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HO# 3.2: Recap of x86-64 Assembly & Debuggers 
A Bit of Word about Assembly Programming 
Assembly language is a critical component in the realm of computer programming, reverse 
engineering, malware development/analysis and systems development. Assembly language is a low-
level programming language that provides a symbolic representation of a computer's machine code. It 
serves as an intermediary between high-level programming languages and the raw binary instructions 
executed by a computer’s CPU. 
• Brief History of Assembly Language 

1. Early Beginnings (1940s-1950s): 
a. Origins: Assembly language has roots in the early days of computing. In the 1940s 

and 1950s, computers were programmed using machine code, the lowest-level 
language consisting of binary instructions. 

b. First Assemblers: To simplify programming, early assemblers were developed. 
These tools translate assembly language, which uses mnemonics and symbolic 
names, into machine code. This abstraction made programming more manageable 
than directly using binary. 

2. Development Through the 1960s-1980s: 
a. Improved Assemblers: Throughout the 1960s and 1970s, assembly language 

evolved with better assemblers and debuggers. It became standard for writing 
system software and performance-critical applications. 

b. High-Level Languages: While high-level programming languages like C, Fortran, 
and COBOL began to dominate, assembly language remained important for tasks 
requiring fine-grained control over hardware. 

3. Modern Era (1990s-Present): 
a. Microprocessors and Assemblers: As microprocessors became ubiquitous in the 

1980s and 1990s, assembly language continued to be used for low-level 
programming, particularly in embedded systems, device drivers, and operating 
systems. 

b. Optimizations: In the 2000s and beyond, assembly language was primarily used 
for performance optimization, reverse engineering, and systems programming. 
 

• Features/Characteristics of Assembly Language 
1. Low-Level Control: 

o Direct Hardware Interaction: Assembly language provides direct control over 
hardware, allowing precise manipulation of processor registers, memory addresses, and 
I/O ports. 

o Mnemonics: Instead of using binary or hexadecimal numbers, assembly language uses 
mnemonics to represent machine instructions. For example, MOV to move data, ADD to 
add numbers, and SUB to subtract. 

o Symbolic Addresses: Assembly language allows the use of symbolic names for memory 
addresses and constants. For instance, var1 might be used instead of a numerical 
address. 
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2. Efficiency: 
o High Performance: Code written in assembly can be highly optimized for performance 

and space, often achieving better performance than code written in higher-level 
languages. 

o Compact Code: Assembly code can be more compact and efficient, making it suitable 
for resource-constrained environments. 

3. Platform-Specific: 
o Architecture Dependent: Assembly language is specific to a particular CPU 

architecture (e.g., x86, ARM). Each architecture has its own assembly language with 
unique instructions and registers. This means assembly code is generally not portable 
between different types of processors. 

4. Debugging and Optimization: 
o Detailed Debugging: Assembly language allows for detailed debugging at the 

instruction level, which can be crucial for troubleshooting low-level issues. 
o Optimizations: It enables optimization of critical code sections, especially where 

performance is paramount, such as in embedded systems or high-performance 
computing. 
 

• Historical and Modern Uses 
1. Past Uses: 

a. Early Computer Programming: Assembly language was widely used in the early 
days of computing for writing operating systems, compilers, and system utilities. 

b. Embedded Systems: Used extensively in embedded systems where direct hardware 
control and optimization were necessary. 

2. Present Uses (2024): 
a. Embedded Systems: Still used in embedded systems for microcontrollers and 

processors where efficiency and direct hardware access are crucial. 
b. Performance Optimization: Employed for performance-critical sections of 

software where high performance and low overhead are required. 
c. Reverse Engineering and Security: Used in reverse engineering and security 

research to understand malware, exploit vulnerabilities, and analyze compiled 
binaries. 

d. Educational Purposes: Taught as a foundational subject to understand computer 
architecture and low-level programming concepts. 

 
• Importance and Uses 

o Performance Optimization: Assembly language enables programmers to write highly 
optimized code that can outperform high-level language implementations, especially in 
performance-critical applications. 

o System Programming: It is used for developing system software like operating 
systems, device drivers, and embedded firmware. 

o Embedded Systems: In embedded systems, where resources are limited, and 
performance is critical, assembly language helps in creating efficient and compact code. 

o Reverse Engineering and Security: Assembly language is vital in reverse 
engineering and cybersecurity for understanding and analyzing executable binaries, 
discovering vulnerabilities, and developing exploits or patches. 

o Educational Value: Learning assembly language provides deep insights into computer 
architecture and low-level programming concepts, helping developers understand how 
high-level languages interact with hardware. 
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Assembly Languages are Processor Specific 
Assembly language is inherently tied to the architecture of the processor on which it runs. This means that 
assembly languages are specific to different CPU architectures, each with its own set of instructions, 
registers, and addressing modes. Here's a detailed explanation: 

• Key Concepts 
1. Architecture-Specific Instructions: 

o Instruction Set: Each CPU architecture has a unique instruction set, which is the 
collection of all the instructions that the CPU can execute. For instance, Intel's x86 
processors have a different set of instructions compared to ARM processors. 

o Instruction Format: The format of instructions, including how they are encoded and how 
operands are specified, varies between architectures. This affects how assembly language 
code is written and interpreted. 

2. Registers: 
o Register Names and Sizes: Different architectures have different sets of registers with 

varying names, sizes, and purposes. For example, x86 processors have registers like EAX, 
EBX, ECX, while ARM processors use R0, R1, R2, etc. 

o Usage and Functions: Registers in one architecture may serve different functions 
compared to those in another. For example, general-purpose registers in x86 might differ in 
their usage compared to ARM registers. 

3. Addressing Modes: 
o Memory Access: Different architectures have different methods for addressing memory. 

For instance, x86 architecture supports complex addressing modes such as base-plus-index, 
while ARM may use simpler or different modes. 

4. Instruction Semantics: 
o Operation Behavior: The behavior of instructions can vary. For example, an ADD 

instruction in x86 and ARM might operate differently or have different effects depending on 
the architecture's design. 

 
• Examples of Processor-Specific Assembly Languages 

1. x86 Assembly: 
o Architecture: Developed by Intel, the x86 assembly language is used for Intel and 

compatible CPUs (e.g., AMD). 
o Instructions: Includes instructions like MOV, ADD, SUB, JMP, CALL. 
o Registers: Includes registers like EAX, EBX, ECX, EDX (32-bit), and RAX, RBX, RCX, 

RDX (64-bit in x86-64). 
 

2. ARM Assembly: 
o Architecture: Used in ARM processors, common in mobile devices and embedded 

systems. 
o Instructions: Includes instructions like MOV, ADD, SUB, B (branch). 
o Registers: Uses registers like R0, R1, R2, R3. 

 
 

 

mov eax, 1    ; Move 1 into register EAX 
add eax, 2    ; Add 2 to EAX 

MOV R0, #1    ; Move the value 1 into register R0 
ADD R0, #2    ; Add 2 to R0 
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• Compatibility and Portability Issues 
1. Incompatibility: Code written in assembly language for one architecture cannot be 

directly executed on another due to differences in instruction sets, registers, and memory 
models. For example, an assembly program written for an x86 processor will not work on 
an ARM processor without modification. 

2. Porting: To run software on different architectures, it often needs to be ported. This 
involves translating or rewriting the code to be compatible with the target architecture. 
This can be done manually by rewriting the assembly code or by using high-level languages 
with cross-compilation. 

 
 

• Workarounds for Cross-Architecture Execution 
1. Cross-Compilation: 

o Toolchains: Cross-compilers can translate high-level code written in languages like C 
or C++ into assembly code for different architectures. This allows software to be compiled 
for different platforms without manually writing architecture-specific assembly code. 

2. Emulation and Virtualization: 
o Emulators: Emulators can simulate a different CPU architecture on the current 

hardware, allowing software designed for one architecture to run on another. 
o Virtual Machines: Virtual machines can provide an abstraction layer that allows 

software to run on different hardware platforms. 
3. Binary Translation: 

o Dynamic Binary Translation: Some systems use dynamic binary translation to 
convert executable code from one architecture to another at runtime, allowing for 
execution of binaries across different platforms. 
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AMD x86-64 Processor Architecture  
 

• Registers of x86-64 Processor 
Registers are essentially places that the processor can store data. You can think of them as 
buckets which the processor can store information in.  There are sixteen registers in x86-64 
processor, and usage of some of the important registers are given below: 

o rbp: Base Pointer, points to the bottom of the current stack frame 
o rsp: Stack Pointer, points to the top of the current stack frame 
o rip: Instruction Pointer, points to the instruction to be executed 
o Arguments to a function are also passed via registers (rdi, rsi, rdx, rcx, r8, r9) 
o Return value from a function is passed in the rax register. 
o Flags Register: The rflags register is used for status and CPU control information. 

Out of the 64 bits, mostly are unused and reserved for future use. These flags are divided 
into three categories namely status flags, control flags (DF) and system flags (IF, TF, 
RF). A brief description of some important status flags is given below: 

§ Carry flag (CF) holds the carry out after addition or the borrow in after subtraction 
out/in of msb (Identify an unsigned overflow) 

§ Parity flag (PF) is the count of one bits in a number, expressed as odd or even, 
represented by 0 or 1 respectively 

§ Auxiliary flag (AF) holds the carry out after addition or the borrow in after 
subtraction between bit position 3 and 4 of the result (BCD) 

§ Zero flag (ZF) is set if the previous operation resulted in a zero result 
§ Sign flag (SF) holds the msb of the result (sign bit) after an arithmetic or logic op 
§ Overflow flag (OF) is set if the previous signed arithmetic operation resulted in an 

overflow 
Watch: https://www.youtube.com/watch?v=sg3GIXvS36w&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=30  
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Categories of x86-64 Assembly Instructions  
 
 

Category Description Examples 

Data Transfer Move from 
source to 
destination 

mov, movzx, movsx, lea, lds, lss, 
xchg, push, pop, pusha, popa, pushf, 
popf 

Arithmetic Arithmetic on 
integer 

add, addc, sub, subb, mul, imul, div, 
idiv, neg, inc, dec, cmp 

Bit 
Manipulation 

Logical & bit 
shifting 
operations 

and, or, not, xor, test, shl/sal, 
shr, sar, ror, rol, rcr, rcl 

Control 
Transfer 

Conditional and 
unconditional 
jumps, and 
procedure calls 

jmp 

jcc(jz,jnz,jg,jge,jl,jle,jc,jnc,...)  

call, ret 

String Move, compare, 
input and 
output 

movsb, movsw, lodsb, lodsw, stosb,  
stosw, rep, repz, repe, repnz, repne 

Floating Point Arithmetic fld, fst, fstp, fadd, fsub, fmul, 
fdiv 

Conversion Data type 
conversions 

cbw, cwd, cdq, xlat 

Input Output For input and 
output 

in, out 

Miscellaneous Manipulate 
individual 
flags 

clc, stc, cld, std, sti 

 
 
Note: A discussion on the working of all of the assembly instructions is beyond the scope of this 
handout. Interested students are advised to go through related Video Lectures (26 – 46) from the x86-
64 Assembly Programming course at the following link: 
 
Video URL: https://www.youtube.com/playlist?list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz 
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How CPU Executes an Assembly/Machine Language Code 
 
• The screenshot shows a hypothetical layout of memory containing the machine/assembly instruction at the very bottom, 

then we have two data values in the middle and at the very top we have the stack which grows down. The x86_64 
processor has sixteen general-purpose 64-bit registers. You can think of them as variables in programming 
languages, used to store temporary data and perform different operations on them (like add, sub, mul, div, and, 
or, xor, cmp, etc).  

• In x86_64, the Instruction Pointer (ip/eip/rip) is a register which contains the address of the next instruction to 
be executed by the CPU. Every time an instruction is fetched and executed the Program Counter gets incremented 
automatically to the number of bytes specific to the size of that instruction. In RISC architectures (ARM, MIPS, SPARC, 
PowerPC) the size of each instruction is same/fixed, while in CISC architectures (x86, x86_64/AMD64, Motorola 68000, 
VAX) the size of each instruction is of variable length.  

• In real programs, we may need many more variables to 
work with as compared to the number of registers 
available. Moreover, we may need to store data that 
might not fit inside a single register. Therefore, what 
doesn't fit in registers lives in memory. Memory is to 
an assembly program what the disk is to a Python 
program: you pull things out of memory into variables, 
do things with them, and eventually put them back into 
memory. An assembly programmer can access memory 
with loads and stores at addresses. In x86_64 we have 
the famous MOV instruction that is used to load/store 
data to and from the memory as if it were a big array.  

• The top most addresses in the screenshot shows the 
process stack that is used to keep temporary variables 
by functions. The rbp (base pointer) is a register that 
points to the bottom of the current stack frame, rsp 
(stack pointer) points to the top of the current stack 
frame. In x86_64, the process stack grows from top to 
bottom, or from higher addresses to lower addresses. 
Assembly programmers, use push and pop 
instructions to write and remove data from the top of 
the stack, where the rsp is pointing. With each push 
the rsp is decremented (moves down) and with each 
pop the rsp is incremented (moves up). This increment 
and decrement is as per the width of the stack which is 
8 bytes in x86_64. 

• Control flow is done via GOTOs (jumps, branches, or 
calls), and these instructions actually alter the 
program counter directly. This is required if a 
programmer want to perform task1, if a condition 
evaluates to true and perform task2 if the condition 
evaluates to false.  It is also required if a programmer 
wants to repeat a task multiple times. For control flow, 
the rflags register plays a vital role, where the 
(C)arry, (P)arity, (A)uxiliary, (Z)ero, (S)igned, (O)verflow are set as per the previous operation. 
o A jmp instruction is just an unconditional GOTO. 
o The conditional GOTO instruction in x86_64 are jz, jnz, jg, jge, jl, jle,..., based on some status flag, 

e.g., “GOTO this address only if the last arithmetic operation resulted in zero. 
o A caller is a function that calls/invokes another function (callee). In x86_64 the caller function prepares 

arguments, saves registers if needed, pushes the next instruction address on the stack, and transfer the control of 
execution to the first instruction of the callee. The callee creates its FSF on the stack, executes its code and may 
use the stack to store its local variables. Finally, the last instruction of the callee is a ret instruction, that pop the 
saved return address from the stack and place it in rip. This transfers the control of execution to the caller function. 
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Structure of x86-64 Assembly Program 
The following figure describes the structure of an x86-64 assembly program in a text file named 
first.nasm. We can assemble it using nasm, to get an object file name first.o. Finally, we need to 
link the object file with the standard C to make an executable named myexe, ready to be loaded inside 
the memory and executed. 

 
An assembly program is normally divided into three sections: 
• SECTION .data: All initialized data like variables and constants are placed in the .data section 
• SECTION .bss: All uninitialized data is declared in the .bss section (Block Storage Start) 
• SECTION .text: This is actually the code section, and it will always include at least one label named 

_start or main, that defines the initial program entry point. The Linux linker ld(1), expect the 
program entry point label with the name of _start, while gcc(1) expect the program entry point 
label with the name of main. The global directive is used to define a symbol, which is expected to 
be used by another module using the extern directive. The extern directive is used to declare a 
symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in 
some other module. 

There are three types of statements in assembly language programming: 
• x86-64 Assembly Instructions: These instructions are converted into machine code, and when 

executed, instruct the processor what to do. Some x86 specific assembly instructions are mov, add, 
sub, syscall 

• Pseudo Instruction: These are not real x86 machine instructions but are normally used in the real 
instruction field. Some NASM specific pseudo instructions are DB, DW, RESB, RESW, EQU 

• Assembler Directives: Assembly directives are the statements that direct the assembler to do 
something. The specialty of these statements is that they are effective only during the assembly of a 
program and they do not generate any machine executable code. Some NASM specific directives are 
SECTION, EXTERN, GLOBAL, BITS 



 

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD 

9 
 

Process Image Model of x86-64 Process 
 
The layout of various segments of a process running on a Linux system on x86-64 is also shown in the 
above figure. The x86-64 CPU chips that you can buy today support physical address of 40 bits, so a 
physical memory of 1 TiB. The processor support 48-bit logical address, which can be broken down as: 
 

 
Process Stack 
Historically stack grows from higher address to lower addresses (You can think of stack horizontally 
or vertically). Here is the screenshot of a process stack, which is executed from the shell: 
 $ ./program hello world 

int main(int argc, char *argv[], char* envp[]){ 
extern char **environ; 

Environment variables are globally accessible to any function in your program, either by passing envp explicitly 
from main(), or using the global environ pointer. However, command-line arguments are only passed and 
accessible to the main() function. 
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Example 1: Displaying Hello World using System Calls 
First, compile your assembly code to generate an object file. You can use an assembler like nasm, and 
then link it to produce an executable or object file. The NASM (Netwide Assembler) is a popular 
assembler for the x86 architecture, known for its straightforward syntax and support for various 
output formats. You can install nasm if not already installed on your system via following command: 

$ sudo apt-get install nasm 
The two methods using which a program can request 
the operating system to perform a service like printing 
on screen or reading from keyboard are making a 
system call or making a library call. The 
syscalls.nasm file contains a basic assembly code 
that displays a message on screen using the write() 
system call. The .data section contains initialized 
data, having just one variable msg with a null 
terminator (0). The .bss section contains nothing, 
while the .txt section contains the assembly code. The 
global directive inside the .text section is used to 
define symbols, which are expected to be used by 
another module.  
For making a system call on x86-64 running Linux, 
you need to place the system call ID in the rax register, 
first six integer system call arguments inside rdi, 
rsi, rdx, r10, r8, r9 registers and remaining (if 
any) are pushed on the stack, finally you make the syscall instruction to transition to kernel mode. 
The fourth argument in system calling convention is stored in r10 instead of rcx because rcx is used 
to store the return address, when invoking syscall. Similarly for making a system call on x86-64 
running MS Windows, you need to place the system call ID in the rax register, first four integer 
arguments are passed via rcx, rdx, r8, and r9 registers and remaining are pushed on the stack. 
For both Linux and Windows, the return value of a system call is placed inside the rax register. Unlike 
Linux, Windows system calls are not stable and may change across versions. So, we normally call 
ntdll.dll, which internally invokes the correct system call. For both Linux and Window, in case of 
system calls, floating point values are NOT passed via xmm registers, rather converted into integers 
before passing. In case if you want to pass floating point values, they are placed in memory and their 
address is passed via registers mentioned above. Every operating system has its own set of system 
calls and every system call has an associated ID. To check the available system calls and their IDS on 
Linux, you can view /usr/include/x86_64-linux-gnu/asm/unistd_64.h file. 
We will use nasm to assemble this file to an object file for either 32-bit or 64-bit architecture using 
following commands: 

$ nasm -f elf64 syscalls.nasm  
$ nasm -f elf32 syscalls.nasm  

In order to link this object file with the standard C library to make an executable, we can use either 
ld or gcc. Since in this assembly program, the starting point is mentioned using the _start symbol, 
so we are using ld. If it contains main instead of _start then gcc can also be used for linking purpose 
instead of ld. By default, the linker ld will link and create a 64-bit binary as shown below:  

$ ld syscalls.o -o myexe                //will create a 64-bit executable 
$ ld -m elf_i386 syscalls.o -o myexe    //will create a 32-bit executable 
$ ./myexe 
Learning is fun with Arif 
$ echo $? 

;3.2/syscalls.nasm 
SECTION .data  
msg  db “Learning is fun with Arif”, 0  
  
SECTION .bss  
   ;nothing here 
  
SECTION .text  
global _start   
_start:  
; display message on screen 
      mov rax, 1   ;ID of write syscall 
      mov rdi, 1   ;file descriptor 
      mov rsi, msg ;message 
      mov rdx, 26  ;size 
      syscall      ;write(1,msg,26) 
; exit the program gracefully    
   mov rax, 60   ;ID of exit syscall 
   xor rdi, rdi  ;exit status  
   syscall       ;exit(0) 
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Example 2: Displaying Hello World using Library Calls 
An x86-64 machine running Linux make a 
library call (user space function) using the System 
V AMD64 ABI. The first six integer arguments are 
placed inside rdi, rsi, rdx, rcx, r8, r9 
registers and remaining (if any) are pushed on the 
stack, finally you make the call instruction to shift 
the control of execution to the library function. The 
return value is stored in rax register. For library 
calls on Linux, the first eight floating-point 
arguments are passed via xmm0 – xmm7, rest are 
passed via stack and the return value is stored in 
xmm0 register. Similarly, an x86-64 machine 
running MS Windows make a library call (user 
space function) using the Microsoft x64 ABI. The 
first four integer arguments are passed via rcx, 
rdx, r8, and r9 registers and remaining are 
pushed on the stack. For library calls, the first four floating-point arguments are passed via xmm0 - 
xmm3, rest are passed via stack and the return value is stored in xmm0 register. 
We have seen the use of system calls in Example1, now let us repeat the same using C printf and 
exit library calls. This time the entry point in the .txt section is the symbol main instead of _start 
because we will be using gcc instead of ld to link. The extern directive is used to declare symbols 
which are not defined anywhere in the module being assembled, but are assumed to be defined in some 
other module. Before calling the printf function, we need to place the first argument to printf 
inside the rdi register. Similarly, before calling the exit function, we need to place its first argument 
inside the rdi register. The printf is a variadic function, and moreover, it can be passed integer 
arguments as well as floating point arguments. In a variadic function like printf, floating point 
arguments are duplicated, i.e., stored in xmm registers and copied into general purpose registers as 
well. In the sample code, we are clearing rax with the xor rax, rax instruction because, in the x86-
64 System-V calling convention, the rax register is used to specify the number of floating-point 
arguments passed to a function in vector registers (xmm0, xmm1, etc.). So, for the printf function here, 
since there are no floating-point arguments, rax must be set to 0. This ensures that the printf 
function knows that it doesn't need to fetch any values from the xmm registers. 
First, assemble your assembly code to generate an object file using nasm as shown below: 

$ nasm -f elf64 libcalls.nasm 
 

In order to link this object file with the standard C library to make an executable, we will use gcc, 
and that is why we have mentioned the starting point using the main symbol.  Remember, by default 
gcc generates a Position Independent Executable, which can be loaded at any memory address, which 
enhances security features like Address Space Layout Randomization (ASLR). The -no-pie flag of 
gcc explicitly disables the creation of a PIE executable.  

$ gcc -no-pie libcalls.o -o myexe       
 

You may get a warning saying that the stack is set as executable. To remove this use -z noexecstack 
option of gcc. More on this later… J 

$ gcc -no-pie -z noexecstack libcalls.o -o myexe       
 

Let us execute the executable now: 
$ ./myexe 
A hello to C library functions  
$ echo $? 
0 

;3.2/libcalls.nasm 
SECTION .data  
msg db “A hello to C library functions”, 0  
  
SECTION .bss  
   ;nothing here 
  
SECTION .text  
global main 
extern printf, exit 
main:  
; display message on screen 
      lea rdi, [msg]  ;first arg to printf 
      xor rax, rax 
      call printf      
; exit the program gracefully    
   mov rdi, 0   ;return value of exit 
   call exit    ;exit(0) 
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Example 3: Unconditional Jumps 
This example program show the usage of unconditional jump. 
The jmp _end instruction shown in bold, unconditionally shifts 
the control of flow of instruction to the label _end. Understand 
the code, and then assemble, link and execute the program: 
 
$ nasm -felf64 uncondjump.nasm 
 
$ gcc -no-pie -z noexecstack uncondjump.o -o myexe 
       
$ ./myexe 
Study Cyber Security 

 
 
 
 

 
 
 
 
 
 
 
 
 

Example 4: Conditional Jumps 
This example program show the usage of conditional jump. The 
conditional jump instructions are mostly used after a cmp op1, 
op2 instruction, which will subtract op2 from op1 without 
storing the result and just update the relevent flags. In the 
given code, since the result will be positive five, so the relevent 
flags will be updated. After the compare instruction, the jge 
_positive instruction shown in bold will execute, and since 
the result is positive five (greater than or equal to zero), 
therefore, the control of execution will be transferred to the 
label _positive. Let us assemble, link and execute the 
program: 
 

$ nasm -felf64 condjump.nasm 
 
$ gcc -no-pie -z noexecstack condjump.o -o myexe  
      
$ ./myexe 
Negative Number!   

;3.2/uncondjump.nasm 
SECTION .data  
msg1 db “Study Cyber Security”, 0  
msg2 db “Play Cricket”, 0 
  
SECTION .text  
global main 
extern printf, exit 
main:  
; display msg1 on screen 
      lea rdi, [msg1] 
      xor rax, rax 
      call printf 
      jmp _end 
; display msg2 on screen 
      lea rdi, [msg2] 
      xor rax, rax 
      call printf 
; exit the program gracefully    
   mov rdi, 0    
   call exit 

;3.2/condjump.nasm 
SECTION .data  
msg1 db “Negative Number!”, 0  
msg2 db “Positive Number!”, 0 
  
SECTION .text  
global main 
extern printf, exit 
main: 
   mov ax, -5d 
   cmp ax, 0 
   jge _positive  
; display msg1 on screen 
      lea rdi, [msg1] 
      xor rax, rax 
      call printf 
      jmp _end 
   _positive: 
; display msg2 on screen 
      lea rdi, [msg2] 
      xor rax, rax 
      call printf 
; exit the program gracefully    
_end:    
   mov rdi, 0    
   call exit 
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Example 5: Defining and Calling a User Defined Function 
In computer programming languages, a procedure, function, sub-routine, or method is a named piece 
of code (set of instructions) that can be called from a program in order to perform some specific tasks, 
thus making a program more structural, easier to understand and manageable. An assembly 
procedure is defined as a set of logically related instructions having a name that: 

o is meant to be called from different places 
o can accept parameters (via registers, global memory locations, stack) 
o do some processing (e.g., add numbers, print string, get input, and so on) 
o may return some value to its caller (via register, global memory location) 

 
 
Following screenshot describes the syntax of defining a user defined function for x86 assembly to be 
assembled using nasm or masm assembler: 

 
 
 
 
 
 
 
 
 
 
 

 
Here is a hello world assembly program which uses the 
call and the ret instruction to transfer and return the 
control of execution to and from a function.  

 
 

Let us assemble, link and execute the program: 
 

$ nasm -felf64 funccalling.nasm 
 
$ gcc -no-pie funccalling.o -o myexe 
       
$ ./myexe 
Cyber Security Course is fun 
 
 

 
  

Defining a Procedure in NASM Defining a Procedure in MASM 

;3.2/funccalling.nasm 

SECTION .data  

msg db “Cyber Security Course is fun”, 0  

SECTION .text  

global main 

extern printf, exit 

main: 

   call printmsg 

   mov rdi, 0 

   call exit 

printmsg: 

   lea rdi, [msg] 

   xor rax, rax 

   call printf 

   ret 
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Function Calling Convention and Use of Stack in Function Calls 
The function calling convention is a set of rules that dictate how functions receive parameters, 
return values, manage the stack, and how to share the CPU registers between the caller and the callee. 
These rules ensure that functions can correctly interact with each other and with the operating system, 
enabling compatibility between different pieces of code and across different programming languages. 
Understanding these conventions is crucial in various areas, including software development, reverse 
engineering and exploitation. Here’s a detailed look at their importance in these contexts: 
 
• Software Development: 

o Interoperability: Different components or modules of a program, potentially written in different 
languages or by different teams, must adhere to the same calling conventions to interact 
correctly. 

o Debugging: Understanding function calling conventions helps in troubleshooting and 
debugging complex issues. 

o Optimization: Compilers optimize code by understanding calling conventions.  
 

• Reverse Engineering 
o Understanding Binary Code: When doing reverse engineering, analysts decompile binary code 

to reconstruct the source code in order to understand how functions are called and how 
arguments are passed. 

o Static Analysis: Analyzing the assembly code or disassembled binaries requires knowledge of 
calling conventions to correctly interpret function calls, parameters, and returns. 

o Dynamic Analysis: During dynamic analysis, tools like debuggers rely on calling conventions 
to correctly step through code, track function calls, and inspect memory. 

 
• Exploitation 

o Exploiting Stack Overflows: Exploiting vulnerabilities such as buffer overflows often involve 
manipulating the stack to overwrite return addresses or function pointers to gain control over 
program execution. Knowledge of the calling convention helps in crafting payloads that 
correctly manipulate the stack. 

o Return-Oriented Programming (ROP): ROP exploits involve chaining together small pieces of 
code (gadgets) that end in return instructions. Knowing the calling convention helps in crafting 
ROP chains by understanding how the stack is organized and how gadgets are invoked.  
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Key Components of a Function Calling Convention 

1. Argument Passing and Returning Values: 
o A function may have arguments/parameters, which might be integer/floating point values as 

well as addresses pointing to data. This enables a function to operate on different data with 
each call.  

o In high level programming languages like C and C++, the values passed by the caller to the 
callee are called arguments. When the values are received by the called subroutine, they are 
called parameters. In programming, the terms "caller" and "callee" refer to the relationship 
between functions or procedures in the context 
of function calls: 
Ø Caller Function: The function that initiates 

a call to another function to perform a task 
or compute a result.  

Ø Callee Function: This is the function being 
called by another function. It is the one that 
gets executed as a result of the call.  

o In the 16-bit and 32-bit days, since there were 
only eight general purpose registers in x-86 architecture, therefore, all the arguments were 
passed by the caller to the callee by pushing the arguments on the stack. On x86-64 processor, 
Linux, Solaris and Mac Operating Systems use a function call protocol called the System-V 
AMD64 ABI. In which first six integer parameters are passed via registers: rdi, rsi, rdx, rcx, 
r8, r9, and first eight floating point parameters via xmm0 to xmm7 registers (rest on the 
runtime stack). On the contrary MS Windows Operating System use MS X64 Calling 
Convention, in which first four integer parameters are passed via registers and first four 
floating point parameters via xmm0 to xmm3 registers (rest on the runtime stack) 

o Both Linux and MS Windows use rax register to return integer values and xmm0 register to 
return floating point values. For larger return values or complex data structures, the return 
value might be passed via the stack. 

 
2. Stack Management: 

o The stack plays a crucial role in function calling 
conventions, providing a structured way to manage 
function calls, local variables, and return addresses. The 
diagram shows the logical process address space of a 
process where the Code section contains machine code 
instructions of your program. Above code section we have 
initialized and uninitialized data sections for global 
variables. Then we have heap, which is used for dynamic 
memory allocation, and it grows towards higher addresses. 
Finally, the stack is at the top of virtual memory below the 
kernel code and grows from higher memory addresses to 
lower memory addresses in architectures like x86, MIPS, 
Motorola, and SPARC. 

o Each function call typically creates a Function Stack Frame 
(FSF) that holds space for function arguments, rip, rbp, 
and local variables.  
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o In x86-64 assembly language, rsp and rbp are two important registers used for stack 
management and function calls. 

§ rsp (Stack Pointer) is used to point to the current top of the stack. In x86-64 
architecture, the stack grows downward, meaning that pushing data onto the stack 
decreases the value of rsp, and popping data from the stack increases the value of rsp.  

§ rbp (Base Pointer) is used to point to the base of the stack frame for the current function, 
so the address of each argument and local variable can be calculated using this register 
and an offset. It helps manage local variables and function parameters. 
 

o The stack frame is set up using a piece of code called procedure prologue and torn down using 
a piece of code called procedure epilogue and is the responsibility of the Callee in x86 arch. 

§ Procedure Prolog: On x86-64 running Linux Operating System, the FSF for a function 
is created by the following sequential steps: 

Ø The function arguments (>6) are pushed on the stack by the caller. 
Ø The return address (rip) is pushed on the stack. 
Ø After that, control is shifted to the first instruction of the callee, which performs 

a procedure prolog having three lines of assembly code shown below: 
 
 
 
 
 
 
 

o The creation of FSF by the function prolog is described in the following images: 
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§ Procedure Epilog: When callee is done with its execution, it first cleans up the FSF 
and then calls the return statement to transfer control to its caller by performing a 
procedure epilog: 

§ Restore the old stack pointer (mov rsp, rbp). 
§ Restore the old base pointer (pop rbp). 
§ Return to the caller using ret. 

 
o The removal of FSF by the function epilog is described in the following images: 

 

 
 

o An illustration of the FSF of a C program is shown: 
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Overview of Debuggers and Installing GDB 
Debugging is the science and art of finding and eliminating bugs in a computer program. A debugger 
is a program running another program allowing you to see what is going on inside another program 
while it executes, or what another program was doing at the moment it crashed. There exist different 
types of debuggers like GNU gdb (PEDA/GEF),  IDA Pro, radare2, cutter, ghidra, 
OllyDbg, binaryninja, ptrace, strace, ltrace, ftrace, bpftrace and so on. Using a 
debugger, a programmer can: 

• Start a program, specifying anything that might affect its behavior. 
• Make a program stop on specified conditions. 
• Examine what has happened, when a program has stopped. 
• Change things in a program, so you can experiment with correcting the effects of one bug 

and go on to learn about another. 
• Last but not the least, can be used for run time analysis of binaries, disassembly, reverse 

engineering and cracking binaries. 

We will be using GDB, the GNU Project debugger that can debug a program running on the same 
machine as GDB (native), on may be another machine (remote), or may be on a simulator. GDB is a 
portable debugger that can run on the most popular UNIX and Microsoft Windows variants, as well 
as on Mac OS X. The target processors include IA-32, x86-64, arm, mips, powerpc, sparc, 
alpha and many others. GDB works for many programming languages including Assembly, C/C++, 
Objective C, OpenCL, Go, Modula-2, Fortran, Pascal and Ada.  
 
 
GDB Installation on Linux 
 

From Binary: 
$ sudo apt update 
$ sudo apt install gdb 
$ gdb –version 
GNU gdb (Debian 15.1-1) 15.1 
 

From Source: 
$ sudo apt install build-essential texinfo 
$ wget http://ftp.gnu.org/gnu/gdb/gdb-<version>.tar.gz 
$ tar -xvzf gdb-<version>.tar.gz 
$ cd gdb-<version>  
$ ./configure 
$ make 
$ sudo make install 
$ gdb –version 
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Basic Commands of GDB 
Commands Description 
$ nasm –g -felf64 prog1.nasm 
 
$ gcc -ggdb -c prog1.c 
 

In order to load and properly analyze a program in gdb 
you need to compile it with –g or –ggdb option, to 
instruct the compiler to keep debugging symbols, 
source file names and line numbers in the object files 

$ gdb 
(gdb)file myexe 
 

OR 
 

$ gdb myexe 
(gdb) 

There are two ways to load a binary inside gdb by 
either running gdb command and then specifying the 
binary name with the file command. Or by specifying 
the binary name as an argument to gdb. 

(gdb)quit  
 

Exits the current session of gdb. 

(gdb)help  
 
(gdb)help <classname> 
 
(gdb)help <command> 

The help command of gdb is used to display the listing 
of twelve different classes in which gdb commands are 
categorized. You can also specify the classname 
(breakpoints, running, stack, …) or the command to get 
help about it. 

(gdb)run [arg1 arg2 …] 
 

OR 
 

(gdb)set args arg1 arg2 … 
(gdb)run 

Once the program is loaded and gdb is running, you 
can pass command line arguments to the binary using 
the run command of gdb. Or can use the set command 
instead and later use the run command. 

(gdb)attach <PID> If you want to debug a process that is already running, 
you can attach GDB to it using its process ID (PID). 

(gdb)info sources/functions/variables/locals 
(gdb)info registers/all 
(gdb)info sharedlibrary 
(gdb)info address <function name> 

Once a program loaded inside gdb, you can use the 
info command to display the name of all the source 
files from which symbols have been read in, name of 
functions, global variables, name of local variables 
inside a FSF, and the CPU registers. 

(gdb)list [1,12] 
 

(gdb)list <filename>:<line#> 
 

(gdb)list <filename>:<function name> 

The list command of gdb is used to display the source 
code (provided if the source file is there in the pwd) 
.  

(gdb)disassemble 
(gdb)disassemble <function name> 
 
(gdb)set disassembly-flavor intel 
 
 

Disassembles the current function or code segment. By 
default, gdb disassembles in AT&T format, to change 
the format to intel, use the set disassembly-
flavor command. 

(gdb)break <filename>:<line#> 
 
(gdb)break <filename>:<function name> 
 
(gdb)break <filename>:*0x2xfff0500 
 

Breakpoint is the LOC in your program where you 
want to stop the execution.  You can set as many break 
points as you feel like using the break command of gdb 
by mentioning the line#, function name, or by virtual 
address 

(gdb)info break 
(gdb)disable <breakpoint#> 
(gdb)enable <breakpoint#> 
(gdb)delete <breakpoint#> 
(gdb)clear <breakpoint#> 
 

To get the information about the existing breakpoints 
already set in your program, you can use the info 
command. Moreover, you can disable/enable/delete/ 
and clear breakpoints.  
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(gdb)watch <variable name> 
(gdb)info watch  
(gdb)disable <watchpoint#> 
(gdb)enable <watchpoint#> 
(gdb)delete <watchpoint#> 
(gdb)clear <watchpoint#> 

Like breakpoints, we can set watchpoints on variables. 
Whenever the value of that variable will change, gdb 
will interrupt the program and print out the old and 
the new value. 

(gdb)continue / c / ci 
 
(gdb)next / n / ni 
 
(gdb)step / s / si 
 
(gdb)finish 

Once a breakpoint is hit, you can do the following: 
o c: Continue till the next breakpoint or end of 
program. 
o n: Execute and move to next instruction, but don’t 

dive into functions. 
o s: Execute and move to next instruction, by 

diving into functions. 
o finish: Continue until the current function 

returns. 
(gdb)print /format-char <var-name> 
 

Once a breakpoint is hit during execution of a program, 
you can inspect/modify contents of variables, CPU 
registers as well as different memory addresses. The 
print command is the most common command to check 
the contents of variables in the specified format 
o /d is for signed decimal 
o /u is for unsigned decimal 
o /x for printing as hex 
o /o for printing as octal 
o /t for printing as binary 
o /f for floating point number 
o /s for C-string 
o /a for address 
Note: Unlike print the display command is used to 
display the value of variable, each time the program 
stops. 

(gdb)set variable <var-name> = <value> 
 

The set command is used to modify the value of a 
variable. 

(gdb)x/12cb <address> 
(gdb)x/12db &var1 
(gdb)x/4xb *0x601000 
(gdb)x/32b $rsp 
 

The examine command or its alias x is passed a memory 
address to display its contents. It is optionally followed by a 
forward slash (/) and then a: 
o Count field, which is a number in decimal. 
o Format field, which is a single letter with ‘d’ for 

decimal, ‘x’ for hex, ‘t’ for binary and ‘c’ for ASCII. 
o Size field, which is single letter with ‘b’ for byte, ‘h’ 

for 16-bit word, and ‘w’ for 32-bit word. 

(gdb)backtrace 
 
 

The backtrace command or its alias b displays the 
call trace of a program. 

(gdb)! clear 
 
 

To run the OS shell commands inside gdb, you can 
precede the command with a ! symbol. 

 
A discussion on detailed commands of gdb is beyond the scope of this handout. Interested students 
are advised to go through the Video Lecture of the Assembly course at the following link: 
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=31 
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Example 6: Running/Debugging Assembly Program inside GDB 
Let us write down a basic x86-64 assembly program on our Kali Linux machine using some text editor 
like vim, nano, or gedit, assemble using nasm (by keeping the symbols), link using gcc (by keeping 
the symbols and making it non position independent executable), finally load the binary inside gdb in 
quite mode:  
 
$ nasm -f elf64 -g condjump.nasm 
$ gcc -no-pie -g condjump.o -o myexe  
$ gdb -q ./myexe 
Reading symbols from ./myexe … 
(gdb) help 
List of classes of commands: 
breakpoints -- Making program stop at certain points. 
data -- Examining data. 
files -- Specifying and examining files. 
internals -- Maintenance commands. 
obscure -- Obscure features. 
running -- Running the program. 
stack -- Examining the stack. 
support -- Support facilities. 
text-user-interface -- TUI is the GDB text interface. 
tracepoints -- Tracing of program execution w/o stopping the program. 
user-defined -- User-defined commands. 
(gdb) set disassembly-flavor intel 
(gdb) disassemble main 
0x0401140 <+0>: mov ax, 0xfffb 
0x0401144 <+4>: cmp ax, 0x0 
0x0401148 <+8>: jge 0x40115c <_positive> 
0x040114A <+10>: lea rdi, ds:0x404020 
0x0401152 <+18>: xor rax, rax 
0x0401155 <+21>: call 0x401030 <printf@plt> 
0x040115A <+26>: jmp 0x40116c <_end> 

(gdb) break main 
(gdb) run 
(gdb) info registers | functions | breakpoints [To delete a breakpoint delete 1] 
(gdb) print $<register-name>  
(gdb) x <addr> 
(gdb) x/8xb <addr>  [count can be a decimal value] [format can be x|t|d|c] [size can be b|h|w|g] 
(gdb) si | ni | c 
Negative Number! [Inferior 1 (process 208589) exited normally] 

(gdb) quit 
 
 
 
Practice all the commands of gdb mentioned in the previous table and play around with this program 
by executing it step by step and making changes to the code as it executes.  J  

;3.2/condjump.nasm 
SECTION .data  
msg1 db “Negative Number!”, 0  
msg2 db “Positive Number!”, 0 
  
SECTION .text  
global main 
extern printf, exit 
main: 
   mov ax, -5d 
   cmp ax, 0 
   jge _positive  
; display msg1 on screen 
      lea rdi, [msg1] 
      xor rax, rax 
      call printf 
      jmp _end 
_positive: 
; display msg2 on screen 
      lea rdi, [msg2] 
      xor rax, rax 
      call printf 
; exit the program gracefully    
_end:    
   mov rdi, 0    
   call exit 
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Dis-assemblers & De-compilers 

(Dynamic Analysis Tools) 
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GDB with PEDA & GEF 
In our previous handout we have used GNU GDB to run/debug sample C as well as assembly 
programs. GNU GDB is too good a debugger, however, it lacks intuitive interface, do not have a smart 
context display, do not have commands for exploit development, and has weak scripting support. So, 
to enhance the fire power of gdb for analyzing, exploiting and doing reverse engineering on 
executables, hackers use: 

o a gdb plug-in called PEDA (Python Exploit Development Assistance)  
o a gdb plug-in called GEF (GDB Enhanced Features) 

PEDA is a fantastic tool that provides commands to make the exploitation development process 
smoother. However, it has limitations: 

o PEDA code is too fundamentally linked to Intel architectures (x86-32 and x86-64) 
o PEDA development has been quite idle for a few years now, and many new interesting features 

a debugger can provide simply do not exist.  

On the other hand, GEF not only supports all the architecture supported by GDB (currently x86, ARM, 
AARCH64, MIPS, PowerPC, SPARC) but is designed to integrate new architectures as well. Moreover, 
GEF provides a suite of powerful commands to assist with binary exploitation tasks. Whether you’re 
dealing with buffer overflows, format string vulnerabilities, ROP chains, or heap exploitation, these 
commands allow for better memory inspection, breakpoint management, and code analysis.  
 
 
Installation of PEDA: https://github.com/longld/peda 
PEDA is available only on Linux and supported by gdb 7.x and Python 2.6 onwards.  In order to 
install PEDA plugin for gdb, you simply have to download or clone its repository and then update the 
.gdbinit file in your home directory as shown below: 

$ git  clone https://github.com/longld/peda.git    ~/peda 
$ echo  “source ~/peda/peda.py”   >>    ~/.gdbinit 

 
 
 
 
Installation of GEF: https://github.com/hugsy/gef.git       
On the same grounds, if you want to install GEF plugin for gdb, you simply have to download it and 
then update the.gdbinit file in your home directory as shown below: 
 

$ git clone https://github.com/hugsy/gef.git  ~/gef  
$ echo “source ~/gef/gef.py” >> ~/.gdbinit   
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Running/Debugging C Program inside GDB with GEF Plugin 
Let us now debug the following C program. In the source file, the main() function creates two long 
variables main_var1 and main_var2 and character pointer *main_str2 and calls a function f1() 
and passing 8 parameters to that function. The function f1() receives 8 parameters and further 
creates two local variables and then calls another function f2() and passes one parameter to it. The 
f2() function receives a single a parameter, performs some operations and returns a value to f1() 
that further returns 1 to parent function which is main() and finally main() returns 0 to its parent 
which is the shell program.  

 
Compile the debugme.c program using gcc (for 64-bit and 32-bit), load it inside GDB with GEF to 
practically understand all the concepts discussed in this handout specially the function calling 
convention, stack growing and shrinking etc. Happy Learning J  

//3.2/cprogs/gef/debugme.c 

#include <stdio.h>  

#include <stdlib.h>  

   int f2(int a){  

   int b = a +1;  

   return b;  

}  
 

int f1(long a, long b, long c, long d, long e, long f, long g, long h){  

   unsigned long f1_var1 = 0x123456789;  

   unsigned long f1_var2 = 0x0abcdef;  

   int rv = f2(5);  

   return 1;  

}  
 

int main(int argc, char *argv[]){  

   unsigned long main_var1 = 0x1122334455667788;  

   unsigned long main_var2 = 0x99aabbccddeeff00;  

   char *main_str2  = "Arif";  

   int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444, 0x55555555, 
0x66666666, 0x77777777, 0x88888888);  

   return 0;  

}  
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GEF Interface 

After successful installation of the gef plug-in, when you run gdb, you get the following prompt: 

       $ gdb 

 
 

Note the prompt is not (gdb), rather is gef>, that means gdb with enhanced features. Inside gef, 
you can give the gef command, which will display brief description of different gef commands: 

gef> gef 

Let us load the binary named debugme (3.2/cprogs/debugme.c) from the current working 
directory, set a breakpoint at main, and run the program: 

gef> file debugme 
Reading symbols from debugme … 
gef> break main 
Breakpoint 1 at 0x1197: file debugme.c, line 17. 
gef> run 
 

When you run a binary inside gef, you get six panels, showing different information about the running 
process: 

• Registers: 
• Stack: 
• Code: 
• Source: 
• Threads: 
• Trace 
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1. Registers Panel: The Registers Panel in GEF displays the current values of the CPU 

registers/flags, providing an organized and easily readable view. It helps in analyzing the state 
of the CPU, tracking changes in register values, and debugging at a lower level. It does not 
show the floating-point registers, however, you can view the contents of all registers, use the 
info all command of gdb. 

2. Stack Panel: The Stack Panel displays top of the call stack, which includes a list of function 
calls that are currently active. This is really beneficial to understand the current Function 
Stack Frame of a function. Remember, the top of the stack is displayed at the top of this panel, 
where the rsp register is pointing. 

3. Code Panel: The Code Panel displays the assembly code along with the virtual addresses. The 
line currently being executed or where the breakpoint is set is typically highlighted or marked 
to provide a clear point of focus. 

4. Source Panel: This panel displays the corresponding high level language code, with the 
current LOC highlighted. This way you can corelate the high-level code with its corresponding 
assembly. 

5. Threads & Trace Panels: This provides information about the threads in a multithreaded 
program, including their states and stack traces. 

Note: To configure the panels to be displayed, you can use the following command inside gef: 
gef> gef config context.layout “regs stack code source” 

1 

2 

3 

4 
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Loading and Running a Program inside GDB with GEF  

• Disable ASLR: Before performing any step let’s just check if ASLR (Address Space layout 
randomization) is enabled on our machine, and if yes then we need to disable it. ASLR is a security 
feature of the operating system that randomizes the memory addresses used by system and 
application processes, making it harder for attackers to predict memory locations. On Linux 
systems, the ASLR setting can have following three values, which can be changed as well: 

o 0: No randomization. Everything is static. 
o 1: Conservative randomization. Shared libraries, stack, mmap(), heap, and VDSO are 

randomized. 
o 2: Full randomization.  
 

To check the current state of ASLR, you can view the contents of randomize_va_space file: 
$ cat /proc/sys/kernel/randomize_va_space 

 
 

To change the current state of ASLR, you can use any of the following commands: 
 $ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space 
 $ sudo sysctl -w kernel.randomize_va_space=0 
 
• Disassemble main() in GEF: To show the disassembly of the main function in GDB with GEF 

(GDB Enhanced Features) without running the program, you can use GDB’s disassembly 
commands directly after loading the binary. 

 Gef➤ disassemble main 

 
 
Similarly, you can check the disassembly of f1() and f2() functions as well.  

 

Procedure Prolog 

call to f1() 

Procedure Epilog 
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• Disable CET: You may have noticed the endbr64 instruction before procedure prolog in the 
above screenshot. The endbr64 instruction is part of the Intel Control-flow Enforcement 
Technology (CET), specifically the Indirect Branch Tracking (IBT) feature, which is designed to 
enhance security by protecting against certain types of control-flow attacks such as Return 
Oriented Programming (ROP) and Jump Oriented Programming (JOP). It helps ensure that 
indirect branches (such as calls and jumps) are redirected to valid locations. This instruction is 
used to mark valid targets for indirect branches, ensuring that the control flow cannot be hijacked 
by malicious code. Excluding or removing the endbr64 instruction from binaries generally 
involves manipulating the binary code, which can be done for various purposes such as reverse 
engineering, debugging, or modifying software behavior. You can experiment with turning it off to 
disable CET. Thus, compile your source file again with –fcp-protection=none and generate 
executable. After that load it in GDB. 

 $ gcc -ggdb -fcf-protection=none debugme.c -o debugme 
 $ gdb debugme 
 
If you view the disassembly again, you can note that CET has been excluded or disabled. 
 gef➤ disassemble main 
 

 
 

• Run the Program: Now you can apply break point and run the program: 

 gef➤ break main 
 gef➤ run 
 
• Since we are running the program in GDB with GEF, it shows the output in different sections 

including registers, stack, code section, threads etc, as we have discussed earlier. Here you need to 
understand multiple things as shown in the screenshot: 
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• If you give the step command, you can see that main_var1 has been created on the function 

stack frame of the main function: 

 
 

rip containing the 
address of current 
instruction 

stack growing 
towards lower 
addresses 

variable 
created on the 
stack 
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• Similarly, after giving the step command multiple times, you can see main_var1, main_var2 
and *main_str2 have been created. 

 
 

• Function Call: The next instruction is the function call. Before the control transfers, the 8th and 
the 7th arguments to the functions are pushed on the stack (from right to left). Then the remaining 
six arguments will be placed inside the registers (rdi, rsi, rdx, rcx, r8, r9). This is shown in the 
screenshot below: 

int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444, 
0x55555555, 0x66666666, 0x77777777, 0x88888888); 

 
 
 
 
You can also observe that before the control 
is actually transferred to the function f1(), 
the address of the next instruction 
(0x55201) after the call instruction is 
pushed at the top of the stack. 
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• Once the control goes inside the function f1(), as two arguments are already on the stack, the 
remaining six arguments which are there in the registers are also moved on the stack (space for 
local arguments).  

 
 

• However, after those two local variables have been created, we can’t see them on stack. They have 
been created on the stack, but some other location that isn’t visible in our stack panel. So, just to 
verify that they have been created let’s copy address from the assembly instruction: 

 

 

 
• After stepping in multiple times, let’s get into function f2(), where you can see that the return 

address of the very next instruction of f1() has been pushed on the stack. 

next instruction 
to be executed  
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• As we already know, f2() performs add operation and returns 6 in rax register, we can also verify 
this by checking content of rax register: 

 
• In the same fashion, you can run this program to completion to practically understand what all 

concepts we have discussed in this handout JSample Program Adjusted According to 32-bit 
Architecture: 
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Loading and running a 32 Bit Binary inside GDB with GEF  

 
 
• Pre-requisites for Creating 32-bit Binary: We need to use some previous version of GCC such 

as gcc-7 to compile 32-bit binary on 64-bit architecture, other ld linker throws error due to some 
unknown reasons. 

$ sudo apt-get update  
$ sudo apt-get install gcc-7 g++-7 gcc-multilib g++-7-multilib 

 
• Compiling and Loading Program in GDB with GEF: Following are the commands to create a 

32-bit binary and then loading it inside GDB in quite mode: 

$ gcc-7 –ggdb -m32 debugme_x32.c –o debugme_x32 
$ gdb –q ./debugme_x32 

 
• View Disassembly: From the 

disassembly of the main function, you 
can observe that all the eight 
arguments to the f1() function are 
pushed on the stack from right to left 
instead of passing six via registers and 
remaining tow via stack. 

 
 
 
 
 
 
 

 

//3.2/cprogs/debugme_x32.c 

#include <stdio.h>  
#include <stdlib.h>  
int f2(int a) {  
    int b = a + 1;  
    return b;  
}  
int f1(int a, int b, int c, int d, int e, int f, int g, int h) {  
    unsigned int f1_var1 = 0x12345678; // Adjusted to fit within 32 bits 
    unsigned int f1_var2 = 0x0abcdef0; // Adjusted to fit within 32 bits 
    int rv = f2(5);  
    return 1;  
}  
int main(int argc, char *argv[]) {  
    unsigned int main_var1 = 0x11223344; // Adjusted to fit within 32 bits 
    unsigned int main_var2 = 0x99aabbcc; // Adjusted to fit within 32 bits 
    char *main_str2 = "Arif";  
    int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444, 
0x55555555, 0x66666666, 0x77777777, 0x88888888);  
    return 0;  
} 
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• After running the program in GDB with gef and after multiple step in, here are the variables 
created on stack: 

 
 

• According to C calling convention function parameters are also passed on the stack instead of 
registers and return address is also pushed on stack. Some of them are shown below: 

 
 

• From f1() function, local variables are also created on stack as shown: 

 
• After stepping in through f2(), return value which is 6 can also be seen in eax register: 

 
 

• Practice running 32-bit and 64-bit versions of the debugme.c program to have a crystal-clear 
understanding of difference in function calling convention in the two architectures. 
Happy Learning J 
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To Do: 
• Given the following C program, where 

the virus function is not being called 
from anywhere inside the code. You are 
required to compile and load the binary 
of this source program inside gdb, and 
then execute it in such a way that the 
virus function gets executed and you 
get the output: “Let us Hack Planet 
Earth with Arif”. Interested 
students can watch my video at the 
following link, where I have performed 
this task in Video Lecture # 38, from 
time 57:00 to 1:01:00. Happy Learning 
J 

https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW 
 

 
 

 

void f3(){  
   return; 
}  
void f2(){  
   f3();   
}  
void f1(){  
   f2();   
}  
int main(){  
   f1();  
   return 0;  
}  
int virus(){  
   printf("Let us Hack Planet Earth with Arif.\n");  
   exit(0);  
} 


