manifest file. Let us use the unzip utility to extract files.
Without any option, the unzip command will unzip the file
in the pwd, however, you can use the -d option to the unzip
command.

$ unzip diva-beta.apk -d diva-unzip
$ ls diva-unzip
AndroidManifest.xml classes.dex resources.arsc /res /lib META-INF/

A brief description of some important files/directories is given below:
• AndroidManifest.xml: Every APK file includes an AndroidManifest.xml file that describes

the essential information required by the Android build tools, Android OS and Google Play. It
contains the application’s package name, permissions, activities, services, content providers,
intents and metadata/configurations the Android device needs to run the app. When you unzip an
apk file it appears to be in a binary format, so you can’t view its contents L.

• classes.dex: This is a Dalvik EXecutable file, which is compiled Java/Kotlin code. Some large
apps may have multiple classesX.dex files (e.g., classes2.dex, classes3.dex). These files
are executed by the Android Runtime (ART) or Dalvik VM.

• resources.arsc: This will also be a binary file that contains precompiled resources like strings,
colors, and layouts in binary format. It is used by Android to efficiently load resources.

• res/: This directory contains uncompiled raw resources in different sub-directories containing app
icons, images, audio, video, xml files (defining strings, colors, styles) and so on.

• lib/: This directory contains compiled native libraries (.so files) for different CPU architectures
like x86, x86_64, mips, mips64, arm64-v8a, and so on.

• assets/: This directory contains additional app files like fonts, JSON files, SQLite databases, and
so on.

• META-INF/: This directory contains signature related files used to verify the integrity and
authenticity of the app.
o MANIFEST.MF is a text file containing the app’s files and their checksums, to check if any file is changed after build.
o CERT.SF is a text file containing finger-prints of lines inside .MF file to ensure that .MF is not tempered.
o CERT.RSA file contains digital signature that authenticate the signer (keytool -printcert -file CERT.RSA)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Convert .dex files to .jar file using d2j-dex2jar:
• The d2j-dex2jar (part of dex2jar toolset) is a tool that is passed classes.dex file and it will

convert the Android DEX (Dalvik Executable) files into Java bytecode classes-dex2jar.jar
file. We already unzipped the diva-beta.apk file, which contains the classes.dex file:
$ ls
AndroidManifest.xml classes.dex resources.arsc /res /lib META-INF/

• Now we pass the classes.dex file to d2j-dex2jar tool and it will convert the Android DEX
(Dalvik Executable) files into Java bytecode in the form of JAR files (Java Archive files).
$ d2j-dex2jar classes.dex
$ ls
AndroidManifest.xml classes.dex classes-dex2jar.jar resources.arsc res/ lib/ META-INF/

Decompile all the .class files inside .jar file using jd-gui:
• Now, we can use jd-gui (a Java byte code de-compiler) that will take the .class files from the

.jar archive and decompiles them into Java source code. At the same time, it will open all the
files in a read-only GUI environment as shown in the screenshot below:

$ jd-gui classes-dex2jar.jar

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Decompilation using apktool
Check Installed Java versions:
Before installing apktool, remember a minimum of Java8 is required to run it. So do checkout the
version of java on your Kali Linux machine:
• Check for installed JDKs:

• Switch to appropriate JDK: Run the following command for java as well as for javac

• Verify and check the current version of java and javac

Note: If JAVA_HOME variable is set then it takes priority on above settings.

Install apktool:
Try installing apktool using apt install, if it does not work somehow, then visit
https://apktool.org/docs/install and follow the instructions. For Linux the instructions are:

Decompile diva-beta.apk
• Now let us decompile diva-beta.apk using apktool. You can create decompiled

code inside a directory as the name of the apk file in the pwd. If you want to create
a directory with a different name and at specified location, use the -o option. The
following command will create a directory named diva in pwd and place all the
app data inside it. Make time to view and analyze the contents of this directory:
$ apktool d diva-beta.apk -o diva-apktool
$ ls diva-apktool
AndroidManifest.xml apktool.yml smali/ lib/ res/ original/
$ tree lib
$ tree original
$ less smali/jakhar/aseem/diva/MainActivity.smali
$ subl smali/jakhar/aseem/diva/*.smali

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Decompilation using jadx:
• The jadx is an open-source tool for decompiling Android APK files into Java source code. It

converts the app's DEX (Dalvik Executable) files into readable Java code, providing an easier way
to analyze, debug, or modify Android applications. Unlike apktool that generate smali code,
JADX produces a more human-readable Java code, which is often useful for reverse engineering,
security analysis, or learning about app internals.

• Download jadx-1.5.1.zip from https://github.com/skylot/jadx/releases/tag/v1.5.1

• Now unzip the file, and add the path of its bin/ subdirectory inside your PATH environment
variable, so that you can access the jadx command without giving the full path. By default,
without any option, it will create a directory with the same name as that of the apk file containing
the decompiled code. You can use the -d option and specify location and name of a directory where
to place the decompiled code:
$ jadx diva-beta.apk -d diva-jadx

• Make time to view and analyze the contents of this directory:
$ ls diva-jadx
resources/ sources/
$ ls resources/
AndroidManifest.xml classes.dex lib/ res/ META-INF/
$ ls sources/
android/ jakhar/
$ subl diva-jadx/sources/jakhar/aseem/diva/*.java

Comparison between apktool and jadx
Both apktool and jadx are a must tools you should know being reverse engineer. The apktool is
ideal if you want to recompile APKs after making certain changes to the code like removing checks,
modifying permissions, changing resources, injecting malware etc.). On the contrary jadx is focused
on decompiling DEX bytecode into Java source code. It's great for understanding the app’s logic but
does not support recompiling APKs. The following table gives a detailed comparison between the two
tools for your reference:

Functionality apktool jadx
Main Purpose Reverse engineering APK resources and smali

code. Smali is a human readable version of
Dalvik Bytecode

Decompiling DEX bytecode to Java
source code

Recompiling APK It allows recompilation/rebuilding of the APK
after modifying resources or smali code

No, it only decompiles DEX to Java
code, and cannot rebuild APK

Handling
Resources

Extracts and analyzes resources, including
images, XML files, layout, and manifest

Limited. Displays some resources,
but focuses on Java code

View Manifest
File

It fully decompiles the AndroidManifest.xml It partially decompiles

Obfuscation
Resistance

Can still read smali code even when
obfuscated

Obfuscated Java code is hard to
understand due to name mangling

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Example: Reverse Engineer, Modify, Build and Test an APK

Step 1: Decompile an Android app using apktool:
Decompile our friendly login-app.apk using apktool, and then view/analyze the decompiled
contents

$ apktool d login-app.apk -o login-app
$ ls login-app
AndroidManifest.xml apktool.yml res/ original/ META-INF/
smali/ smali_classes2/ smali_classes3/

Step 2: Modify the Decompiled Source Code (APK Modding):
Let us search and change the login credentials. But for this first we have to search where the
credentials are hardcoded inside the app, normally locating the “const-string” string. Let us
recursively search for this string in all the files inside pwd:

$ grep -r “const-string” .

Once you find the files where the credentials are hardcoded, just open the file in vim and make changes
to it say from arif:kakamanna to arif1:kakamanna1:

$ vim smali_classes3/rbee/examples/loginapp/MainActivity\$1.smali
const-string v1, “arif”
const-string v2, “kakamanna”

Step 3: Repackage / Rebuild the Source Files using apktool:
Let us now rebuild the modified source of the app using apktool’s -b option followed by the directory
name where the original apk has been decompiled. The -o option specifies the new name of the new
apk file. Remember, while giving the following command, your pwd should not be somewhere inside
the package decompiled directory, otherwise you may encounter directory path errors.

$ apktool b -f login-app/ -o login-app-new.apk

Step 4: Generate your APK Signing Key using keytool:
App signing is the process that ensures the security, integrity and authenticity of an Android app. Let
us generate our own key using the keytool, which is a command-line utility provided by Java to
create keystores for signing APKs. The following command will generate a file (my-apk-
key.keystore) in the pwd, where the private key and certificate will be saved. The -validity option
specifies the validity period of the key pair, in days. It will prompt you for password and some other
required info, while generating the key. Once created, you can view the key using the second command.

$ keytool -genkey -v -keystore my-apk-key.keystore -alias mykey -keyalg RSA -keysize
2048 -validity 10000
$ keytool -list -v -keystore my-apk-key.keystore

Step 5: Re-sign the APK using apksigner:
Now we have the key, we can use the apksigner/jarsigner tool to self-sign the manipulated apk.
$ sudo apt install apksigner
$ which apksigner
$ apksigner –-version
$ apksigner sign --ks my-apk-key.keystore --ks-key-alias mykey login-app-new.apk

Once we will run the above command, it will prompt for the passphrase for the keystore, that we have
entered while generating the keystore file in previous step.

Step 6: Install/Run/Test the new apk on Android device:
 $ adb install login-app-new.apk

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

Static Analysis of APK Files using MobSF

• Mobile Security Framework (MobSF) is a popular open-source security research
platform for static analysis of Android .apk, iOS .ipa and Windows .appx files,
with limited dynamic analysis support as well.

• Using Online MobSF: The easiest way is to use the online version available at https://mobsf.live.
• Installation on Kali Linux:

$ git clone https://github.com/MobSF/Mobile-Security-Framework-MobSF.git
$ cd Mobile-Security-Framework-MobSF
$ sudo ./setup.sh
$ sudo ./run.sh 127.0.0.1:8000

• Installation using Docker:
$ docker pull opensecurity/mobile-security-framework-mobsf:latest
$ docker run -it –-rm -p 8000:8000 opensecurity/mobile-security-framework-mobsf:latest

• Fire-up your Firefox inside Kali and type http://127.0.0.1:8000, to access MobSF web interface (Default
Credentials: mobsf:mobsf).

• Let us perform the static analysis of diva-beta.apk by uploading the file using the web UI. MobSF
decompiles the application and scan through its code, permissions, manifest files, and resources to look for
coding mistakes, security flaws, privacy issues, misconfigurations, and malicious behaviors (all without
executing the app). After that it provides a detailed report on security vulnerabilities, malware indicators,
and best practice violations. Here is a screenshot of static analysis report of diva-beta.apk file.

Key Headings in MobSF's Report
• At the very top you can view the MobSF Score-card, File and App Information.
• Then it displays the exported activities, services, broadcast receivers, and content providers that may lead

to security risks like component hijacking.
• You can view the Decompiled code including the AndroidManifest.xml, and the Java/smali source code.
• The Signer Certificate information tells us about vulnerabilities (like janus) that have to do with forging

signatures.
• Check out if the app is over-privileged and asks for permissions that probably it shouldn’t have asked for.

(READ_SMS, WRITE_EXTERNAL_STORAGE)
• Next, we have the Android API along with the path of the files, and by clicking them you can view the code

as well.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

• Browsable Activities and Network Security are blank for this specific apk, as it is a standalone app and
do not interact with the Internet

• Certificate analysis shows that the app is signed with debug certificate and is signed with v1 signature
scheme, making it vulnerable to Janus vulnerability.

• Next will be the Manifest analysis section, that specifies 2 high and 4 warning issues. For example,
Debugging is enabled on the app, which makes it easier for reverse engineers to hook a debugger to it,
allowing dumping a stack trace and accessing debugging helper classes.

• Then is the Code Analysis section that tells us issues like logging sensitive information into log files and
so on.

• After this we have the Shared Library Binary Analysis, that tells you about different shared object files
and whether different binary protection mechanisms are in place or not (NX, PIE, stack canary, RELRO,
FORTIFY, stripping of symbols etc.)

• The Firebase Database analysis section checks if the app connects to a Firebase database and whether
it's properly secured or not. It looks for misconfigured Firebase URLs that might allow unauthorized
read/write access, leading to data leakage or database tampering.

• The Malware lookup actually scans app components (files, strings, permissions) and matches them against
malware signatures using public or internal databases (like VirusTotal if configured).
It helps to identify, if the APK shows signs of known malware, trojans, spyware, or suspicious activities.

• APKiD analysis detects packers (tools that compress & encrypt the code and include a small loader that
decrypts it at runtime), obfuscators (tools that scramble the names of classes methods and variables, so it’s
hard to understand when decompiled), and protectors (tools that prevent debugging, tempering and running
the app on emulators or rooted devices) used inside the APK. Combined together, this makes it very hard for
hackers or analysts to reverse-engineer. Common tools used for these tasks are R8, DexGuard.

• For the Behaviour analysis section, MobSF simulates and inspects the app’s behaviour without running
it by analyzing code patterns and permissions. It flags risky behaviours like SMS sending, background
recording, contact theft, file system access, and system command execution.

• Abused permissions section highlights dangerous Android permissions the app requests, especially ones
that are often misused by malware (READ_SMS, WRITE_EXTERNAL_STORAGE, RECORD_AUDIO etc)

• Server locations section maps the IP addresses and domains contacted by the app to their geographic
locations that helps you see if the app is connecting to risky regions (e.g., unknown servers in high-risk
countries).

• Domain Malware Check: MobSF checks all app-related domains against public malware blacklists. Flags
if the app connects to a malicious or compromised server. (malicious-update-center.com, hacker-c2-server.ru)

• The URLs section extracts all URLs hardcoded inside the app (from code and resources), that helps spot C2
servers, API endpoints, or suspicious network calls.

• Trackers: MobSF detects third-party tracking SDKs or libraries (like Google Analytics, Facebook Graph
API, Firebase Analytics) that helps identify user tracking and privacy violations.

• Strings section contains all human-readable strings from the app (code, smali, resources) to find API keys,
URLs, IPs, commands, and hidden messages.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

Conceptual Understanding of Android Booting Process

When an Android device is first powered on, there is a sequence of steps that are executed, helping
the device to load necessary firmware, OS, application data, and so on into memory. Android boot
process consists of multiple stages, starting from powering on the device to loading the home screen.
1. The Boot ROM: The Boot ROM is a tiny piece of read-only memory hardwired into Android’s

processor chip. It contains the code that runs when you press the power button, which turns on the
device hardware (CPU, minimal RAM, storage controllers). It searches for the bootloader from
device’s storage and hands over control to the bootloader.

2. The Bootloader: The Bootloader is a piece of program that is executed before the OS starts to
function having two parts: Initial Boot Loader (IPL) and Second Program Loader (SPL). The IPL
detect and set up the external RAM, copies the SPL into it and transfers the control of execution
to SPL. The SPL will look for Android kernel in the boot media and loads it in external RAM. If
Secure Boot is enabled, it verifies the integrity of the boot image, and then hands over control to
the Kernel.

3. The Linux Kernel: The Linux Kernel is the heart of Android OS, and is responsible for process
management, memory management, and enforcing security on the device. Once the Linux kernel
is loaded into the external RAM, it mounts the root file system (rootfs) and provides access to
system and user data. The Kernel will look for the init program in the rootfs and launch it as
a first user-space process.

4. The init Process: The init process will parse the init.rc script and launch the system service
processes as mentioned in this file. At this stage you will see the Android logo on the device screen.

5. Zygote and Dalvik: The Zygote is the first Android process spawned by init, which initializes
the Dalvik virtual machine and tries to create multiple instances, one for each Android process.

6. The System Server: Finally, the system_server process starts, which is responsible for running
and managing all core Android services some of which are:

1. Activity Manager (Manages app lifecycles, i.e., launch, pause, kill)
2. Package Manager (Manages installed apps and permissions)
3. Window Manager (Manages UI rendering and window interactions)
4. Input Manager (Manages touchscreen, keyboard, and gesture inputs)
5. Telephony Service (Manages calls, SIM and network connectivity)
6. Battery Service, Sensor Service, Power Manager, etc.

7. Home Screen is Displayed: Once system services are running, the Launcher app (Home Screen
app) is started by the Activity Manager. The user interface (UI) is drawn and displayed. The device
is now ready for user interaction.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

Hands-On Understanding of Android Booting Process

With the adb running between your Kali Linux and virtual Android device run the following commands to
practically understand how booting process work:

• Let us first connect our Kali machine with Android device:
$ adb start-server
$ adb connect 192.168.43.101:5555
$ adb devices
List of devices attached
192.168.43.101:5555 device

• Run the following command, which will reboot the device and perform the above discussed steps:
$ adb reboot bootloader

• Once the bootloader has initialized the hardware, it loads the Android kernel. To monitor only the kernel
logs that were generated during bootup use -b option with logcat command. The following output contains
some of the important actions that I have captured from the actual output (which was quite long):
$adb logcat -b kernel

03-29 08:22:56.999 0 0 I : Initializing cgroup subsys cpuset

03-29 08:22:56.999 0 0 I : Linux version 4.4.157-genymotion-ga887da7 (gcc version 4.9.3…

03-29 08:22:56.999 0 0 I e820 : BIOS-provided physical RAM map:

03-29 08:22:56.999 0 0 I : NX (Execute Disable) protection: active

03-29 08:22:56.999 0 0 I RAMDISK : [mem 0x37e30000-0x37f0ffff]

03-29 08:22:56.999 0 0 I : Kernel command line: BOOT_IMAGE=/kernel init=/init console=tty0
androidboot.hardware=vbox86 androidboot.console=tty0 enforcing=0 selinux=1 androidboot.selinux=permissive
quiet mac80211_hwsim.channels=2 buildvariant=userdebug

03-29 08:22:56.999 0 0 I Memory : 8159216K/8388152K available (8724K kernel code, 1258K rwdata, 3880K
rodata, 1324K init, 876K bss, 228936K reserved, 0K cma-reserved)

03-29 08:22:57.002 0 0 I SELinux : Initializing.

03-29 08:22:57.002 0 0 I AppArmor: AppArmor disabled by boot time parameter

03-29 08:22:57.415 0 0 I : Trying to unpack rootfs image as initramfs...

03-29 08:22:57.911 0 0 I init : init first stage started!

03-29 08:22:58.169 0 0 I init : Added '/init.zygote32.rc' to import list

03-29 08:22:58.170 0 0 I init : Parsing file /init.environ.rc...

03-29 08:22:58.723 0 0 I init : starting service 'init-first-stage'...

03-29 08:23:09.934 0 0 I init : Received message 'start' for 'idmap2d' from system_server

03-29 08:34:15.055 0 0 D logd : logdr: UID=0 GID=0 PID=4895 b tail=0 logMask=80 pid=0 ...

• The dmesg command in Linux (and Android) displays the kernel ring buffer messages, which include
diagnostic messages generated by the kernel during boot and runtime. It primarily provides information
about the hardware initialization, driver loading, system errors, and other low-level kernel activities.
$ adb shell dmesg

• Once the OS is up and running, you can view the related processes. The given output contains just some
important related processes (VSZ is the virtual memory size in KB, RSS is the resident set size in KB, WCHAN is the
waiting channel specifying the system call or resource for which the process is waiting, and S specifies the state sleeping,
running, zombie):
$ adb shell ps
USER PID PPID VSZ RSS WCHAN S NAME

root 1 0 29388 8416 ep_poll S init
root 426 1 1191364 142388 poll_schedule S zygote
bluetooth 431 1 17468 5436 binder_thread_read S android.hardware.bluetooth@1.0-service
system 443 1 12296 4444 binder_thread_read S android.hardware.power@1.0-service
system 703 426 1590272 242744 ep_poll S system_server
bluetooth 851 426 1025436 105180 ep_poll S android.hardware.power@1.0-service
radio 1009 426 1036432 145272 ep_poll S com.android.phone

• View the contents of the init.rc, which is executed by the init process to initialize the system by setting
system properties, mounting file systems, and starting essential services.
$ adb shell ls -l / | grep init
lrwxr-x--- 1 root shell 16 DTG init -> /system/bin/init
-rwxr-x--- 1 root shell 33623 DTG init.rc
-rwxr-x--- 1 root shell 563 DTG init.zygote32.rc

$ adb shell cat /init.rc

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

Rooting an Android Device
• Rooting is the process of gaining superuser access or administrator privileges on an Android device.

By rooting the device, the user can gain full control over the operating system, allowing him/her to
perform tasks like:

o Modify system files
o Change the kernel
o Install custom ROMs or kernels
o Remove bloatware (unwanted pre-installed apps)

• Rooting a modern Android device requires bypassing security features like secure boot (check
Bootloader firmware), verified boot (check Kernel), SELinux, and bootloader locking (if you try to
flash a custom ROM or Kernel it blocks the boot process). For example, if you attempt to root a
modern Android device with Secure Boot enabled, you need to sign the customized kernel with the
Original Equipment Manufacturer (OEM) cryptographic key, which if not known will give you an
error: “boot image signature checks failed”. The tools to root an Android device are Magisk,
SuperSU and TWRP (Team Win Recovery Project).

• Risks and Consequences of rooting an Android device are:
o Rooting typically voids the manufacturer’s warranty.
o Rooting makes the device more vulnerable to malware and malicious apps because it

bypasses Android’s security model and may disable security features like SELinux.
o If not done correctly, rooting can brick (completely disable) the device, rendering it

unusable.
o Rooting might prevent users from receiving official Over-The-Air (OTA) updates from the

device manufacturer, or the device might be "unrooted" when updating.
• After you have done, what you wanted to do with the rooted device, you can unroot it. Unrooting

is the process of reversing or removing root access, and restores the device to the default settings.
The changes you have made may still be there, depending on how the unrooting process is done.

Jailbreaking is the process of removing software restrictions imposed by Apple on iOS devices
(iPhones, iPads, iPods). It allows users to install apps and tweaks from unofficial sources (such as
Cydia), customize the interface, and bypass Apple’s strict app installation policies, giving more
freedom than what is allowed in the official Apple App Store.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or activities
related to the material contained within this handout is solely your responsibility. The misuse of the information in
this handout can result in criminal charges brought against the persons in question. The authors will not be held
responsible in the event any criminal charges be brought against any individuals misusing the information in this
handout to break the law.

