

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 2.14 Android App Pen-Testing- III

OWASP Mobile Top 10

&
Pen Testing of DIVA

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

OWASP Mobile Top 10 Vulnerabilities
Mobile application vulnerabilities involve system flaws or weaknesses in a mobile-based application,
largely due to improper input validation/sanitization, insecure data storage, weak authentication
mechanisms, misconfigured application components, and flaws in app design or implementation. With
around 5 billion smartphone users worldwide and mobile apps accounting for 70% of digital
interactions, securing mobile applications is more critical than ever. Open Web Application Security
Project (OWASP: https://owasp.org/) is a non-profit organization focused on improving the security of
software. OWASP is not just for web applications, rather it focuses on application security as a whole,
including web, mobile, and even API security. The OWASP Mobile Top 10 (https://owasp.org/www-
project-mobile-top-10/) is a list of the most critical security risks for mobile applications. Here's a
simple breakdown of each vulnerability.

OWASP-2016 OWASP-2024 Explanation (OWASP-2024)
M1-Improper platform usage M1-Improper credential usage Improper handling or storage of user credentials, leading to

unauthorized access or credential leaks

M2- Insecure data storage M2- Inadequate supply chain
security

Weaknesses in third-party components or libraries, potentially
introducing vulnerabilities into the app

M3- Insecure communication M3- Insecure authentication/
authorization

Flaws in identity verification processes, allowing unauthorized
users to access sensitive functions

M4- Insecure authentication M4- Insufficient input output
validation

Failure to properly validate or sanitize user input/output, which
can lead to injection attacks

M5- Insecure cryptography M5- Insecure communication Use of unencrypted or improperly configured communication
channels, exposing data to interception

M6- Insecure authorization M6- Inadequate privacy
controls

Insufficient measures to protect personal data, leading to
potential breaches or non-compliance issues

M7- Client code quality M7- Insufficient binary
protections

Lack of measures like packers, obfuscators and protectors,
making reverse engineering easier for attackers

M8- Code tempering M8- Security misconfiguration Incorrect or default security settings, leaving the mobile app
vulnerable to exploitation

M9- Reverse engineering M9- Insecure data storage Storing sensitive data without proper encryption, making it
vulnerable to theft or unauthorized access

M10- Extraneous functionality M10- Insufficient cryptography Weak or improperly implemented encryption algorithms that fail
to protect data effectively

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

M1: Improper Credential Usage
Improper handling or storage of user credentials, leading to unauthorized access or credential leaks

• Common Issues that Lead to this Vulnerability
o Hardcoded credentials.
o Insecure credential storage.
o Insecure credential transmissions.
o Weak user authentication.

• Preventive Measures
o Never hardcode credentials in the app’s source code or configuration files.
o Store credentials on server side using strong hashing algorithms (e.g., bcrypt, scrypt, argon2),

and inside the app using Android keystore or iOS keychain.
o Ensure secure transmission of credentials using TLS (Transport Layer Security). TLS 1.2 uses

TLS_ECDHE_RSA_AES128GCM_SHA256 for key-exchange, authentication, encryption and
integrity.

o Require user to have complex passwords, and offer multi-factor authentication (2FA).

• Attack Scenarios
o An attacker can decompile a mobile app to discover hardcoded credentials, which he/she can use to

access backend services.
o An attacker may intercept unencrypted credentials sent between the app and backend servers,

allowing to impersonate legitimate users.
o An attacker having physical access to a user’s device can extract un-encrypted stored credentials

from the app and gains unauthorized access to the user’s account.

M2: Inadequate Supply Chain Security
Weaknesses in third-party components or libraries, potentially introducing vulnerabilities into the app

• Common Issues that Lead to this Vulnerability
o Third-party components, such as libraries or frameworks, can contain vulnerabilities that can

be exploited by attackers.
o Malicious insiders, such as a rogue developer or a supplier, can introduce vulnerabilities into

the mobile application intentionally.
o Inadequate testing and validation.
o Lack of security awareness.

• Preventive Measures
o Use only verified and trusted third-party libraries or components.
o Keep all third-party components and dependencies up-to-date to ensure known vulnerabilities

are fixed.
o Ensure secure app signing and distribution processes to avoid trusting malicious apps.

• Attack Scenarios
o An attacker injects malware into a popular mobile app during the development phase. The

attacker then signs the app with a valid certificate and distributes it to the app store, bypassing
the app store’s security checks. Users download and install the infected app, which steals their
login credentials and other sensitive data. The attacker then uses the stolen data to commit
fraud or identity theft, causing significant financial harm to the victims and reputational
damage to the app provider.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

M3: Insecure Authentication/Authorization
Flaws in identity verification processes, allowing unauthorized users to access sensitive functions

• Common Issues that Lead to this Vulnerability
Indicators of insecure authorization include:
o Lack of proper authorization checks.
o Assuming backend functionality is accessible only by authorized users.
o Sending user roles/permissions as part of requests.
Indicators of insecure authentication include:
o Accessing backend services without tokens.
o Storing sensitive data like passwords on local storage.
o Weak password policies.

• Preventive Measures
o Assume client-side controls can be bypassed; therefore, critically reinforce server-side

authentication.
o Perform server-side authentication and load data only after successful login.
o The “Remember Me” functionality should never store a user’s password on the device.
o Encrypt locally stored data securely.
o Implement role-based access control (RBAC) and make sure that users can only access the parts

of the app they are authorized to.

• Attack Scenarios
o Use of short passwords (e.g., 4-digit PINs) make systems vulnerable to brute-force attacks.
o An attacker guesses or bypasses the login credentials due to weak authentication methods (e.g.,

no account lockout after several failed attempts).
o A user’s session doesn’t expire after logout or after a certain period, allowing someone else to

hijack the session if the device is stolen or left unattended.
o A low-level user gains access to administrator features due to improper authorization checks or

flaws in the app’s role-based access controls.

M4: Insufficient Input/Output Validation
Failure to properly validate or sanitize user input/output, which can lead to injection attacks

• Common Issues that Lead to this Vulnerability
o Insufficient validation and sanitization of input can result in various injection attacks.
o Overlooking specific validation requirements can create vulnerabilities like path traversal.
o Failure to validate data integrity can lead to corruption or unauthorized modifications.

• Preventive Measures
o Use strong input validation/sanitization techniques to prevent injection and path traversal.
o Use parameterized queries and prepared statements to prevent SQLi.
o Set proper limits on input size (e.g., max number of characters) and ensure data being handled

cannot overflow memory or buffer sizes.

• Attack Scenarios
o If the user supplied input is not properly validated or sanitized, an attacker can perform attacks

like Command injection, SQL Injection, Cross-Site Scripting, Buffer Overflow and can
compromise the backend system.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

M5: Insecure Communication
Use of unencrypted or improperly configured communication channels, exposing data to interception

• Common Issues that Lead to this Vulnerability
o Use of insecure communication channels like unencrypted TCP/IP, outdated Wi-Fi protocols, or

insecure Bluetooth connections.
o Poor handling of sensitive data during packaging and transmission, leading to potential

exposure of encryption keys, passwords, user information, and more.
o Failure to implement safeguards for data integrity during transmission, allowing for

undetectable changes or manipulations by malicious actors.

• Preventive Measures
o Use TLS 1.3 that came in 2018 (not the obsolete SSL) for all data transmission to backend

services.
o Implement strong, industry-standard cipher suites with appropriate key lengths.
o Use certificates signed by trusted Certificate Authorities (CA). Never allow self-signed, expired,

untrusted CA, or revoked certificates. Alert users if the app detects invalid certificates.
o Verify the endpoint server’s identity before establishing secure connections.

• Attack Scenarios
o Accepting invalid certificates (e.g., self-signed, revoked, expired, incorrect host).
o User credentials are sent over insecure channels, allowing attackers to intercept them.
o Session identifiers are transmitted without TLS, enabling attackers to bypass two-factor

authentication.

M6: Inadequate Privacy Controls
Insufficient measures to protect personal data, leading to potential breaches or non-compliance issues

• Common Issues that Lead to this Vulnerability
o Exposed PII: Apps often collect Personally Identifiable Information (PII) such as names,

addresses, credit card details, email and IP addresses, and sensitive information regarding
health, religion, sexuality, and political opinions and might be vulnerable if this data isn’t stored
or transmitted securely.

• Preventive Measures
o Only collect essential Personally Identifiable Information (PII). For instance, if your app doesn’t

need users’ exact birthdates, don’t request that data.
o Use clever strategies to handle data. Instead of pinpointing users’ exact locations, consider

utilizing broader location data if it serves the purpose. This reduces the sensitivity of the
information.

o Establish rules for how long you retain user data and delete PII after a certain period if possible.
o Only store or transfer crucial user data when absolutely necessary. Implement strong security

measures, like encryption and access controls.

• Attack Scenarios:
o Using PII, attacker can impersonate the victim to commit fraud, blackmail the victim with

sensitive data and so on.
o Logs and error messages at times may contain PII, which can be viewed by attackers having log

access.
o URL query parameters are visible in server logs, website analytics, and browser history.

Sensitive information should be sent in headers or the request body, not in query parameters.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

M7: Insufficient Binary Protection
Lack of measures like packers, obfuscators and protectors, making reverse engineering easier for attackers

• Common Issues that Lead to this Vulnerability
o Storing sensitive data or cryptographic secrets directly in the app binary makes it susceptible

to attacks. Attackers can easily extract these secrets through reverse engineering.
o Without obfuscation techniques, the app’s code and logic are more transparent to attackers.
o Apps that handle sensitive data without proper encryption or protection mechanisms are more

prone to binary attacks.

• Preventive Measures
o Use packers (tools that compress & encrypt the code and include a small loader that decrypts it

at runtime), obfuscators (tools that scramble the names of classes methods and variables, so it’s
hard to understand when decompiled), and protectors (tools that prevent debugging, tempering
and running the app on emulators or rooted devices). Together all these steps make the binary
hard to reverse engineer and analyze by security analysts and hackers.

o Compile parts of the app natively or use interpreters to increase the complexity of the codebase.
o Implement integrity checks on start-up to detect any modification of app binary.

• Attack Scenarios
o An app using commercial APIs with hardcoded keys could be reverse-engineered, allowing

attackers to misuse or sell the keys, causing financial damage or service disruptions.
o In mobile games with free and paid levels, attackers might bypass license checks to unlock

content for free, potentially redistributing the altered app under a different name.
o An app with a proprietary AI model could be reverse-engineered, with the model and usage

insights sold to competitors, jeopardizing intellectual property and competitive advantage.

M8: Security Misconfiguration
Incorrect or default security settings, leaving the mobile app vulnerable to exploitation

• Common Issues that Lead to this Vulnerability
o Default settings not reviewed or changed.
o Unencrypted or weakly encrypted communication channels.
o Weak or absent access controls.
o Failure to apply security updates or patches.
o Storing sensitive data in plain text or weak formats.

• Preventive Measures
o Change the default settings effecting security.
o Avoid overly permissive settings like world-readable or writable.
o Secure network configurations by disallowing cleartext traffic.
o Disable debugging features in production apps.
o Disable backup mode to prevent sensitive data from being included in device backups.

• Attack Scenarios
o A mobile app with weak default configurations (e.g., using HTTP, unchanged default

credentials) is exploited to access sensitive data.
o An app exposes its root path through an exported file content provider, allowing other apps to

access its resources.
o Application preferences stored with world-readable permissions are accessible by other apps.
o An internal activity is exported, providing attackers with additional attack surfaces.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

M9: Insecure Data Storage
Storing sensitive data without proper encryption, making it vulnerable to theft or unauthorized access

• Common Issues that Lead to this Vulnerability
o Lack of access controls.
o Inadequate encryption.
o Unintentional data exposure through logs, error messages, or debug features.
o Weak session management allowing poor handling of tokens or authentication information.

• Preventive Measures
o Use strong encryption algorithms for data at rest and in transit.
o Use HTTPS and TLS protocols for secure data transmission.
o Implement secure storage mechanisms like Keychain in iOS and Keystore in Android.
o Manage sessions securely by using strong tokens and enforcing session timeouts.

• Attack Scenarios
o Storing passwords in plain text allows attackers to easily extract and exploit credentials.
o Insecure data caching expose authentication tokens, which can be misused.
o Unprotected logging will allow sensitive data in logs can be intercepted.
o Improper handling of temporary files and failing to delete these leaves sensitive data exposed.

M10: Insufficient Cryptography
Weak or improperly implemented encryption algorithms that fail to protect data effectively

• Common Issues that Lead to this Vulnerability
o Mobile app is using weak or outdated encryption algorithms.
o Encryption keys are of insufficient length, thus weakening encryption strength as well.
o Poor key management practices, like storing encryption keys insecurely or transmitting them

in plain text.
o Lack of secure Transport Layer protocols.
o Not using strong hashing functions, or skipping crucial steps like salting passwords, makes

them vulnerable to cracking.

• Preventive Measures
o Use strong encryption algorithms like AES (Advanced Encryption Standard), RSA (Rivest-

Shamir-Adleman), or Elliptic Curve Cryptography (ECC).
o Ensure sufficient key length.
o Secure storage of encryption keys.
o Employ secure transport layer protocols.
o Use strong hash functions like bcrypt, scrypt, argon2 for storing passwords.

• Attack Scenarios
o An attacker intercepts communication between the mobile application and the server. Weak

cryptography allows attackers to decrypt, modify, and re-encrypt the data before forwarding it,
leading to unauthorized access, data manipulation, or malicious content injection.

o Attackers systematically try different combinations of keys until the correct one is found to
decrypt the data. Weak cryptography shortens the time required for such attacks.

o Weak key management practices, such as storing keys insecurely or making them easily
guessable, allow attackers to gain unauthorized access to keys and decrypt encrypted data,
resulting in data breaches and privacy violations.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

DIVA
• DIVA, (Damn Insecure and Vulnerable App) is vulnerable

Android application designed and created by Payatu.
• The aim of this app is to teach Android developers and

security professionals, flaws that are generally present in the
app, due to poor or insecure coding practices.

• DIVA contains several common vulnerabilities, issues and
bad coding practices covering both JAVA and native code.

• Download its source code as well as apk from:
https://github.com/payatu/diva-android
https://payatu.com/wp-content/uploads/2016/01/diva-beta.tar.gz

• Install DIVA on your virtual Android Device and then run the
app and you will see its UI as shown in the screenshot:

$ adb start-server
$ adb connect 192.168.43.101:5555
$ adb devices
$ adb install diva-beta.apk

• The app contains several issues on different levels like
Insecure logging, Hardcoding issues, Insecure data storage,
Input validation issues, Access control issues, Validation
issues, Permissions misuse, Manifest issues, and many more.

• Before you start attempting and analyzing the thirteen
different vulnerable activities in this app, just unzip the apk
file, convert the dex file into a jar file, and then view the java
code of all the class files using jd-gui tool. This can be done
using the following commands:

$ cd ~/IS/module2/2.14; ls
diva-beta.apk
$ unzip -d diva-d2j-jdgui diva-beta.apk
$ cd diva-d2j-jdgui; ls
AndroidManifest.xml classes.dex resources.arsc /res /lib META-INF/
$ d2j-dex2jar classes.dex
$ ls
AndroidManifest.xml classes.dex classes-dex2jar.jar resources.arsc res/ lib/ META-INF/
$ jd-gui classes-dex2jar.jar

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Activity 1: Insecure Logging

Overview:
• In the 2024 OWASP Mobile Top 10 list, this Activity falls under M9: Insecure

data storage. (Storing sensitive data without proper encryption, making it
vulnerable to theft or unauthorized access).

• An example CVE is CVE-2024-6294, that exist in Taiwan’s United Daily
News Android app that stores user session information in the log.

• In all Android devices, logcat is a centralized logging system, which collects
logs from various system components, apps and services. It allows
developers, testers, and security researchers to capture logs during app
execution to debug and monitor activities, errors and performance.

• In Android 4.x and earlier, user data entered into apps (like API keys, session
IDs, cookies, login credentials, search queries, and other personal
information) was sometimes written to logs and could be accessed by other
apps with the right permissions. This was a significant security risk, as apps
could read these logs and potentially capture sensitive information.

• In Android 5.x, one app cannot read the logs of another app, unless it is a
system app or an app with root access.

• However, on the latest Android versions today, logcat is still the unified
logging system and a developer can mistakenly log sensitive information,
while debugging his/her app, which can still be accessed by a privileged app,
or can be accessed on a rooted device.

Objective: Find out what is being logged by this app, where/how and the vulnerable code.
• When you enter a wrong credit card number and press Check Out button, it gives an error message “An error

occurred. Please try again later”.
• The Java class related to this activity is LogActivity.class, so select it from the left pane of jd-gui to

view the source code.
• The user defined method

checkout() is called whenever a
user clicks the button. The
android.util.Log.e() method is
used to log error messages. Rest of the
code is quite self-explanatory for Java
developers.

• Let us now check out the PID of this
diva-beta process running on the
virtual Android device and using that
PID check the logs using logcat
utility:
$ adb shell ps | grep diva

USER PID PPID VSZ RSS WCHAN ADDR S NAME
U0_a101 15965 13920 1050796 114184 ep_poll f3861bb9 S jakhar.aseem.diva

$ adb shell logcat | grep 15965

<date-time> E diva-log: Error while processing transaction with credit card: 123456

Mitigation: Developers should never log sensitive information such as passwords, authentication tokens, or
personal information. If debugging is required, it should only use mock or non-sensitive data. Always ensure
that sensitive data is never logged in production code.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Activity 2: Hardcoding Issues – Part 1

Overview:
• In the 2024 OWASP Mobile Top 10 list, this Activity falls under M7:

Insufficient Binary Protection. (Lack of measures like code obfuscation or
encryption, making reverse engineering easier for attacker).

• AN example CVE is CVE-2017-9821, which exist in BHIM (Bharat Interface
for Money) version 1.3 Android pp, that relies on three hardcoded strings,
which can be exploited to gain unauthorized access to user accounts and
sensitive financial data.

• At times by mistake or for ease, developers explicitly define a constant value
in the source code of an application. If this hardcoded data is a sensitive
information (like access tokens, vendor keys, API keys, authentication strings,
etc), then by reverse engineering that app, a malicious actor can easily get that
sensitive information.

Objective: Find out what is hardcoded and where.
• When you enter a wrong vendor key and press Access button, it gives an error

message “Access denied! See you in hell :D”. This means the code must be
comparing the user given string with a specified string and if it does not match
we get this access denied message. Let us view the code and see if the
developer has hardcoded this string or not.

• The Java class related to this activity is HardCodeActivity.class, so select
it from the left pane of jd-gui to view the Java source code.

• The user defined method access() is called whenever a user clicks the
button. The if-else statement, clearly tells us the hardcoded vendor key and
that is vendorsecretkey

• Now on your virtual Android device, enter the vendor key as vendorsecretkey and click the Access button.

This time you will get the “Access granted!” message J

Mitigation: Developers should have saved the vendor key on the server side and that too well encrypted.
Moreover, the user entered key should be encrypted before sending for a comparison on the server side.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Activity 3: Insecure Data Storage – Part 1

Overview:
Sometimes Android developers store sensitive information without encryption.
Android app developers have several storage options to choose from, depending on the
type and amount of data being stored as well as security, performance, and data
accessibility. Some of the storage locations are:
• Shared Preferences: Each app has its own directory /data/data/<pckg>/ that further

contains shared_prefs/ subdirectory containing xml files where developer can store
small amounts of primitive data. Best for storing simple configurations, preferences that
need to persist across app launches, e.g., user preference of using an app in light or dark
mode. NOT for sensitive information.

• Databases: SQLite is a lightweight RDBMS used to store private structured data.
• Internal File Storage: Used to store raw files in the device’s internal storage, which is

private to the app and inaccessible to other apps.
• External File Storage: Used to store raw files in the device’s SD-card (accessible to all

apps on the device). Suitable for storing large files like images, videos, or documents that
users might want to access outside the app.

• An example CVE is CVE-2018-11544, that exist in Olive Tree FTP server 1.32 for
Android that stores user names and passwords in plain text inside the
shared_prefs xml file.

• Objective: The app prompts for entering new credentials for a service, that it will save somewhere. Let us
give arif:kakamanna as username and password. It will give a message “3rd party credentials saved
successfully”. Our objective is to check out where these credentials are saved. The Java class related to this
activity is InsecureDataStorage1Activity.class, so select it from the left pane of jd-gui to view the
Java source code. The user defined method saveCredentials() is called whenever a user clicks the button,
which saves the credentials entered inside editText1 and editText2 inside the SharedPreferences.

Let us now look for the directory where normally Android apps saves the xml files for SharedPreferences. This
file can be read if the device is rooted, adb is running as root or if the file permissions are misconfigured:

$ adb shell
vbox86p:/# cd /data/data/jakhar.aseem.diva/shared_prefs
vbox86p:/# ls
WebViewChromiumPrefs.xml jakhar.aseem.diva_preferences.xml
vbox86p:/# cat jakhar.aseem.diva_preferences.xml
<map>
 <string name=”password”><kakamanna</string>
 <string name=”user”><arif</string>
</map>

Mitigation: Developers must not save sensitive information inside SharedPreferences xml files, and if they need
to, then they must encrypt the sensitive information using some symmetric encryption algorithm like AES,
Blowfish, ChaCha20.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Activity 4: Insecure Data Storage – Part 2

Overview:
We already know that Android developers can store information inside
SharedPreferences, Databases, internal file storage, and external file storage.

Objective: This app prompts for entering new credentials for a service, that it will
save somewhere. Let us give rauf:fcu as username and password. It will give a
message “3rd party credentials saved successfully”. Our objective is to check out
where these credentials are saved. The Java class related to this activity is
InsecureDataStorage2Activity.class, so select it from the left pane of jd-
gui to view the source code. By viewing the source code for this activity, we can
have following observations:

o In the onCreate() method, it is creating an instance of SQLiteDatabase.
Further it is using the openOrCeateDatabase() method to create a
database ids2.

o Then it is using the execSQL() method to create a table myuser in that
database.

o Finally, the saveCredentials() method is called whenever a user clicks
the button, which saves the credentials entered inside editText1 and
editText2 inside the ids2.user table, using INSERT statement.

Let us now look for the directory where normally Android apps save the databases:
$ adb shell
vbox86p:/# cd /data/data/jakhar.aseem.diva/databases/
vbox86p:/# ls
divanotes.db ids2 sqli
vbox86p:/# sqlite3 ids2
sqlite> .tables
android_metadata myuser
sqlite> select * from myuser;
rauf:fcu
sqlite> .quit

Mitigation: Developers must save sensitive information inside databases, using some symmetric encryption
algorithm like AES, Blowfish, ChaCha20 or using some good hashing algorithm like bcrypt, scrypt, argon2 to
save credentials.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

Activity 5: Insecure Data Storage – Part 3

Overview:
We already know that Android developers can store information inside
SharedPreferences, Databases, internal file storage, and external file storage.

Objective: This app prompts for entering new credentials for a service, that it
will save somewhere. Let us give root:toor as username and password. It will
give a message “3rd party credentials saved successfully”. Our objective is to check
out where these credentials are saved. The Java class related to this activity is
InsecureDataStorage3Activity.class, so select it from the left pane of jd-
gui to view the source code. By viewing the source code for this activity, we can
have following observations:

o In the saveCredentials() method, it is creating a temporary file
named uinfo using the createTempFile() method.

o Finally, it is using the write() method, which writes the credentials
entered inside editText1 and editText2 inside the temporary file.

Let us now look for the temporary file inside the jakhar.aseem.diva/ directory:
$ adb shell
vbox86p:/# cd /data/data/jakhar.aseem.diva/
vbox86p:/# ls
uinfo424316tmp databases shared_pref lib
vbox86p:/# cat uinfo424316tmp
root:toor

Mitigation: Developers must save sensitive information inside files, using some symmetric encryption
algorithm like AES, Blowfish, ChaCha20 or using some good hashing algorithms like bcrypt, scrypt, argon2 to
save credentials.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

Activity 6: Insecure Data Storage – Part 4

Overview:
We already know that Android developers can store information inside
SharedPreferences, Databases, internal file storage, and external file storage.

Objective: This app prompts for entering new credentials for a service, that it
will save somewhere. Let us give mujahid:secret as username and password.
It will give a message “3rd party credentials saved successfully”. Our objective is
to check out where these credentials are saved. The Java class related to this
activity is InsecureDataStorage4Activity.class, so select it from the left
pane of jd-gui to view the source code. By viewing the source code for this
activity, we can have following observations:

o In the saveCredentials() method, it is calling a method
getExternalStorageDirectory(), which gives us an idea that it is
storing the credentials in some external storage (SD card).

o Later in the code you can see another method that is creating a hidden
file named .uinfo.txt and finally it is using the write() method,
which writes the credentials entered in the editText1 and editText2
to an external file.

If you get an error when running this activity on the AVD, you may need to grant the permissions on run-time
using following command:
$ adb shell pm grant jakhar.aseem.diva android.permission.WRITE_EXTERNAL_STORAGE
For external storage, we will look for the file inside the /mnt/sdcard/ directory:
$ adb shell
vbox86p:/# cat /mnt/sdcard/.uinfo.txt
mujahid:secret

Mitigation: Developers must save sensitive information inside files, using some symmetric encryption
algorithm like AES, Blowfish, ChaCha20 or using some good hashing algorithms like bcrypt, scrypt, argon2 to
save credentials.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

Activity 7: Input Validation Issues – Part 1
Overview:
Input validation issues occurs, where an application does not sanitize user input,
resulting in client-side as well as server-side attacks. One of the attack types is
SQL injection, which typically involves injecting or inserting malicious SQL code
into a query through user input field, often leading to unauthorized actions such
as retrieving sensitive data, bypassing authentication, altering database content
or even achieve remote code execution.

Objective: The objective is to access all user data without knowing any
username or one user named admin. There are three users in the database and
one of them is admin. Your task is to output data of all the three users with a
single malicious search. When we enter a user name admin, it outputs two
additional pieces of information and that is his password and credit card number.
The Java class related to this activity is SQLInjectionActivity.class, so
select it from the left pane of jd-gui to view the source code. If you view its
source code you will see it is creating SQLite database with the name of sqli
and a table inside it with the name of sqliuser. The table has three columns
(user, password, credit_card) in it. The code is then entering three users in that
table namely admin, diva, and john along with their passwords and credit_card
numbers. Although it is quite simple to open that database and access all the
data using the SELECT statement. But let me see from the app if it is vulnerable
to SQLi by entering two single quotes in the name field and it gives us a message
user(‘’) not found. GR8, this shows that the app suffers with SQLi. Try
giving following malicious input, which will do the job: admin‘OR 1=1 -- After
we enter the above payload and press the SEARCH button the resulting query
is: SELECT * FROM sqliuser WHERE user=’admin’OR 1=1

Let us now look for the directory where normally Android apps save the databases:
vbox86p:/# cd /data/data/jakhar.aseem.diva/databases/
vbox86p:/# sqlite3 sqli
sqlite> .tables
android_metadata sqliuser
sqlite> select * from sqliuser;
admin|password123|12345678
diva|p@ssword|1111222233334444
john|password123|5555666677778888
sqlite> .quit

Mitigation: Developers can use many techniques to avoid SQLi, and some are:
o Validate and sanitize the user input to remove or escape potentially harmful characters (e.g., ', ;, --)
o Use prepared statements with parameterized queries
o Use stored procedures instead of dynamic SQL queries
o Use Object Relational Mapping (ORM) to interact with the database using Java objects instead of raw SQL
o Use the least privilege principle and limit the database permissions for the application

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

Activity 8: Input Validation Issues – Part 2

In Android, a WebView is a component that allows you to display web-based UI
elements and loading external websites. The WebView internally uses WebKit rendering
engine to display web pages and support methods like text searches, navigate
forward/backward etc. as well as has a support for JavaScript.

The related Java class is InputValidation2URISchemeActivity.class, whose
cropped screenshot is shown below:

WebView can potentially be vulnerable if not used properly. For example:
o The bottom left screen shot gives the valid use of this app.
o The middle and right screen shot shows that a malicious user can access data from inside your device.
o If Java Script is enabled in WebView, attackers can launch XSS attacks as well.
o If you do not use HTTPS, it may lead to MitM attacks.
o It can even allow attackers to interact with the app’s native code.

Mitigation: Some of the mitigation techniques to avoid this vulnerability is that developers should
validate/sanitize the URLs entered by the user, disable Java Script, use HTTPS and so on.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

Activity 9: Access Control Issues – Part 1
Overview:
• Access control issue occurs when an app does not authenticate a

user or allows an authenticated user to access some sensitive
information which he should not. These issues can lead to
unintended access, data leakage, or manipulation of data.

• We know the four main components of an Android app are
activities, services, broadcast receivers, and
content providers.

• In some cases, an Android developer need to call one activity from
another (multi-screen app) and this is done using intents.
Whenever a new activity starts, previous activity is stopped, but
the system preserves the activity in a stack (LIFO). An explicit
intent is used to communicate/start another activity/service of the
same app, e.g., clicking View Credentials button will take you to
the Vendor API Credential activity.

• In this task, when you click the button on the first activity
(AccessControl1Activity.class), it calls another activity that displays the API credentials
(APICredsActivity.class). Please review the Java source code of these two activities, and also the ASCII
AndroidManifest.xml file, whose cropped screenshot is shown, which shows that this activity is called
using an intent filter jakhar.aseem.diva.action.VIEW_CREDS

Objective: You need to check if you can access the Vendor API Credentials
(second activity) without going on to the first activity, i.e., from outside the app,
i.e., without starting the DIVA app, or w/o clicking the View API
CREDENTIALS button on the first activity.

One way to by-pass this access control issue, i.e., accessing the Vendor API
credentials without using the DIVA app is by using the activity manager (am)
from the adb shell. The -n option to activity manager that we have used in our
previous handout is to start a specific activity. On the contrary the -a option
that we are using here is used to trigger an Intent action, such as viewing data,
sending data, or performing some specific tasks.

Close the DIVA app on the virtual device, and run the following command:

$ adb shell am start -a jakhar.aseem.diva.action.VIEW_CREDS

After the above command executes, on your virtual device you can see the
activity Vendor API Credentials will automatically be opened as shown in the
opposite screenshot.

Mitigation: Some of the mitigation techniques to avoid this vulnerability is that
developers should implement strong authentication, role-based access control,
and use secure API calls etc.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

18

Activity 10: Access Control Issues – Part 2

Objective:
• Access Control Issues arise, when authenticated users can do things

they're not authorized to, like accessing other users' data or performing
admin actions without permission. For example, if you login on your
university CMS by giving your student credentials, you should not be
allowed to access the teacher’s data.

• This is an extension of previous example, but over here, we can view the
3rd party API credentials only if we know the PIN, i.e., the information is
password protected (AccessControl2Activity.class). You are given
two options:

o If you select Register Now option and click the button, you move to
another activity, where it prompts you to first register yourself at
http://payatu.com to get your PIN. Once we get the PIN, we can
enter it and view the API credentials.

o If you select Already Registered option and click the button, you
move to another activity (APICreds2Activity.class) where
the API credentials are displayed.

• The objective is same as in previous activity, i.e., we need to access the
API credentials or call the activity (APICreds2Activity.class), from outside the app, but this
time to access it we need to provide the PIN, which we do not know L

• Now view the ASCII AndroidManifest.xml file, whose cropped screenshot is shown below.

• This time again, let us first try to use the activity manager (am), the action
in this example is jakhar.aseem.diva.action.VIEW_CREDS2

$ adb shell am start -a jakhar.aseem.diva.action.VIEW_CREDS2

• After the above command executes, on your virtual device you can see the

activity that prompts us to enter the PIN (shown in the opposite
screenshot). This means that in this part the API credentials are protected
with a PIN, which we do not know. L

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

19

• Let us now view the source inside AccessControl2Activity.class and APICreds2Activity.class
files (shown below):

• In the left screenshot of AccessControl2Activity.class file, the code of our interest is highlighted

in red rectangle. The condition checks the Boolean value of an object having ID 2131099686, and then
based on the condition, it either displays the Vendor API key or displays a message to “Register yourself
at http://payatu.com to get your PIN”.

• Similarly, in the right screenshot of APICredsActivity2.class file, if the user has selected the
Already Registered radio Button, it sets the intent to VIEW_CREDS2 and also checks the Boolean value
of an object having ID 2131099686.

• This means that there exists a string variable which is actually the name of a Boolean variable and it
is doing all the trick.

• Let us go to the source code of diva app inside github, and look for
diva/app/src/main/res/strings.xml file, where you can find a string variable named bool
having a string value “check_pin”. So, in order to call the activity containing API credentials, we need
to pass an additional argument to the activity manager, which is shown below:

$ adb shell am start -n jakhar.aseem.diva/.APICreds2Activity –-ez “check_pin” false

Starting: Intent {act=jakhar.aseem.diva.action.VIEW_CREDS2 cmp=jakhar.aseem.diva/.APICreds2Activity (has extras)}

Description:

o -a <action>: Defines the intent action, which we used in the previous activity
o -n <component>: Specifies the target component to be launched, which in this case is the

string jakhar.aseem.diva/.APICreds2Activity
o --ez <key> <value>: is used to pass extra data of type Boolean to the activity. The key is

check_pin and the value is false, indicating whether the PIN check is required or not.

This time, when the above command executes, on your virtual device you can see the Vendor API Credentials
screen will automatically be opened J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

20

Activity 11: Access Control Issues – Part 3

Content Provider:
• In the previous activities, we have seen that an Android app

can directly access files, databases and Internet, but this
sharing is limited to app’s own data only. Other apps cannot
access your app’s private data unless explicitly shared.
Content Provider is one of the four components of an Android
app, that allows secure, structured and controlled data sharing
between different apps. It acts as an intermediary between an
app's data (such as databases, files, or other data sources) and other apps or system components
that need to access this data.

• Example: A messaging app might access contacts data (stored in the Contacts Content Provider)
to show a user’s phone contacts in the app. Without Content Providers, the messaging app would
not have access to that data unless it was explicitly shared by the contacts app.

• Although Content Providers are a powerful mechanism for data sharing between apps and
components, improper implementation or misconfiguration can expose sensitive data or allow
unauthorized access to resources.

Working of app:
• This activity is using Content Provider to access the stored notes, which can only be accessed if the

user enters a valid pin.
• In the left screen/activity below (AccessControl3Activity.class), the app prompts the user

to change/create a four-digit pin, and then the user clicks the “GO TO PRIVATE NOTES” button.
• In the middle screen/activity below (AccessControl3NotesActivity.class), the app prompts

the user to enter the saved four-digit pin, and then click the “ACCESS PRIVATE NOTES” button.
• After verifying the pin, the right screen/activity is displayed containing the private notes.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

21

Objective (Leaking content provider):
• The objective of this activity is to find out some vulnerability

in the code and try to access the private notes, without using
the application and without providing the pin.

• We can access the notes using the content query command
inside adb and providing it the Content Provider URI.

Find out the content provider URI:

There are multiple ways to find the URI:
• First is you can view the source of the NotesProvider.class file, where you can find the URI.

• Second is you can view the AndroidManifest.xml file and look for the provider and there you
can find the URI, as shown in the following cropped screen shot of the file

• Third way is that you can use the strings command as shown below:

$ strings diva-beta.apk | grep content:

88content://jakhar.aseem.diva.provider.notesprovider/notes

Query data from the content provider using above URI:

Let us now access the notes without opening the application and without using a pin.

$ adb shell content query --uri content://jakhar.aseem.diva.provider.notesprovder/notes

Mitigation: Some of the mitigation techniques developers should ensure for leaking content providers
are ensuring proper permissions, input validation, encryption, and access controls.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

22

Activity 12: Hardcoding Issues – Part 2
Overview:
• At times by mistake or for ease, developers explicitly define a constant

value in the source code of an application. If this hardcoded data is a
sensitive information (like access tokens, vendor keys, API keys,
authentication strings, etc), then by reverse engineering that app a
malicious actor can easily get that sensitive information.

• In the previous hardcoding issues (Activity 2), we have seen that the
developer actually hardcoded the vendor key inside the java source file.

• This time as well, let us first look for the hardcode string inside the
related source files, Hardcode2Activity.class and
Divajni.class, whose screenshot is shown below:

• We couldn’t find the hardcoded vendor key inside the
source code; however, the code tells us that the
developer is using Java Native Interface (JNI).

• JNI is a programming interface that enables Java code running inside JVM to call or interact with
libraries written in C/C++ etc. Similarly, other programming languages can also interact with Java
code using JNI.

• It is possible that the hardcoded vendor key is present inside the 3rd party library instead of the
Java source code.

• The access() method in Hardcode2Activity.java seems to access and compare that text to
some string, which is not shown in this file.

• If we look inside the Divajni.java file, we see the method
System.loadLibrary(“divajni”), that is loading a library with the name of divajni.

• Let us look for the library inside the decompiled diva directory and use strings tool to get the
strings from libdivajini.so file:

$ ls
AndroidManifest.xml classes.dex classes-dex2jar.jar lib/ META-INF/ res/ resources.arsc
$ ls lib/x86_64
libdivajni.so
$ strings libdivajni.so
strcpy _end libc.so <$!H olsdfgad;lh .dotdot .text .rodata ……

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

23

• Although, now we know the vendor key is olsdfgad;lh, which we can confirm by entering it
inside the app. But let us look for the hardcoded vendor key in the source code of the shared object
library (libdivajni.so). For this let us download the source code of diva-beta app from GitHub
link: https://github.com/payatu/diva-android

• A cropped screenshot of the divajni.c file is shown where you can see the vendor key J

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or activities related to the
material contained within this handout is solely your responsibility. The misuse of the information in this handout can result
in criminal charges brought against the persons in question. The authors will not be held responsible in the event any
criminal charges be brought against any individuals misusing the information in this handout to break the law.

