

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.1: Recap of C and Vulnerabilities
A Quick Recap of C Language and its Constructs
C is a general-purpose programming language that was developed in the early 1970s by Dennis
Ritchie at Bell Labs. It was created as an evolution of the B language, which itself was derived from
BCPL. Initially, C was designed to develop the UNIX operating system, and its success in this area
contributed to its widespread adoption. The language was first implemented on the PDP-11
computer.
Today, in 2024, C language continues to be actively used and maintained, with minor updates and
revisions being proposed. The language's simplicity, efficiency, and portability ensure its relevance
in modern computing, including system programming, embedded systems, and high-performance
applications.

• History and Evolution of C Language
The C programming language has a rich history marked by its development, standardization, and
evolution. Here’s a chronological overview of its key milestones:
o Early Beginnings (1960s): Before C, there were precursors like BCPL (Basic Combined

Programming Language) and B, which influenced C's development. BCPL was created by
Martin Richards in the 1960s and B by Ken Thompson, which was itself derived from BCPL.

o Development of C (1970s): Dennis Ritchie at Bell Labs develops C as an evolution of the B
language. It was initially used to rewrite the UNIX operating system, which helped in
demonstrating C's capabilities and efficiency. In 1978, Dennis Ritchie and Brian Kernighan
publish The C Programming Language, often referred to as K&R C.
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/C_Book_2nd.pdf

o Standardization: The C programming language has several standard versions, that are
aimed to unify various implementations of C and ensure code portability across different
platforms. The most commonly used ones are C89/90, C99, C11, and C18.

§ C89/C90 (ANSI C or ISO C) was the first standardized version of the language,
released in 1989 and 1990 respectively. This standard introduced many of the features
that are still used in modern C programming, including data types, control structures,
and the standard library.

§ C99 (ISO/IEC 9899:1999): In 1999, the International Organization for Standardization
(ISO) and International & Electrotechnical Commission (IEC) publishes the C99
standard. This update introduces several new features, including, new data types, inline
functions, variable-length arrays, improved support for floating-point arithmetic and
new standard library functions and macros. In 2001, C99 is adopted as the standard by
some organizations, though its widespread adoption is gradual due to compatibility
issues with existing codebases.

§ C11 (ISO/IEC 9899:2011): In 2011, the C11 standard is published by ISO, introducing
several enhancements like support for multi-threading, improved Unicode support,
static assertions and enhanced standard library functions.

§ C18 (ISO/IEC 9899:2018): This is the most recent standard and includes updates and
clarification to the language specification and the library.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

• Features and Characteristics

o Low-Level Access: C provides low-level access to memory through the use of pointers,
which allows for efficient manipulation of data.

o Portability: C code can be compiled and executed on a wide variety of hardware
platforms with minimal modification.

o Efficiency: C is known for its performance and minimal runtime overhead, making it
suitable for system-level programming.

o Structured Programming: C supports structured programming constructs such as
conditions, loops, and functions, which promote clear and maintainable code.

o Modularity: C allows for the division of code into functions and files, aiding in modular
design and code reuse.

o Standard Library: C provides a rich set of standard libraries for tasks such as
input/output, string manipulation, and mathematical computations.

o Pre-processor: C includes a pre-processor that handles macros, file inclusion, and
conditional compilation, which can be used to make the code more flexible and portable.

• Uses of C
o System Programming: C is widely used in operating systems development, including

UNIX, Linux, and Windows kernel components.
o Embedded Systems: Its low-level capabilities and efficiency make C a popular choice for

programming embedded systems and microcontrollers.
o Compilers and Interpreters: Many modern compilers and interpreters for other

programming languages are written in C.
o Networking: C is used to develop networking protocols and software that require direct

access to hardware and network interfaces.
o Database Systems: The development of database systems and management tools often

leverages C for its efficiency and control.
• C Language Constructs: Every programming language has its own set of constructs that

influence how code is written and executed, shaping the overall design and idioms of the language.
Some of the major C programming language constructs are given below:
o Data Types: C provides a variety of data types to store different kinds of data:

§ Basic Data Types:
• int: Integer (e.g., int age = 30;)
• char: Character (e.g., char letter = 'A';)
• float: Floating-point (e.g., float price = 9.99;)
• double: Double-precision floating-point (e.g., double pi = 3.14159;)

§ Derived Data Types: Arrays store collections of elements of the same type:
• Arrays:

• Array Declaration: Defines an array and its size (e.g., int arr[5];)
• Array Access: Accesses elements using indices (e.g., arr[0] = 1;)

• Pointers: Pointers store memory addresses and provide powerful capabilities:
• Pointer Declaration: Declares a pointer variable (e.g., int *ptr;)
• Pointer Usage: Accesses and manipulates memory locations (e.g., *ptr = 10;)
• Pointer Arithmetic: Performs arithmetic operations on pointers (e.g., ptr++)

• Structures: Group related variables of different types (e.g., struct
Employee { char name[30]; int id; };)

• Unions: Store different data types in the same memory location (e.g., union
Data { int i; float f; char str[20]; };)

• Enumerations: Define a set of named integer constants (e.g., enum Color {
RED, GREEN, BLUE };)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

o Operators:
§ Arithmetic Operators: +, -, *, /, % (e.g., int sum = a + b;)
§ Relational Operators: ==, !=, <, >, <=, >= (e.g., if (a > b))
§ Logical Operators: &&, ||, ! (e.g., if (a > 0 && b < 10))
§ Bitwise Operators: &, |, ^, ~, <<, >> (int result = a & b;)
§ Assignment Operators: =, +=, -=, *=, /=, %= (e.g., x += 5;)
§ Increment/Decrement Operators: ++, -- (e.g., i++;)
§ Conditional (Ternary) Operator: ?: (e.g., int max = (a > b) ? a : b;)

o Control Flow Constructs: These constructs manage the flow of execution in a program:

§ Conditional Statements:
• if and else (e.g., if (condition) { /* code */ } else { /* code */ }).
• switch (e.g., switch (variable) { case 1: /* code */ break;

default: /* code */ }).
§ Loops:

• for (e.g., for (int i = 0; i < 10; i++) { /* code */ }).
• while (e.g., while (condition) { /* code */ }).
• do-while (e.g., do { /* code */ } while (condition);).

§ Jump Statements:
• break (exits loops or switch statements).
• continue (skips the current iteration of a loop).
• goto (transfers control to a labeled statement, though its use is generally

discouraged).

o Functions: Functions in C allow code to be modular and reusable:
§ Function Declaration: Specifies the function’s name, return type, and parameters

(e.g., int add(int a, int b);)
§ Function Definition: Provides the implementation of the function (e.g., int

add(int a, int b) { return a + b; })
§ Function Call: Invokes a function and can pass arguments (e.g., int sum =

add(5, 10);)

o Preprocessor Directives: Preprocessor directives are instructions for the C preprocessor:
§ Macros: Define constants or code snippets (e.g., #define PI 3.14).
§ File Inclusion: Include header files (e.g., #include <stdio.h>).
§ Conditional Compilation: Include code conditionally (e.g., #ifdef DEBUG).

o Error Handling: C does not have built-in exception handling. Error handling is typically

done using return codes and checking error conditions.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

C Compilation Process and its Tool Chain

https://www.youtube.com/watch?v=a7GhFL0Gh6Y&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=2
https://www.youtube.com/watch?v=A67t7X2LUsA&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=3
The set of programming tools used to create a program is referred to as the Tool Chain.
o Processor: Intel IA-32, Intel IA-64, AMD x86-64, Microprocessor without Interlocked Pipeline

Stages (MIPS), Advanced RISC Machine (ARM), Sun Scalable Processor ARChitecture (Sun
SPARC)

o Operating System: Windows, UNIX, Linux, MacOS
o Editor/IDE:

o Text Editors: gedit, vim, notepad
o Code Editors: Atom, Sublime, VS Code, Notepad++, Brackets
o IDEs: Visual Studio, Code::Blocks, PyCharm, Spider, Eclipse, Xcode

o Assembler: nasm, yasm, gas, masm
o Linker: ld a GNU linker
o Loader: Default OS
o Debugging/RE: readelf, objdump, nm, strings, file, hexedit, objcopy,

strip, addr2line, gdb (PEDA/GEF), valgrind, strace, ltrace, ftrace,
bftrace, perf, IDA Pro, ghidra, radare2, cutter, OllyDbg, binaryninja

C Compilation Process
The C compilation process is a series of steps that
transforms C source code into an executable
program. This process can be divided into four
phases, with each phase using tools that work
together to produce the final executable. The
image below gives an overview of the entire C-compilation process.

#include <stdio.h>
int main() {
 printf(“This is a Hello World program..\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

I. Preprocessing: The preprocessing step handles pre-processor directives, and remove
comments. The pre-processor directives are not part of the C language but are used to perform
operations before the actual compilation begins. The result of preprocessing is a preprocessed
source file, which is usually saved with .i or .ii extension. The pre-processor directives
perform following tasks:

a. File Inclusion: #include directives are replaced with the contents of the specified files.
This is typically used to include header files.

b. Macro Expansion: #define macros are expanded to their defined values or code snippets.
c. Conditional Compilation: #ifdef, #ifndef, #else, #elif, and #endif are used to

include or exclude parts of the code based on certain conditions.

II. Compilation: The compiler takes the preprocessed source code and translates it into assembly
code and the result is an assembly file, usually with .s or .asm extension. This step involves
several key activities:

a. Syntax Analysis: The compiler checks the syntax of the code to ensure it conforms to the
C language rules.

b. Semantic Analysis: It verifies the semantic correctness of the code, such as type checking
and ensuring that variables are declared before use.

c. Optimization: The compiler may optimize the code to improve performance or reduce
resource usage.

d. Code Generation: The compiler generates assembly code, which is a low-level
representation of the source code.

III. Assembling: The assembler converts the assembly code into machine code, which is an object
file, typically with .o or .obj extension. The assembling phase translates assembly language
instructions into machine code instructions that the CPU can execute. Moreover, the assembler
resolves symbolic names (e.g., variable names) to actual memory addresses and generates a
symbol table. In Linux, object files can be classified based on their formats and usage:
o Relocatable object file (.o file) is a file generated by a

compiler or assembler that contains machine code, data,
and metadata, but is not yet a complete executable or
library. Object files are intermediate files that are linked
together to produce final executables or shared libraries.
They are crucial in the software build process, allowing
modular development and incremental compilation. Each
.o file is produced from exactly one .c file.

o Executable object file (a.out file) Contains binary code
and data in a form that can be copied directly into memory
and executed. Linkers generate executable object files.

o Shared object file (.so file) A special type of relocatable
object file that can be loaded into memory and linked
dynamically, at either load time or run time. Called
dynamic link libraries (dlls) in Windows. Compilers and
assemblers generate shared object files.

o Core file: A disk file that contains the memory image of
the process at the time of its termination. This is generated
by system in case of abnormal process termination.

In Linux, Executable and Linking Format (ELF) is a binary
format used for storing programs or fragments of programs on
disk, created as a result of compiling and linking. ELF not only simplifies the task of making shared
libraries, but also enhances dynamic loading of modules at run time. An executable file using the
ELF format consist of ELF Header, Program Header Table and Section Header Table.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

IV. Linking: The linking phase is a critical part of the C compilation, where object files and
libraries are combined into a single executable file. The .text sections from multiple object
files are combined into a single .text section in the executable. Similarly, the .data and .bss
sections from multiple object files are merged, with .data holding initialized data and .bss
holding uninitialized data. Moreover, since every .o file has its own symbol table, so if the same
symbol (e.g., a function or variable) is defined in multiple object files, the linker must resolve
which definition to use. In most cases, the linker uses the first definition it encounters or
provides a mechanism to handle multiple definitions. The output of linking phase is an
executable file with a specific format (e.g., ELF on Linux, PE on Windows). This format includes
headers (containing information about how to load the executable into memory) and sections
for code, data, and metadata. The two types of linking are briefly described below:

a. Static Linking: Combines object files and static libraries (libc.a) into a single
executable file. Static libraries are included in the executable at link time. The linker
may perform optimizations like elimination unused functions or data. This way the final
executable is self-contained and do not require libraries on the machine on which it will
be executed later. However, the size of a statically linked file is quite large.

b. Dynamic Linking: Links against shared libraries (libc.so) at runtime. The
dynamically linked executable file contains references to these libraries, so the
executable size is small and need the linked libraries on the machine on which it will be
executed later. The dynamic linker/loader (part of the OS) loads the shared libraries
into memory and resolves symbols when the program is executed.

Note:
• Finally, the loader is part of the OS, which loads the executable into

memory and make it a process. If the executable depends on shared
libraries (dynamic linking), the loader resolves these dependencies
at runtime.

• The 64-bit x86 virtual memory map splits the address space into
two: the lower section (with the top bit set to 0) is user-space, the
upper section (with the top bit set to 1) is kernel-space.

• The x86-64 CPU chips that you can buy today, implement 48-bit
logical address for virtual memory (as shown), and 40 bits for
physical memory.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Hands On Example of C Compilation Process

Dear students, it is time to make our hands dirty to practically perform all of the above-mentioned
steps of C-compilation process. For compilation, we will use the GNU Compiler Collection (GCC),
which is a powerful and widely used open-source compiler system developed by the GNU Project. GCC
is known for its versatility and is capable of compiling code written in various programming languages.
You can install GCC using following command if it is not already installed on your system:
$ sudo apt update
$ sudo apt install gcc
$ sudo apt install build-essential
$ cat /proc/os-release
$ uname -a
$ gcc –-version
gcc (Debian 13.3.0-5) 13.3.0
$ ldd –-version
ldd (Debian GLIBC 2.38-13) 2.38

Let us write down a multi-file C source code on our Kali Linux machine using some text editor like
vim, nano, or gedit and go step by step through all the C compilations steps/phases:

I. Preprocessing: Using –E option we can instruct the gcc to just perform preprocessing, which
will display the output on screen. In order to save the output in a file, we need to redirect the
output in a file named <somename.i>. Moreover, the default location where the C preprocessor
searches for the header files is the /usr/include/ directory. Since in our case, one header file
myheader.h is in the current working directory, so we need to use the -I flag followed by the
directory path to instruct gcc to look for header files in that specific directory.

$ gcc –E myadd.c 1> myadd.i
$ gcc –E mysub.c 1> mysub.i
$ gcc –E driver.c -I ./ 1> driver.i

We can use the less or cat command to view the contents of the preprocessed files as their file
type is C source, ASCII text, which can be checked using the file command. Once you do that,
you will see lot of information from different header files that have been included in it and at the
very end you can see the actual lines of code you've written. Moreover, please do check out different
C header files that are there in the /usr/include/ directory.

//module3/3.1/compilation/driver.c
#include <stdio.h>
#include <stdlib.h>
#include <mymath.h>

int main(int argc, char* argv[]) {

 int num1 = atoi(argv[1]);

 int num2 = atoi(argv[2]);

 printf("%d + %d = %d \n", num1, num2, myadd(num1,num2));

 printf("%d - %d = %d \n", num1, num2, mysub(num1,num2));

 return 0;

}

//mymath.h
int myadd(int, int);
int mysub(int, int);

//myadd.c
int myadd(int a, int b) {
 int ans = a + b;
 return ans;
}

//mysub.c
int mysub(int a, int b) {
 int ans = a – b;
 return ans;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

II. Compilation: Using –S option we can instruct the gcc to just perform compilation, which takes
the .c or .i file(s) as input and generates the assembly code for underlying architecture and in
our case, it is x64 and the generates output file(s) with .s extension.
o C-Standard to use: The C programming language has several standard versions, that are

aimed to unify various implementations of C and ensure code portability across different
platforms. The most commonly used ones are C89/90, C99, C11, and C18. During compilation
step, you can also instruct gcc to follow specific C language standard while compiling the code
for example using –std option and passing the C standard of your choice such as –std=c11.
To check out the details about C standards, read the man page of standards from section 7.

o Optimization Level: During the compilation step, we can also instruct the gcc to generate
optimized code using -O0, -O1, -O2, -O3, -Ofast, -Os, -Og flags, which instruct the
compiler to optimize the generated machine code for performance, size, or a balance of both. To
check out the details about C optimization flags, read the man page of gcc.

o Generate Code for Specific Architecture: During the compilation step, we can also instruct
gcc to generate code for specific architecture using the -m32 or -m64 flags, which affects the
size of pointers, integer types, and function calling conventions used in the generated binary.
By default, gcc generates 64-bit binaries on a 64-bit Linux system, so you usually don’t need
to specify any additional flags if you’re targeting a 64-bit architecture. Moreover, if you want
to generate 32-bit binary, you need to have the 32-bit libraries and development tools installed
on your system. On Debian-based systems like Ubuntu, you can install the necessary packages
by installing gcc-multilib package (sudo apt install gcc-multilib g++-multilib),
and then need to mention the -m32 option during compilation, assembling and linking phases.

$ gcc –S *.i -std=c18 -m64 //will generate three .s files

Above command will generate three assembler source, ASCII text files namely driver.s,
myadd.s and mysub.s. Once again you can view their contents using the cat or less
commands. Students are advised to view and understand contents of intermediate output files.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

III. Assembling: Using –c option we can instruct the gcc to perform the steps till assembling phase,
which takes the .c or .i or .s file(s) as input and generates the object code files with .o extension.
If you want to include debugging symbols, so as to load this file inside a debugger, use –ggdb
option. In our case three object files will be generated namely driver.o, myadd.o and mysub.o.
However, this time, you CANNOT view the contents of these object files using the cat or less
commands, since these are ELF 64-bit LSB relocatable files as can be seen using the file
command.

$ gcc –c –ggdb *.s //will generate three .o files
$ file driver.o
driver.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), with debug_info, not stripped

IV. Linking: In our example the object file driver.o needs to be merged with the myadd.o and
mysub.o file, other than the printf.o file whose code resides in the standard C library libc.a
or libc.so. Please make time and read more information about standard C library from the man
libc man page in section 7.
For x86_64 architecture, the standard C library along with other libraries resides in a standard
location which is /usr/lib/x86_64-linux-gnu/ directory as well as in the /lib/x86_64-
linux-gnu/ directory. The second location is used during the booting process even before /usr/
is mounted. These libraries are pre-compiled set of functions and are ready to use by our programs.
These libraries come into two flavors static library and dynamic library.

For the linking process, you can instruct the gcc to perform linking using –lc option which instructs
gcc to link the source file with standard C library and generate an executable. Since every C program
need to be linked with standard C library, so this is the default, i.e., you need not to mention -lc
option explicitly while linking. One more point is that gcc will look for the dynamic version of the
library by default (i.e., libc.so), if it exists it will link the source code with libc.so, otherwise it
will look for the static version, i.e., libc.a. To force static linking, you can use the –-static flag of
gcc. Finally, you can also choose the name of executable of your own choice using –o option otherwise,
it will by default generate the exe file with the name a.out. You can use any of the following two
commands to generate the final executable, either using dynamic linking or static linking:

$ gcc *.o -o dynamicexe -lc
$ gcc *.o --static -o staticexe –lc

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

You can see the difference between static and dynamic
linking by checking the size of both executables, which
clearly shows that size of dynamicexe is much smaller than
staticexe. Because in case of static linking, linker resolves
all the external references and final executable contains the
complete code, that is why the size of staticexe is much
larger. This executable can even run on those machines
where standard C library doesn’t exist. However, in case of
dynamic linking the final executable doesn’t contain the
code of external function (only contains a stub), that is why
the file dynamicexe is smaller in size, and the executable
requires the standard C library to exist on that system.

V. Execute the Program:
Now it is time to execute the program. The ./ before the
program name actually specifies that the loader should
look for the program file in the current working
directory. Otherwise, the loader will look for the
program inside the directories mentioned inside the
PATH variable, which is an environment variable that
contains colon separated absolute path names of the
directories where the shell will look for the executables.
• A process is created using fork() / clone() system call that create a nearly exact copy of the

parent process.
• The program binary (a.out) is loaded inside the child process usually using the execve()

system call.
• The binary is initialized, using constructors/functions that are there in every ELF, e.g., libc

initialize memory regions for dynamic allocations when the program is initialized.
• A normal ELF automatically calls __libc_start_main() in libc, which in turn calls the

program's main() function and your code starts running.
• The binary reads its input from the outside world, from command-line arguments and

environment variables.
• The binary code executes and does what the developer has coded it for.
• The binary terminates by either receiving an unhandled signal or by calling the exit() system

call. After termination, the process will remain in a zombie state until they are wait()ed on
by their parent. When this happens, their exit code will be returned to the parent, and the
process will be freed. If their parent dies without wait()ing on them, they are re-parented to
the init/systemd process and will stay there until they’re cleaned up.

Note: In programming, a program’s return value (often called the exit status or exit code) indicates whether
the program completed successfully or if an error occurred. This value is returned to the operating
system/parent process (shell in our case) when the program finishes execution. By convention, a return value
of 0 typically indicates that the program was executed successfully. Any non-zero return value usually
indicates that an error occurred, specifying the type of error. In Linux Bash shell, you can check the return
value of the last executed program inside the environment variable $?. In Linux and other Unix-like
operating systems, the exit status of a process is represented as an 8-bit integer. This means that the exit
status is effectively limited to values between 0 and 255. However, the convention is that exit statuses above
127 are reserved for special purposes related to process termination via signals J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Physical vs Virtual Address Space of a Process

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Creating & using your own Static Library

Creating a static library is the process of concatenating related relocatable object files into a single file
called an archive. In Linux the archiver tool ar is used to create a static library, and the process is
shown in the image below:

Linker’s algorithm for resolving external references:
• Scan all the .o and .a files in the command line order.
• During the scan, keep a list of the current unresolved references.
• Try to resolve each unresolved reference in the list against the symbols defined in obj files.
• If any entries in the unresolved list at end of scan, then error.

Problem:
• Command line order matters. So best practice is to put libraries at the end of the command line.

To check out what all object files are there inside the standard
static C library:

$ ar -t /usr/lib/x86_64-linux-gnu/libc.a

Example Code: Visit module3/3.1/staticlibrary/
directory for the related files to create a static library
libarifmath.a

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

Creating & using your own Dynamic/Shared Library

A dynamic library or shared object is similar to static library because it is also a group of object
files. However, a dynamic library differs from a static library as the linker and loader both behave
differently to a dynamic library. To create a dynamic library in Linux, you simply generate the
object files from source files using -fPIC flag, that instruct gcc to generate position-independent
code. A code that can be loaded and executed at any address without being modified by the linker
is known as position-independent code. Then you use the -shared flag to gcc to link all the object
files to a shared object file. The process is shown in the image below:

In dynamic linking the goal is to keep the library code outside your final executable. Therefore, the
library is there on the system, but it is not actually copied into your executable. If you need it during
the run time, it's going to be linked to your program. The advantage of dynamic linking is that you do
not need to have duplicate copies of this library in each of the executable. Now if you have 100 different
programs, they all use some of the library functions, like printf, in static linking, all these hundred
programs need to have a copy of printf function and also all the other functions that printf depends
on. That adds a lot of extra space to the program. Also, another problem with statically linked
executable is, if in the future, the library gets updated, for example printf has a security problem,
and it gets fixed, then all these binaries need to be re-linked.

Last but not the least, remember, when you will run the final executable, the loader will search for
the shared object files in the standard locations (in Linux it is /usr/lib/x86_64-linux-gnu/
directory). In Linux, to temporary override the default shared library paths, we can use the
LD_LIBRARY_PATH environment variable. This variable is especially useful when running
applications that require specific or custom versions of libraries that are not installed in the default
locations.
Example Code: Visit module3/3.1/dynamiclibrary/ directory for the related files to create a static library
libarifmath.so

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

Reading/Viewing Contents of Object Files

We have covered all four phases of the C Compilation process, and generated all the intermediate
files (preprocessed file, assembly file, object file) and the final executable. We have already read the
contents of preprocessed file with .i extension and the assembly file with .s extension, however,
we haven’t checked the contents of relocatable object files and final executable. You can’t view the
contents of these files using normal programs like cat and less. To deal with the object and
executable files in Linux, you can use the following utilities:

• readelf utility is used to display information about ELF files.
• objdump utility is used to disassemble and inspect object files, executables and libraries.
• nm utility is used to display the symbol table of object files, executables and libraries.
• strings utility is used to extract/display the ASCII/Unicode text embedded in binary files.
• file utility is used to determine the type of a file by inspecting the file’s header.
• ldd utility is used to display the shared libraries with which the final executable is linked.
• strip utility is used to discard/remove symbols and debugging info from binaries.
• objcopy utility allows you to modify object files by copying them with alterations, such as

stripping sections, changing formats, and extracting specific parts of the file.
• checksec utility is used to analyze security features of binaries and shows which exploit

mitigation features are enabled/disabled in a binary (NX, PIE, Canary, RELRO, FORTIFY)
• addr2line utility is used to translate memory addresses into human-readable file names and

line numbers in the original source code (if the binary contains debugging symbols).

Inspecting Object Files using readelf
The readelf is a command-line utility used to display detailed information of Executable and
Linkable Format (ELF) files on Linux and other Unix-like operating systems. ELF is the standard file
format for executables, object code, shared libraries, and core dumps in Linux. You can view the man
page of readelf to get more information.

$ readelf -[option] hello.o

• The -a option displays all available info about the elf file, including headers, sections, segments
and symbols

• The -h option displays information about ELF header, that contains metadata about the ELF file,
such as:
o Magic Number starts with 0x7F 45 4C 46 specifying that

it is an ELF file. The 02 after that specifies the class of
binary (64-bit). The 01 after that specifies data encoding
(little-endian). The last 01 specifies the ELF version.

o File type (Executable, Shared Library, or Object File)
o Target architecture (e.g., x86-64, ARM)
o Entry point address (where execution starts)
o Offset locations for different sections

• The -S option displays different section headers (.text,
.plt, .got, .data, .rodata, .bss etc) of the ELF file.

• The -s option displays the symbol table (function/variable names with addresses)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

Inspecting Object Files using objdump

objdump is more general-purpose tool as compared to readelf, that is used for disassembling and
inspecting binary files and works on multiple object formats like ELF, PE, COFF etc. It is particularly
useful for debugging, analyzing binaries, and understanding how code is translated into machine
instructions. By default, it displays the disassembly in AT&T format.

$ objdump -[option] -M intel hello.o

• The -f option displays the file header information (architecture, format, entry point, etc)
• The -h option displays information about the section headers, such as their sizes and offsets.
• The -t option displays the symbol table (function/variable names with addresses).
• The -d option disassembles only the executable sections (e.g., .text)
• The -D option disassembles all sections, including the non-executable ones.

Inspecting Object Files using ldd
ldd is a command-line utility used on Linux and other Unix-like operating systems to display the
shared library dependencies of an executable or shared library. It shows which dynamic libraries an
executable or shared library relies on, helping you understand the runtime requirements and ensuring
that all necessary libraries are available on the system. To show the shared libraries required by an
executable or shared library:

$ ldd ./dynamicexe

o Description of Output:
• linux-vdso.so.1 is a virtual dynamic shared object.
• libc.so.6 is the C standard library.
• /lib64/ld-linux-x86-64.so.2 is the dynamic linker/loader.

To get more detailed information about the libraries and their paths use -v option for verbose output:
$ ldd –v ./dynamicexe

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

C Code Vulnerabilities and Mitigations

• We all know that a vulnerability is a weakness or flaw in a system that can be exploited by an
attacker to compromise the system's integrity, availability, and/or confidentiality. Vulnerabilities
can exist in various types of systems and can lead to unintended behaviours or security breaches.

• The C programming language, while powerful and widely used, has several inherent features and
common pitfalls that can lead to vulnerabilities. These vulnerabilities often arise due to the low-
level nature of C, its handling of memory, and lack of built-in safety mechanisms.

• In C programming, secure and unsecure functions are terms that refer to how well a function
handles potentially dangerous operations, particularly regarding memory safety and data
integrity. Secure functions are designed to mitigate risks such as buffer overflows, format string
vulnerabilities, and other common issues. In contrast, unsecure functions often lack built-in
protections and can expose programs to these risks.

Example 1: Secure vs Unsecure C Program
The gets() function is unsafe because it does not perform bounds checking, thus can lead to buffer
overflow. In the left code snippet, the gets(buffer) reads a line of input from standard input into
buffer. If the input exceeds 20 characters, it will overflow buffer, potentially overwriting adjacent
memory, thus generating a segmentation fault. In the code snippet shown on the right, the fgets()
function is used, which is safer because it allows you to specify the maximum number of characters to
read, which helps prevent buffer overflow. The fgets(buffer, sizeof(buffer), stdin) reads
up to sizeof(buffer) - 1 characters from stdin into buffer, ensuring it does not exceed the
buffer size. It also appends a null terminator to buffer and handles newline characters properly.

//vulnerable.c
#include <stdio.h>
void vulnerable_function() {
 char buffer[20];
 printf("Enter some text: ");
 gets(buffer);
 printf("You entered: %s\n", buffer);
}

int main() {
 vulnerable_function();
 return 0;
}

//safe.c
#include <stdio.h>
#include <string.h>
void safe_function() {
 char buffer[20];
 printf("Enter some text: ");
 if (fgets(buffer, sizeof(buffer), stdin) != NULL) {
 int len = strlen(buffer);
 if (len > 0 && buffer[len - 1] == '\n') {
 buffer[len - 1] = '\0';
 }
 printf("You entered: %s\n", buffer);
 }
}
int main() {
 safe_function();
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

Example 2: Secure vs Unsecure C Program
The C strcpy() function is unsafe because it does not perform bounds checking, and copies a string
from the source to the destination buffer without checking the size of the buffer. This can lead to buffer
overflows if the source string is larger than the destination buffer. In the left code snippet shown
below, the strcpy(buffer, long_string) tries to copy the long_string inside the buffer, and
thus causing a buffer overflow, and generating a segmentation fault. In the code snippet shown in the
right, the strncpy() function is used, which is safer because it allows you to copy up to
sizeof(buffer) - 1 characters from long_string into buffer, ensuring it does not exceed the
buffer size. The buffer[sizeof(buffer) - 1] = '\0' ensures that the buffer is null-terminated
even if the source string is longer than the buffer.

Example 3: Secure vs Unsecure C Program
The strcat() function is unsafe because it does not check the size of the destination buffer, which
can lead to buffer overflow, if the buffer is not large enough to hold the concatenated result. In the
code snippet shown in the left, the to_append string is too long to fit into the buffer after the initial
“Hello, ”. The line strcat(buffer, to_append), will therefore cause a buffer overflow generating
a segmentation fault. In the code snippet shown in the right, the strncat() function is used, which
is safer because it allows you to copy up to specify the maximum number of characters to append,
which helps prevent buffer overflow by ensuring you don’t exceed the size of the destination buffer.
The strncat() in the code on the right appends up to sizeof(buffer) – strlen(buffer)-1
characters from to_append to buffer. This calculation ensures that the total length of buffer does
not exceed its size and leaves room for the null terminator.

//vulnerable.c
#include <stdio.h>
#include <string.h>
void vulnerable_function() {
 char buffer[5];
 char long_string[] = "Hello World…!";
 strcpy(buffer, long_string); //
 printf("Buffer content: %s\n", buffer);
}

int main() {
 vulnerable_function();
 return 0;
}

//safe.c
#include <stdio.h>
#include <string.h>
void safe_function() {
 char buffer[5];
 char long_string[] = "Hello World…!";
 strncpy(buffer, long_string, sizeof(buffer) - 1);
 buffer[sizeof(buffer) - 1] = '\0';
 printf("Buffer content: %s\n", buffer);
}
int main() {
 safe_function();
 return 0;
}

//vulnerable.c
#include <stdio.h>
#include <string.h>
void vulnerable_function() {
 char buffer[10] = "Hello, ";
 char to_append[] = "Muhammad Arif Butt.";
 strcat(buffer, to_append);
 printf("Buffer content: %s\n", buffer);
}

int main() {
 vulnerable_function();
 return 0;
}

//safe.c
#include <stdio.h>
#include <string.h>
void safe_function() {
 char buffer[10] = "Hello, ";
 char to_append[] = "Muhammad Arif Butt. ";
 strncat(buffer, to_append, sizeof(buffer) -
strlen(buffer)-1);
 printf("Buffer content: %s\n", buffer);
}

int main() {
 safe_function();
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

18

Example 4: Format String Vulnerability

The printf() and sprintf() functions are used to output formatted data, but if used with untrusted
format strings, it can lead to format string vulnerabilities. It exist in programs where untrusted data is used
as a format string in functions like printf. C's printf and related functions do not validate format
strings. An attacker can use format specifiers to read or write arbitrary memory locations. On the contrary,
the snprintf() function formats and stores a string in a buffer, ensuring that the buffer size is respected
to prevent overflow. It also ensures null termination.

Example 5: Use After Free Vulnerability

The malloc() and free() functions are used for dynamic memory allocation and deallocation. While
malloc and free themselves are not inherently insecure, improper use, such as double-freeing or
accessing freed memory, can lead to vulnerabilities. To avoid this, one should use memory management
techniques that avoid common pitfalls, such as ensuring pointers are set to NULL after being freed and
checking for NULL returns from malloc. The use-after-free vulnerability happens when a program
continues to use a pointer after the memory it points to has been freed. C provides manual memory
management using malloc and free. If a pointer is used after free without setting it to NULL, it can
lead to undefined behavior or security issues.

Example 6: Dangling Pointer

A pointer that continues to reference a memory location after the memory it points to has been deallocated.
Similar to use after free, but can also occur if a pointer is left pointing to a local variable whose stack frame
has been popped.

Example 7: Integer Overflow

Occurs when arithmetic operations produce results that exceed the representable range of the data type. C
does not check for integer overflows. If the result of an arithmetic operation is too large or too small, it wraps
around.

char user_input[100];
scanf("%s", user_input);
printf(user_input); // Vulnerable if user_input contains format specifiers

char *ptr = malloc(20);
free(ptr);
strcpy(ptr, "vulnerable");

char* func() {
 char local_buffer[10];
 return local_buffer; // Returning address of local variable
}

unsigned int x = 4294967295; // Max value for 32-bit unsigned int
x += 1; // Causes overflow and wraps around to 0

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

19

Exploiting Set-UID Privileged Programs
o Understanding SUID Privileged Programs:

We all know that the /etc/shadow file is a critical file in Unix-like operating systems that stores
user account information, specifically the hashed passwords and related security attributes for
user accounts. The /etc/shadow file is usually only accessible by the root user and certain
privileged processes. This is to protect sensitive
information from unauthorized access. From the
screenshot, one can see that the permissions on this
file are set to 640, meaning that the owner (root) has
read and write permissions, the group (shadow) has
only read permissions, and others have no access. So,
a regular user cannot even view the content of this
file. However, this can be done by a user who is in the
sudo group, and since the user kali is a member of
this group, so he/she can view its contents using the
sudo command as shown in the screenshot.

Now a 100$ question is how come every user can use
the passwd command to change his/her password,
that resides in this /etc/shadow file. One way is to
run a privileged daemon running at all times that can
do this job for regular users, but this is of course expensive. So, the solution used by all UNIX
systems for such tasks is the SUID bit. The SUID (Set User ID) bit is a special file permission in
Unix-like operating systems that allows users to execute a file with the permissions of the file
owner rather than the permissions of the user executing the file. The advantage of SUID bit is that
it allows users to perform tasks that require higher privileges without giving them full access to
the system. It is denoted by an 's' in the owner's execute permission or a capital 'S' if the owner's
execute permission is off. An example of a root-owned SUID program is the /usr/bin/passwd
program, that is used by regular users to change their own passwords by modifying the contents
of /etc/shadow file owned by root. To identify executable files with the SUID bit set:

$ find / -type f -perm -u=s -ls 2> /dev/null

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

20

o Exploiting SUID Privileged Programs:

This is a security risk as well, because if an executable with the SUID bit set is compromised, it can be
exploited by attackers to gain unauthorized access or privileges. This is especially risky if the executable
has vulnerabilities. Now let’s make use of SUID bit. We are going to use SUID bit to view the content of
/etc/shadow file without using SUDO. We’ll do this in two simple steps.

Step 1: Create a copy the /bin/cat program inside
the /tmp/ directory, change its owner to root, and see
if you can view the contents of /etc/shadow file:

$ cp /bin/cat mycat
$ sudo chown root mycat
$./mycat /etc/shadow

Step 2: Now enable SUID bit for mycat program, and
you can view the content of file /etc/shadow
without using sudo:

$ sudo chmod u+s mycat
$./mycat /etc/shadow

Thus, if a SUID program has vulnerabilities (like buffer overflow), an attacker can exploit those to gain
elevated privileges, potentially compromising the entire system. An attacker can manipulate input to a SUID
program to execute arbitrary commands with elevated privileges.

To Do:
Suppose your friend Kakamanna gives you a chance to use his Linux account, and you have your own
account on the same system. Can you take over Kakamanna account in 10 seconds? Hint: (Try
/bin/bash and then /bin/zsh. Describe what is the difference?)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

21

Exploiting the system() Function (using Command Injection)
The system(char* cmd) is a standard C library function, which is used to execute shell commands
from within a program. It is passed a string and it spawns a shell program /bin/sh and use it to
execute the argument passed as cmd (/bin/sh -c “cal”). The following two examples describes its
behaviour:

Now study the code of the following program, that prompts the user to enter a filename as input and
constructs a command like system("cat " + filename)and display the contents of the file
(snprintf() formats and stores a series of characters and values in the array as per the format string)

The system() function is really great however, it can introduce significant security vulnerabilities if
not used carefully. If user input is passed to system(), w/o any validation, an attacker can manipulate
that input to execute arbitrary commands. If the command string contains special characters like ;,
&, or |, it can lead to command execution beyond what the programmer intended.

To Do:
Now let us suppose that the attacker gives the input f1.txt;/bin/sh. What will happen, do you get
a shell? Is this a shell with root privileges? If not, can we get a shell with root privileges?

//system3.c
#include <stdio.h>
#include <stdlib.h>
int main() {
 char filename[100];
 printf("Enter a filename to display its content: ");
 fgets(filename, sizeof(filename), stdin);
 char command[150];
 snprintf(command, sizeof(command), "cat %s", filename);
 system(command); // Potentially dangerous!
 return 0;
}

//system1.c
#include <stdio.h>
#include <stdlib.h>
int main() {
 system(“cal”);

printf(“Done…Bye\n”);
 return 0;
}

//system2.c
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char* argv[]) {
 system(argv[1]);

printf(“Done…Bye\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

22

Exploiting the system() Function (using Environment Variables)

Environment variables are name-value pairs. Each running process has a block of memory that
contains a set of the name-value pairs which usually come from its parent process. You can view the
environment variables of a shell program using the env command. So, when you run a command inside
a Linux shell, the shell program (parent) send its own environment variables along with some new
environment variables to the child process. These environment variables sit in the memory of the child
process, and if the child process does not use these variables at all, then these variables will have no
impact on its execution. But if the child process uses these variables, then these variables will of course
have an impact on its behavior.
Let us consider the system1.c source file again:

o A natural question that might come to your mind is that how
does system() function in the given code file, find the command
cal as we have not passed the absolute path of this command
which is /usr/bin/cal. The answer is using the PATH
variable, which is an environment variable that contains colon
separated list of absolute path names of all the directories where
the shell is going to search for the binaries in the specified sequence. To display the current value
of any environment variable, say PATH, you can use the following command:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

o Now being a hacker, you're not interested in running the calendar program, rather you are
interested in running a shell program with root privileges. Copy the /bin/sh program in the
present working directory and rename it as cal using the following command:
$ cp /bin/sh cal

o Now add the path of the pwd, i.e., a period in the very beginning of the PATH variable using the
following command:
$ PATH=.:$PATH
$ echo $PATH
.:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

o After modifying the PATH variable of the shell, when you will run the above program, the shell
program will pass this modified PATH variable to the child process. So the system() function will
now first search for cal program inside the pwd, instead of /usr/bin/ directory. Hence you will
get a shell program instead of the calendar program. Does the resulting shell have root privileges?
If not why not?

To Do: Now let us suppose that in the above program the system(“cal”); is changed with
system(“/usr/bin/cal”); Can you still hack this program (Hint: Use IFS environment variable)

//system1.c
#include <stdio.h>
#include <stdlib.h>
int main() {
 system(“cal”);

printf(“Done…Bye\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

23

Exploiting the Shared Libraries (using Environment Variables)

Consider compiling the following program, and linking it statically with libc.a and dynamically with
libc.so.

We can use the ldd program to check the dynamic dependency of the above executable files. The output
shows that the dynamicprog1 program rely on three shared object libraries. The first one linux-
vdso.so.1 is the Virtual Dynamic Shared Object library that is used for system calls. The second one
libc.so.6 is the standard C library. The third one ld-linux-x86-64.so is the linker itself.

A natural question that might come to your mind is that how does the loader (ld) knows, where to
find these libraries. In x86_64-linux, the default paths for dynamic libraries are typically configured
inside the x86_64-linux-gnu.conf file, which is shown below:
$ cat /etc/ld.so.conf.d/x86_64-linux-gnu.conf

/usr/local/lib/x86_64-linux-gnu

/lib/x86_64-linux-gnu

/usr/lib/x86_64-linux-gnu

LD_LIBRARY_PATH: In Linux, to temporary override the default shared library paths, we can use the
LD_LIBRARY_PATH environment variable. This variable is especially useful when running
applications that require specific or custom versions of libraries that are not installed in the default
locations. Remember, using relative paths in LD_LIBRARY_PATH can be dangerous. If an attacker can
create files in the specified directories or influence the current working directory, he/she may load
his/her own libraries.

LD_PRELOAD: Similarly, the LD_PRELOAD environment variable allows you to specify one or more
shared libraries that should be loaded before any other libraries when running a program. This is
particularly useful for overriding functions in other shared libraries, which can be helpful in
debugging, testing, and custom function implementations. Since, LD_PRELOAD allows injecting
arbitrary code into a process, it can be a security risk if set globally or used with untrusted programs.
For security, LD_PRELOAD is ignored for setuid/setgid binaries to prevent privilege escalation.

//prog1.c
#include <stdio.h>
int main() {

printf(“Hello World!\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

24

Consider the following program, that is dynamically linked with the standard C library function and
therefore, the loads the code of printf() and sleep() functions at runtime from the standard C
library libc.so located in /lib/x86_64-linux-gnu/ directory. Let us compile and execute this
program:

So, you see the above program is working perfectly fine as expected, i.e., it prints the message, sleeps
for 2 seconds and then terminates. Let us suppose an attacker creates a malicious shared library
having a sleep() function as shown below:

$ gcc -fPIC mysleep.c mysleep.c
$ gcc -shared mysleep.o libmylib.so

After creating the library libmylib.so having only one function in it with the name of sleep. The
attacker places the path of this malicious library in the LD_PRELOAD environment variable. Now, when
you execute the above executable again, instead of calling the sleep() function of the standard C
library, linker will call the sleep() function of this malicious library.
$ export LD_PRELOAD=./libmylib.so
$./a.out

Once you are done, DONOT forget to unset this environment variable $ unset LD_PRELOAD

//vulnerable.c
#include <stdio.h>
#include <unistd.h>
int main() {
 printf(“Welcome to Hacking with Dynamic Libraries.\n”);
 sleep(2);
 return 0;
}

//mysleep.c
#include <stdio.h>
int sleep() {
 printf(“I am not sleeping, rather trying to hack you J\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

25

To Do:
Study the following CVEs. Write a detailed and comprehensive report for each CVE, that should cover
at least the following points:
• What is this vulnerability?
• How to exploit this vulnerability?
• Practical step by step Proof of Concept (PoC).
• How to mitigate this vulnerability?

Task 1: Exploiting the sudo Vulnerability (CVE-2019-14287)
We all know that the sudo command is used to execute commands as a superuser. There exists a
privilege escalation vulnerability in the sudo versions prior to 1.8.28, which allows a user to execute
commands as root by bypassing restrictions in the /etc/sudoers file. The issue is triggered when
the ALL keyword is specified in the Runas specification of the sudoers configuration file.

Task 2: Exploiting the Shellshock Vulnerability (CVE-2014-6271)

Shellshock, also known as the Bash bug, is a critical vulnerability in the Bash shell from versions 1.14
through 4.3. It allows an attacker to execute arbitrary commands on a vulnerable Linux system by
sending specially crafted environment variable, a function definition that will be executed by Bash.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or
activities related to the material contained within this handout is solely your responsibility. The misuse of
the information in this handout can result in criminal charges brought against the persons in question.
The authors will not be held responsible in the event any criminal charges be brought against any
individuals misusing the information in this handout to break the law.

