

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.2: Recap of x86-64 Assembly & Debuggers
A Bit of Word about Assembly Programming
Assembly language is a critical component in the realm of computer programming, reverse
engineering, malware development/analysis and systems development. Assembly language is a low-
level programming language that provides a symbolic representation of a computer's machine code. It
serves as an intermediary between high-level programming languages and the raw binary instructions
executed by a computer’s CPU.
• Brief History of Assembly Language

1. Early Beginnings (1940s-1950s):
a. Origins: Assembly language has roots in the early days of computing. In the 1940s

and 1950s, computers were programmed using machine code, the lowest-level
language consisting of binary instructions.

b. First Assemblers: To simplify programming, early assemblers were developed.
These tools translate assembly language, which uses mnemonics and symbolic
names, into machine code. This abstraction made programming more manageable
than directly using binary.

2. Development Through the 1960s-1980s:
a. Improved Assemblers: Throughout the 1960s and 1970s, assembly language

evolved with better assemblers and debuggers. It became standard for writing
system software and performance-critical applications.

b. High-Level Languages: While high-level programming languages like C, Fortran,
and COBOL began to dominate, assembly language remained important for tasks
requiring fine-grained control over hardware.

3. Modern Era (1990s-Present):
a. Microprocessors and Assemblers: As microprocessors became ubiquitous in the

1980s and 1990s, assembly language continued to be used for low-level
programming, particularly in embedded systems, device drivers, and operating
systems.

b. Optimizations: In the 2000s and beyond, assembly language was primarily used
for performance optimization, reverse engineering, and systems programming.

• Features/Characteristics of Assembly Language
1. Low-Level Control:

o Direct Hardware Interaction: Assembly language provides direct control over
hardware, allowing precise manipulation of processor registers, memory addresses, and
I/O ports.

o Mnemonics: Instead of using binary or hexadecimal numbers, assembly language uses
mnemonics to represent machine instructions. For example, MOV to move data, ADD to
add numbers, and SUB to subtract.

o Symbolic Addresses: Assembly language allows the use of symbolic names for memory
addresses and constants. For instance, var1 might be used instead of a numerical
address.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

2. Efficiency:
o High Performance: Code written in assembly can be highly optimized for performance

and space, often achieving better performance than code written in higher-level
languages.

o Compact Code: Assembly code can be more compact and efficient, making it suitable
for resource-constrained environments.

3. Platform-Specific:
o Architecture Dependent: Assembly language is specific to a particular CPU

architecture (e.g., x86, ARM). Each architecture has its own assembly language with
unique instructions and registers. This means assembly code is generally not portable
between different types of processors.

4. Debugging and Optimization:
o Detailed Debugging: Assembly language allows for detailed debugging at the

instruction level, which can be crucial for troubleshooting low-level issues.
o Optimizations: It enables optimization of critical code sections, especially where

performance is paramount, such as in embedded systems or high-performance
computing.

• Historical and Modern Uses
1. Past Uses:

a. Early Computer Programming: Assembly language was widely used in the early
days of computing for writing operating systems, compilers, and system utilities.

b. Embedded Systems: Used extensively in embedded systems where direct hardware
control and optimization were necessary.

2. Present Uses (2024):
a. Embedded Systems: Still used in embedded systems for microcontrollers and

processors where efficiency and direct hardware access are crucial.
b. Performance Optimization: Employed for performance-critical sections of

software where high performance and low overhead are required.
c. Reverse Engineering and Security: Used in reverse engineering and security

research to understand malware, exploit vulnerabilities, and analyze compiled
binaries.

d. Educational Purposes: Taught as a foundational subject to understand computer
architecture and low-level programming concepts.

• Importance and Uses

o Performance Optimization: Assembly language enables programmers to write highly
optimized code that can outperform high-level language implementations, especially in
performance-critical applications.

o System Programming: It is used for developing system software like operating
systems, device drivers, and embedded firmware.

o Embedded Systems: In embedded systems, where resources are limited, and
performance is critical, assembly language helps in creating efficient and compact code.

o Reverse Engineering and Security: Assembly language is vital in reverse
engineering and cybersecurity for understanding and analyzing executable binaries,
discovering vulnerabilities, and developing exploits or patches.

o Educational Value: Learning assembly language provides deep insights into computer
architecture and low-level programming concepts, helping developers understand how
high-level languages interact with hardware.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Assembly Languages are Processor Specific
Assembly language is inherently tied to the architecture of the processor on which it runs. This means that
assembly languages are specific to different CPU architectures, each with its own set of instructions,
registers, and addressing modes. Here's a detailed explanation:

• Key Concepts
1. Architecture-Specific Instructions:

o Instruction Set: Each CPU architecture has a unique instruction set, which is the
collection of all the instructions that the CPU can execute. For instance, Intel's x86
processors have a different set of instructions compared to ARM processors.

o Instruction Format: The format of instructions, including how they are encoded and how
operands are specified, varies between architectures. This affects how assembly language
code is written and interpreted.

2. Registers:
o Register Names and Sizes: Different architectures have different sets of registers with

varying names, sizes, and purposes. For example, x86 processors have registers like EAX,
EBX, ECX, while ARM processors use R0, R1, R2, etc.

o Usage and Functions: Registers in one architecture may serve different functions
compared to those in another. For example, general-purpose registers in x86 might differ in
their usage compared to ARM registers.

3. Addressing Modes:
o Memory Access: Different architectures have different methods for addressing memory.

For instance, x86 architecture supports complex addressing modes such as base-plus-index,
while ARM may use simpler or different modes.

4. Instruction Semantics:
o Operation Behavior: The behavior of instructions can vary. For example, an ADD

instruction in x86 and ARM might operate differently or have different effects depending on
the architecture's design.

• Examples of Processor-Specific Assembly Languages

1. x86 Assembly:
o Architecture: Developed by Intel, the x86 assembly language is used for Intel and

compatible CPUs (e.g., AMD).
o Instructions: Includes instructions like MOV, ADD, SUB, JMP, CALL.
o Registers: Includes registers like EAX, EBX, ECX, EDX (32-bit), and RAX, RBX, RCX,

RDX (64-bit in x86-64).

2. ARM Assembly:
o Architecture: Used in ARM processors, common in mobile devices and embedded

systems.
o Instructions: Includes instructions like MOV, ADD, SUB, B (branch).
o Registers: Uses registers like R0, R1, R2, R3.

mov eax, 1 ; Move 1 into register EAX
add eax, 2 ; Add 2 to EAX

MOV R0, #1 ; Move the value 1 into register R0
ADD R0, #2 ; Add 2 to R0

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

• Compatibility and Portability Issues
1. Incompatibility: Code written in assembly language for one architecture cannot be

directly executed on another due to differences in instruction sets, registers, and memory
models. For example, an assembly program written for an x86 processor will not work on
an ARM processor without modification.

2. Porting: To run software on different architectures, it often needs to be ported. This
involves translating or rewriting the code to be compatible with the target architecture.
This can be done manually by rewriting the assembly code or by using high-level languages
with cross-compilation.

• Workarounds for Cross-Architecture Execution
1. Cross-Compilation:

o Toolchains: Cross-compilers can translate high-level code written in languages like C
or C++ into assembly code for different architectures. This allows software to be compiled
for different platforms without manually writing architecture-specific assembly code.

2. Emulation and Virtualization:
o Emulators: Emulators can simulate a different CPU architecture on the current

hardware, allowing software designed for one architecture to run on another.
o Virtual Machines: Virtual machines can provide an abstraction layer that allows

software to run on different hardware platforms.
3. Binary Translation:

o Dynamic Binary Translation: Some systems use dynamic binary translation to
convert executable code from one architecture to another at runtime, allowing for
execution of binaries across different platforms.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

AMD x86-64 Processor Architecture

• Registers of x86-64 Processor
Registers are essentially places that the processor can store data. You can think of them as
buckets which the processor can store information in. There are sixteen registers in x86-64
processor, and usage of some of the important registers are given below:

o rbp: Base Pointer, points to the bottom of the current stack frame
o rsp: Stack Pointer, points to the top of the current stack frame
o rip: Instruction Pointer, points to the instruction to be executed
o Arguments to a function are also passed via registers (rdi, rsi, rdx, rcx, r8, r9)
o Return value from a function is passed in the rax register.
o Flags Register: The rflags register is used for status and CPU control information.

Out of the 64 bits, mostly are unused and reserved for future use. These flags are divided
into three categories namely status flags, control flags (DF) and system flags (IF, TF,
RF). A brief description of some important status flags is given below:

§ Carry flag (CF) holds the carry out after addition or the borrow in after subtraction
out/in of msb (Identify an unsigned overflow)

§ Parity flag (PF) is the count of one bits in a number, expressed as odd or even,
represented by 0 or 1 respectively

§ Auxiliary flag (AF) holds the carry out after addition or the borrow in after
subtraction between bit position 3 and 4 of the result (BCD)

§ Zero flag (ZF) is set if the previous operation resulted in a zero result
§ Sign flag (SF) holds the msb of the result (sign bit) after an arithmetic or logic op
§ Overflow flag (OF) is set if the previous signed arithmetic operation resulted in an

overflow
Watch: https://www.youtube.com/watch?v=sg3GIXvS36w&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=30

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Categories of x86-64 Assembly Instructions

Category Description Examples

Data Transfer Move from
source to
destination

mov, movzx, movsx, lea, lds, lss,
xchg, push, pop, pusha, popa, pushf,
popf

Arithmetic Arithmetic on
integer

add, addc, sub, subb, mul, imul, div,
idiv, neg, inc, dec, cmp

Bit
Manipulation

Logical & bit
shifting
operations

and, or, not, xor, test, shl/sal,
shr, sar, ror, rol, rcr, rcl

Control
Transfer

Conditional and
unconditional
jumps, and
procedure calls

jmp

jcc(jz,jnz,jg,jge,jl,jle,jc,jnc,...)

call, ret

String Move, compare,
input and
output

movsb, movsw, lodsb, lodsw, stosb,
stosw, rep, repz, repe, repnz, repne

Floating Point Arithmetic fld, fst, fstp, fadd, fsub, fmul,
fdiv

Conversion Data type
conversions

cbw, cwd, cdq, xlat

Input Output For input and
output

in, out

Miscellaneous Manipulate
individual
flags

clc, stc, cld, std, sti

Note: A discussion on the working of all of the assembly instructions is beyond the scope of this
handout. Interested students are advised to go through related Video Lectures (26 – 46) from the x86-
64 Assembly Programming course at the following link:

Video URL: https://www.youtube.com/playlist?list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

How CPU Executes an Assembly/Machine Language Code

• The screenshot shows a hypothetical layout of memory containing the machine/assembly instruction at the very bottom,

then we have two data values in the middle and at the very top we have the stack which grows down. The x86_64
processor has sixteen general-purpose 64-bit registers. You can think of them as variables in programming
languages, used to store temporary data and perform different operations on them (like add, sub, mul, div, and,
or, xor, cmp, etc).

• In x86_64, the Instruction Pointer (ip/eip/rip) is a register which contains the address of the next instruction to
be executed by the CPU. Every time an instruction is fetched and executed the Program Counter gets incremented
automatically to the number of bytes specific to the size of that instruction. In RISC architectures (ARM, MIPS, SPARC,
PowerPC) the size of each instruction is same/fixed, while in CISC architectures (x86, x86_64/AMD64, Motorola 68000,
VAX) the size of each instruction is of variable length.

• In real programs, we may need many more variables to
work with as compared to the number of registers
available. Moreover, we may need to store data that
might not fit inside a single register. Therefore, what
doesn't fit in registers lives in memory. Memory is to
an assembly program what the disk is to a Python
program: you pull things out of memory into variables,
do things with them, and eventually put them back into
memory. An assembly programmer can access memory
with loads and stores at addresses. In x86_64 we have
the famous MOV instruction that is used to load/store
data to and from the memory as if it were a big array.

• The top most addresses in the screenshot shows the
process stack that is used to keep temporary variables
by functions. The rbp (base pointer) is a register that
points to the bottom of the current stack frame, rsp
(stack pointer) points to the top of the current stack
frame. In x86_64, the process stack grows from top to
bottom, or from higher addresses to lower addresses.
Assembly programmers, use push and pop
instructions to write and remove data from the top of
the stack, where the rsp is pointing. With each push
the rsp is decremented (moves down) and with each
pop the rsp is incremented (moves up). This increment
and decrement is as per the width of the stack which is
8 bytes in x86_64.

• Control flow is done via GOTOs (jumps, branches, or
calls), and these instructions actually alter the
program counter directly. This is required if a
programmer want to perform task1, if a condition
evaluates to true and perform task2 if the condition
evaluates to false. It is also required if a programmer
wants to repeat a task multiple times. For control flow,
the rflags register plays a vital role, where the
(C)arry, (P)arity, (A)uxiliary, (Z)ero, (S)igned, (O)verflow are set as per the previous operation.
o A jmp instruction is just an unconditional GOTO.
o The conditional GOTO instruction in x86_64 are jz, jnz, jg, jge, jl, jle,..., based on some status flag,

e.g., “GOTO this address only if the last arithmetic operation resulted in zero.
o A caller is a function that calls/invokes another function (callee). In x86_64 the caller function prepares

arguments, saves registers if needed, pushes the next instruction address on the stack, and transfer the control of
execution to the first instruction of the callee. The callee creates its FSF on the stack, executes its code and may
use the stack to store its local variables. Finally, the last instruction of the callee is a ret instruction, that pop the
saved return address from the stack and place it in rip. This transfers the control of execution to the caller function.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Structure of x86-64 Assembly Program
The following figure describes the structure of an x86-64 assembly program in a text file named
first.nasm. We can assemble it using nasm, to get an object file name first.o. Finally, we need to
link the object file with the standard C to make an executable named myexe, ready to be loaded inside
the memory and executed.

An assembly program is normally divided into three sections:
• SECTION .data: All initialized data like variables and constants are placed in the .data section
• SECTION .bss: All uninitialized data is declared in the .bss section (Block Storage Start)
• SECTION .text: This is actually the code section, and it will always include at least one label named

_start or main, that defines the initial program entry point. The Linux linker ld(1), expect the
program entry point label with the name of _start, while gcc(1) expect the program entry point
label with the name of main. The global directive is used to define a symbol, which is expected to
be used by another module using the extern directive. The extern directive is used to declare a
symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in
some other module.

There are three types of statements in assembly language programming:
• x86-64 Assembly Instructions: These instructions are converted into machine code, and when

executed, instruct the processor what to do. Some x86 specific assembly instructions are mov, add,
sub, syscall

• Pseudo Instruction: These are not real x86 machine instructions but are normally used in the real
instruction field. Some NASM specific pseudo instructions are DB, DW, RESB, RESW, EQU

• Assembler Directives: Assembly directives are the statements that direct the assembler to do
something. The specialty of these statements is that they are effective only during the assembly of a
program and they do not generate any machine executable code. Some NASM specific directives are
SECTION, EXTERN, GLOBAL, BITS

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Process Image Model of x86-64 Process

The layout of various segments of a process running on a Linux system on x86-64 is also shown in the
above figure. The x86-64 CPU chips that you can buy today support physical address of 40 bits, so a
physical memory of 1 TiB. The processor support 48-bit logical address, which can be broken down as:

Process Stack
Historically stack grows from higher address to lower addresses (You can think of stack horizontally
or vertically). Here is the screenshot of a process stack, which is executed from the shell:
 $./program hello world

int main(int argc, char *argv[], char* envp[]){
extern char **environ;

Environment variables are globally accessible to any function in your program, either by passing envp explicitly
from main(), or using the global environ pointer. However, command-line arguments are only passed and
accessible to the main() function.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Example 1: Displaying Hello World using System Calls
First, compile your assembly code to generate an object file. You can use an assembler like nasm, and
then link it to produce an executable or object file. The NASM (Netwide Assembler) is a popular
assembler for the x86 architecture, known for its straightforward syntax and support for various
output formats. You can install nasm if not already installed on your system via following command:

$ sudo apt-get install nasm
The two methods using which a program can request
the operating system to perform a service like printing
on screen or reading from keyboard are making a
system call or making a library call. The
syscalls.nasm file contains a basic assembly code
that displays a message on screen using the write()
system call. The .data section contains initialized
data, having just one variable msg with a null
terminator (0). The .bss section contains nothing,
while the .txt section contains the assembly code. The
global directive inside the .text section is used to
define symbols, which are expected to be used by
another module.
For making a system call on x86-64 running Linux,
you need to place the system call ID in the rax register,
first six integer system call arguments inside rdi,
rsi, rdx, r10, r8, r9 registers and remaining (if
any) are pushed on the stack, finally you make the syscall instruction to transition to kernel mode.
The fourth argument in system calling convention is stored in r10 instead of rcx because rcx is used
to store the return address, when invoking syscall. Similarly for making a system call on x86-64
running MS Windows, you need to place the system call ID in the rax register, first four integer
arguments are passed via rcx, rdx, r8, and r9 registers and remaining are pushed on the stack.
For both Linux and Windows, the return value of a system call is placed inside the rax register. Unlike
Linux, Windows system calls are not stable and may change across versions. So, we normally call
ntdll.dll, which internally invokes the correct system call. For both Linux and Window, in case of
system calls, floating point values are NOT passed via xmm registers, rather converted into integers
before passing. In case if you want to pass floating point values, they are placed in memory and their
address is passed via registers mentioned above. Every operating system has its own set of system
calls and every system call has an associated ID. To check the available system calls and their IDS on
Linux, you can view /usr/include/x86_64-linux-gnu/asm/unistd_64.h file.
We will use nasm to assemble this file to an object file for either 32-bit or 64-bit architecture using
following commands:

$ nasm -f elf64 syscalls.nasm
$ nasm -f elf32 syscalls.nasm

In order to link this object file with the standard C library to make an executable, we can use either
ld or gcc. Since in this assembly program, the starting point is mentioned using the _start symbol,
so we are using ld. If it contains main instead of _start then gcc can also be used for linking purpose
instead of ld. By default, the linker ld will link and create a 64-bit binary as shown below:

$ ld syscalls.o -o myexe //will create a 64-bit executable
$ ld -m elf_i386 syscalls.o -o myexe //will create a 32-bit executable
$./myexe
Learning is fun with Arif
$ echo $?

;3.2/syscalls.nasm
SECTION .data
msg db “Learning is fun with Arif”, 0

SECTION .bss
 ;nothing here

SECTION .text
global _start
_start:
; display message on screen
 mov rax, 1 ;ID of write syscall
 mov rdi, 1 ;file descriptor
 mov rsi, msg ;message
 mov rdx, 26 ;size
 syscall ;write(1,msg,26)
; exit the program gracefully
 mov rax, 60 ;ID of exit syscall
 xor rdi, rdi ;exit status
 syscall ;exit(0)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Example 2: Displaying Hello World using Library Calls
An x86-64 machine running Linux make a
library call (user space function) using the System
V AMD64 ABI. The first six integer arguments are
placed inside rdi, rsi, rdx, rcx, r8, r9
registers and remaining (if any) are pushed on the
stack, finally you make the call instruction to shift
the control of execution to the library function. The
return value is stored in rax register. For library
calls on Linux, the first eight floating-point
arguments are passed via xmm0 – xmm7, rest are
passed via stack and the return value is stored in
xmm0 register. Similarly, an x86-64 machine
running MS Windows make a library call (user
space function) using the Microsoft x64 ABI. The
first four integer arguments are passed via rcx,
rdx, r8, and r9 registers and remaining are
pushed on the stack. For library calls, the first four floating-point arguments are passed via xmm0 -
xmm3, rest are passed via stack and the return value is stored in xmm0 register.
We have seen the use of system calls in Example1, now let us repeat the same using C printf and
exit library calls. This time the entry point in the .txt section is the symbol main instead of _start
because we will be using gcc instead of ld to link. The extern directive is used to declare symbols
which are not defined anywhere in the module being assembled, but are assumed to be defined in some
other module. Before calling the printf function, we need to place the first argument to printf
inside the rdi register. Similarly, before calling the exit function, we need to place its first argument
inside the rdi register. The printf is a variadic function, and moreover, it can be passed integer
arguments as well as floating point arguments. In a variadic function like printf, floating point
arguments are duplicated, i.e., stored in xmm registers and copied into general purpose registers as
well. In the sample code, we are clearing rax with the xor rax, rax instruction because, in the x86-
64 System-V calling convention, the rax register is used to specify the number of floating-point
arguments passed to a function in vector registers (xmm0, xmm1, etc.). So, for the printf function here,
since there are no floating-point arguments, rax must be set to 0. This ensures that the printf
function knows that it doesn't need to fetch any values from the xmm registers.
First, assemble your assembly code to generate an object file using nasm as shown below:

$ nasm -f elf64 libcalls.nasm

In order to link this object file with the standard C library to make an executable, we will use gcc,
and that is why we have mentioned the starting point using the main symbol. Remember, by default
gcc generates a Position Independent Executable, which can be loaded at any memory address, which
enhances security features like Address Space Layout Randomization (ASLR). The -no-pie flag of
gcc explicitly disables the creation of a PIE executable.

$ gcc -no-pie libcalls.o -o myexe

You may get a warning saying that the stack is set as executable. To remove this use -z noexecstack
option of gcc. More on this later… J

$ gcc -no-pie -z noexecstack libcalls.o -o myexe

Let us execute the executable now:
$./myexe
A hello to C library functions
$ echo $?
0

;3.2/libcalls.nasm
SECTION .data
msg db “A hello to C library functions”, 0

SECTION .bss
 ;nothing here

SECTION .text
global main
extern printf, exit
main:
; display message on screen
 lea rdi, [msg] ;first arg to printf
 xor rax, rax
 call printf
; exit the program gracefully
 mov rdi, 0 ;return value of exit
 call exit ;exit(0)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Example 3: Unconditional Jumps
This example program show the usage of unconditional jump.
The jmp _end instruction shown in bold, unconditionally shifts
the control of flow of instruction to the label _end. Understand
the code, and then assemble, link and execute the program:

$ nasm -felf64 uncondjump.nasm

$ gcc -no-pie -z noexecstack uncondjump.o -o myexe

$./myexe
Study Cyber Security

Example 4: Conditional Jumps
This example program show the usage of conditional jump. The
conditional jump instructions are mostly used after a cmp op1,
op2 instruction, which will subtract op2 from op1 without
storing the result and just update the relevent flags. In the
given code, since the result will be positive five, so the relevent
flags will be updated. After the compare instruction, the jge
_positive instruction shown in bold will execute, and since
the result is positive five (greater than or equal to zero),
therefore, the control of execution will be transferred to the
label _positive. Let us assemble, link and execute the
program:

$ nasm -felf64 condjump.nasm

$ gcc -no-pie -z noexecstack condjump.o -o myexe

$./myexe
Negative Number!

;3.2/uncondjump.nasm
SECTION .data
msg1 db “Study Cyber Security”, 0
msg2 db “Play Cricket”, 0

SECTION .text
global main
extern printf, exit
main:
; display msg1 on screen
 lea rdi, [msg1]
 xor rax, rax
 call printf
 jmp _end
; display msg2 on screen
 lea rdi, [msg2]
 xor rax, rax
 call printf
; exit the program gracefully
 mov rdi, 0
 call exit

;3.2/condjump.nasm
SECTION .data
msg1 db “Negative Number!”, 0
msg2 db “Positive Number!”, 0

SECTION .text
global main
extern printf, exit
main:
 mov ax, -5d
 cmp ax, 0
 jge _positive
; display msg1 on screen
 lea rdi, [msg1]
 xor rax, rax
 call printf
 jmp _end
 _positive:
; display msg2 on screen
 lea rdi, [msg2]
 xor rax, rax
 call printf
; exit the program gracefully
_end:
 mov rdi, 0
 call exit

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

Example 5: Defining and Calling a User Defined Function
In computer programming languages, a procedure, function, sub-routine, or method is a named piece
of code (set of instructions) that can be called from a program in order to perform some specific tasks,
thus making a program more structural, easier to understand and manageable. An assembly
procedure is defined as a set of logically related instructions having a name that:

o is meant to be called from different places
o can accept parameters (via registers, global memory locations, stack)
o do some processing (e.g., add numbers, print string, get input, and so on)
o may return some value to its caller (via register, global memory location)

Following screenshot describes the syntax of defining a user defined function for x86 assembly to be
assembled using nasm or masm assembler:

Here is a hello world assembly program which uses the
call and the ret instruction to transfer and return the
control of execution to and from a function.

Let us assemble, link and execute the program:

$ nasm -felf64 funccalling.nasm

$ gcc -no-pie funccalling.o -o myexe

$./myexe
Cyber Security Course is fun

Defining a Procedure in NASM Defining a Procedure in MASM

;3.2/funccalling.nasm

SECTION .data

msg db “Cyber Security Course is fun”, 0

SECTION .text

global main

extern printf, exit

main:

 call printmsg

 mov rdi, 0

 call exit

printmsg:

 lea rdi, [msg]

 xor rax, rax

 call printf

 ret

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

Function Calling Convention and Use of Stack in Function Calls
The function calling convention is a set of rules that dictate how functions receive parameters,
return values, manage the stack, and how to share the CPU registers between the caller and the callee.
These rules ensure that functions can correctly interact with each other and with the operating system,
enabling compatibility between different pieces of code and across different programming languages.
Understanding these conventions is crucial in various areas, including software development, reverse
engineering and exploitation. Here’s a detailed look at their importance in these contexts:

• Software Development:

o Interoperability: Different components or modules of a program, potentially written in different
languages or by different teams, must adhere to the same calling conventions to interact
correctly.

o Debugging: Understanding function calling conventions helps in troubleshooting and
debugging complex issues.

o Optimization: Compilers optimize code by understanding calling conventions.

• Reverse Engineering
o Understanding Binary Code: When doing reverse engineering, analysts decompile binary code

to reconstruct the source code in order to understand how functions are called and how
arguments are passed.

o Static Analysis: Analyzing the assembly code or disassembled binaries requires knowledge of
calling conventions to correctly interpret function calls, parameters, and returns.

o Dynamic Analysis: During dynamic analysis, tools like debuggers rely on calling conventions
to correctly step through code, track function calls, and inspect memory.

• Exploitation

o Exploiting Stack Overflows: Exploiting vulnerabilities such as buffer overflows often involve
manipulating the stack to overwrite return addresses or function pointers to gain control over
program execution. Knowledge of the calling convention helps in crafting payloads that
correctly manipulate the stack.

o Return-Oriented Programming (ROP): ROP exploits involve chaining together small pieces of
code (gadgets) that end in return instructions. Knowing the calling convention helps in crafting
ROP chains by understanding how the stack is organized and how gadgets are invoked.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

Key Components of a Function Calling Convention

1. Argument Passing and Returning Values:
o A function may have arguments/parameters, which might be integer/floating point values as

well as addresses pointing to data. This enables a function to operate on different data with
each call.

o In high level programming languages like C and C++, the values passed by the caller to the
callee are called arguments. When the values are received by the called subroutine, they are
called parameters. In programming, the terms "caller" and "callee" refer to the relationship
between functions or procedures in the context
of function calls:
Ø Caller Function: The function that initiates

a call to another function to perform a task
or compute a result.

Ø Callee Function: This is the function being
called by another function. It is the one that
gets executed as a result of the call.

o In the 16-bit and 32-bit days, since there were
only eight general purpose registers in x-86 architecture, therefore, all the arguments were
passed by the caller to the callee by pushing the arguments on the stack. On x86-64 processor,
Linux, Solaris and Mac Operating Systems use a function call protocol called the System-V
AMD64 ABI. In which first six integer parameters are passed via registers: rdi, rsi, rdx, rcx,
r8, r9, and first eight floating point parameters via xmm0 to xmm7 registers (rest on the
runtime stack). On the contrary MS Windows Operating System use MS X64 Calling
Convention, in which first four integer parameters are passed via registers and first four
floating point parameters via xmm0 to xmm3 registers (rest on the runtime stack)

o Both Linux and MS Windows use rax register to return integer values and xmm0 register to
return floating point values. For larger return values or complex data structures, the return
value might be passed via the stack.

2. Stack Management:

o The stack plays a crucial role in function calling
conventions, providing a structured way to manage
function calls, local variables, and return addresses. The
diagram shows the logical process address space of a
process where the Code section contains machine code
instructions of your program. Above code section we have
initialized and uninitialized data sections for global
variables. Then we have heap, which is used for dynamic
memory allocation, and it grows towards higher addresses.
Finally, the stack is at the top of virtual memory below the
kernel code and grows from higher memory addresses to
lower memory addresses in architectures like x86, MIPS,
Motorola, and SPARC.

o Each function call typically creates a Function Stack Frame
(FSF) that holds space for function arguments, rip, rbp,
and local variables.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

o In x86-64 assembly language, rsp and rbp are two important registers used for stack
management and function calls.

§ rsp (Stack Pointer) is used to point to the current top of the stack. In x86-64
architecture, the stack grows downward, meaning that pushing data onto the stack
decreases the value of rsp, and popping data from the stack increases the value of rsp.

§ rbp (Base Pointer) is used to point to the base of the stack frame for the current function,
so the address of each argument and local variable can be calculated using this register
and an offset. It helps manage local variables and function parameters.

o The stack frame is set up using a piece of code called procedure prologue and torn down using
a piece of code called procedure epilogue and is the responsibility of the Callee in x86 arch.

§ Procedure Prolog: On x86-64 running Linux Operating System, the FSF for a function
is created by the following sequential steps:

Ø The function arguments (>6) are pushed on the stack by the caller.
Ø The return address (rip) is pushed on the stack.
Ø After that, control is shifted to the first instruction of the callee, which performs

a procedure prolog having three lines of assembly code shown below:

o The creation of FSF by the function prolog is described in the following images:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

§ Procedure Epilog: When callee is done with its execution, it first cleans up the FSF
and then calls the return statement to transfer control to its caller by performing a
procedure epilog:

§ Restore the old stack pointer (mov rsp, rbp).
§ Restore the old base pointer (pop rbp).
§ Return to the caller using ret.

o The removal of FSF by the function epilog is described in the following images:

o An illustration of the FSF of a C program is shown:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

18

Overview of Debuggers and Installing GDB
Debugging is the science and art of finding and eliminating bugs in a computer program. A debugger
is a program running another program allowing you to see what is going on inside another program
while it executes, or what another program was doing at the moment it crashed. There exist different
types of debuggers like GNU gdb (PEDA/GEF), IDA Pro, radare2, cutter, ghidra,
OllyDbg, binaryninja, ptrace, strace, ltrace, ftrace, bpftrace and so on. Using a
debugger, a programmer can:

• Start a program, specifying anything that might affect its behavior.
• Make a program stop on specified conditions.
• Examine what has happened, when a program has stopped.
• Change things in a program, so you can experiment with correcting the effects of one bug

and go on to learn about another.
• Last but not the least, can be used for run time analysis of binaries, disassembly, reverse

engineering and cracking binaries.

We will be using GDB, the GNU Project debugger that can debug a program running on the same
machine as GDB (native), on may be another machine (remote), or may be on a simulator. GDB is a
portable debugger that can run on the most popular UNIX and Microsoft Windows variants, as well
as on Mac OS X. The target processors include IA-32, x86-64, arm, mips, powerpc, sparc,
alpha and many others. GDB works for many programming languages including Assembly, C/C++,
Objective C, OpenCL, Go, Modula-2, Fortran, Pascal and Ada.

GDB Installation on Linux

From Binary:
$ sudo apt update
$ sudo apt install gdb
$ gdb –version
GNU gdb (Debian 15.1-1) 15.1

From Source:
$ sudo apt install build-essential texinfo
$ wget http://ftp.gnu.org/gnu/gdb/gdb-<version>.tar.gz
$ tar -xvzf gdb-<version>.tar.gz
$ cd gdb-<version>
$./configure
$ make
$ sudo make install
$ gdb –version

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

19

Basic Commands of GDB
Commands Description
$ nasm –g -felf64 prog1.nasm

$ gcc -ggdb -c prog1.c

In order to load and properly analyze a program in gdb
you need to compile it with –g or –ggdb option, to
instruct the compiler to keep debugging symbols,
source file names and line numbers in the object files

$ gdb
(gdb)file myexe

OR

$ gdb myexe
(gdb)

There are two ways to load a binary inside gdb by
either running gdb command and then specifying the
binary name with the file command. Or by specifying
the binary name as an argument to gdb.

(gdb)quit

Exits the current session of gdb.

(gdb)help

(gdb)help <classname>

(gdb)help <command>

The help command of gdb is used to display the listing
of twelve different classes in which gdb commands are
categorized. You can also specify the classname
(breakpoints, running, stack, …) or the command to get
help about it.

(gdb)run [arg1 arg2 …]

OR

(gdb)set args arg1 arg2 …
(gdb)run

Once the program is loaded and gdb is running, you
can pass command line arguments to the binary using
the run command of gdb. Or can use the set command
instead and later use the run command.

(gdb)attach <PID> If you want to debug a process that is already running,
you can attach GDB to it using its process ID (PID).

(gdb)info sources/functions/variables/locals
(gdb)info registers/all
(gdb)info sharedlibrary
(gdb)info address <function name>

Once a program loaded inside gdb, you can use the
info command to display the name of all the source
files from which symbols have been read in, name of
functions, global variables, name of local variables
inside a FSF, and the CPU registers.

(gdb)list [1,12]

(gdb)list <filename>:<line#>

(gdb)list <filename>:<function name>

The list command of gdb is used to display the source
code (provided if the source file is there in the pwd)
.

(gdb)disassemble
(gdb)disassemble <function name>

(gdb)set disassembly-flavor intel

Disassembles the current function or code segment. By
default, gdb disassembles in AT&T format, to change
the format to intel, use the set disassembly-
flavor command.

(gdb)break <filename>:<line#>

(gdb)break <filename>:<function name>

(gdb)break <filename>:*0x2xfff0500

Breakpoint is the LOC in your program where you
want to stop the execution. You can set as many break
points as you feel like using the break command of gdb
by mentioning the line#, function name, or by virtual
address

(gdb)info break
(gdb)disable <breakpoint#>
(gdb)enable <breakpoint#>
(gdb)delete <breakpoint#>
(gdb)clear <breakpoint#>

To get the information about the existing breakpoints
already set in your program, you can use the info
command. Moreover, you can disable/enable/delete/
and clear breakpoints.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

20

(gdb)watch <variable name>
(gdb)info watch
(gdb)disable <watchpoint#>
(gdb)enable <watchpoint#>
(gdb)delete <watchpoint#>
(gdb)clear <watchpoint#>

Like breakpoints, we can set watchpoints on variables.
Whenever the value of that variable will change, gdb
will interrupt the program and print out the old and
the new value.

(gdb)continue / c / ci

(gdb)next / n / ni

(gdb)step / s / si

(gdb)finish

Once a breakpoint is hit, you can do the following:
o c: Continue till the next breakpoint or end of
program.
o n: Execute and move to next instruction, but don’t

dive into functions.
o s: Execute and move to next instruction, by

diving into functions.
o finish: Continue until the current function

returns.
(gdb)print /format-char <var-name>

Once a breakpoint is hit during execution of a program,
you can inspect/modify contents of variables, CPU
registers as well as different memory addresses. The
print command is the most common command to check
the contents of variables in the specified format
o /d is for signed decimal
o /u is for unsigned decimal
o /x for printing as hex
o /o for printing as octal
o /t for printing as binary
o /f for floating point number
o /s for C-string
o /a for address
Note: Unlike print the display command is used to
display the value of variable, each time the program
stops.

(gdb)set variable <var-name> = <value>

The set command is used to modify the value of a
variable.

(gdb)x/12cb <address>
(gdb)x/12db &var1
(gdb)x/4xb *0x601000
(gdb)x/32b $rsp

The examine command or its alias x is passed a memory
address to display its contents. It is optionally followed by a
forward slash (/) and then a:
o Count field, which is a number in decimal.
o Format field, which is a single letter with ‘d’ for

decimal, ‘x’ for hex, ‘t’ for binary and ‘c’ for ASCII.
o Size field, which is single letter with ‘b’ for byte, ‘h’

for 16-bit word, and ‘w’ for 32-bit word.

(gdb)backtrace

The backtrace command or its alias b displays the
call trace of a program.

(gdb)! clear

To run the OS shell commands inside gdb, you can
precede the command with a ! symbol.

A discussion on detailed commands of gdb is beyond the scope of this handout. Interested students
are advised to go through the Video Lecture of the Assembly course at the following link:
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=31

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

21

Example 6: Running/Debugging Assembly Program inside GDB
Let us write down a basic x86-64 assembly program on our Kali Linux machine using some text editor
like vim, nano, or gedit, assemble using nasm (by keeping the symbols), link using gcc (by keeping
the symbols and making it non position independent executable), finally load the binary inside gdb in
quite mode:

$ nasm -f elf64 -g condjump.nasm
$ gcc -no-pie -g condjump.o -o myexe
$ gdb -q ./myexe
Reading symbols from ./myexe …
(gdb) help
List of classes of commands:
breakpoints -- Making program stop at certain points.
data -- Examining data.
files -- Specifying and examining files.
internals -- Maintenance commands.
obscure -- Obscure features.
running -- Running the program.
stack -- Examining the stack.
support -- Support facilities.
text-user-interface -- TUI is the GDB text interface.
tracepoints -- Tracing of program execution w/o stopping the program.
user-defined -- User-defined commands.
(gdb) set disassembly-flavor intel
(gdb) disassemble main
0x0401140 <+0>: mov ax, 0xfffb
0x0401144 <+4>: cmp ax, 0x0
0x0401148 <+8>: jge 0x40115c <_positive>
0x040114A <+10>: lea rdi, ds:0x404020
0x0401152 <+18>: xor rax, rax
0x0401155 <+21>: call 0x401030 <printf@plt>
0x040115A <+26>: jmp 0x40116c <_end>

(gdb) break main
(gdb) run
(gdb) info registers | functions | breakpoints [To delete a breakpoint delete 1]
(gdb) print $<register-name>
(gdb) x <addr>
(gdb) x/8xb <addr> [count can be a decimal value] [format can be x|t|d|c] [size can be b|h|w|g]
(gdb) si | ni | c
Negative Number! [Inferior 1 (process 208589) exited normally]

(gdb) quit

Practice all the commands of gdb mentioned in the previous table and play around with this program
by executing it step by step and making changes to the code as it executes. J

;3.2/condjump.nasm
SECTION .data
msg1 db “Negative Number!”, 0
msg2 db “Positive Number!”, 0

SECTION .text
global main
extern printf, exit
main:
 mov ax, -5d
 cmp ax, 0
 jge _positive
; display msg1 on screen
 lea rdi, [msg1]
 xor rax, rax
 call printf
 jmp _end
_positive:
; display msg2 on screen
 lea rdi, [msg2]
 xor rax, rax
 call printf
; exit the program gracefully
_end:
 mov rdi, 0
 call exit

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

22

Dis-assemblers & De-compilers

(Dynamic Analysis Tools)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

23

GDB with PEDA & GEF
In our previous handout we have used GNU GDB to run/debug sample C as well as assembly
programs. GNU GDB is too good a debugger, however, it lacks intuitive interface, do not have a smart
context display, do not have commands for exploit development, and has weak scripting support. So,
to enhance the fire power of gdb for analyzing, exploiting and doing reverse engineering on
executables, hackers use:

o a gdb plug-in called PEDA (Python Exploit Development Assistance)
o a gdb plug-in called GEF (GDB Enhanced Features)

PEDA is a fantastic tool that provides commands to make the exploitation development process
smoother. However, it has limitations:

o PEDA code is too fundamentally linked to Intel architectures (x86-32 and x86-64)
o PEDA development has been quite idle for a few years now, and many new interesting features

a debugger can provide simply do not exist.

On the other hand, GEF not only supports all the architecture supported by GDB (currently x86, ARM,
AARCH64, MIPS, PowerPC, SPARC) but is designed to integrate new architectures as well. Moreover,
GEF provides a suite of powerful commands to assist with binary exploitation tasks. Whether you’re
dealing with buffer overflows, format string vulnerabilities, ROP chains, or heap exploitation, these
commands allow for better memory inspection, breakpoint management, and code analysis.

Installation of PEDA: https://github.com/longld/peda
PEDA is available only on Linux and supported by gdb 7.x and Python 2.6 onwards. In order to
install PEDA plugin for gdb, you simply have to download or clone its repository and then update the
.gdbinit file in your home directory as shown below:

$ git clone https://github.com/longld/peda.git ~/peda
$ echo “source ~/peda/peda.py” >> ~/.gdbinit

Installation of GEF: https://github.com/hugsy/gef.git
On the same grounds, if you want to install GEF plugin for gdb, you simply have to download it and
then update the.gdbinit file in your home directory as shown below:

$ git clone https://github.com/hugsy/gef.git ~/gef
$ echo “source ~/gef/gef.py” >> ~/.gdbinit

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

24

Running/Debugging C Program inside GDB with GEF Plugin
Let us now debug the following C program. In the source file, the main() function creates two long
variables main_var1 and main_var2 and character pointer *main_str2 and calls a function f1()
and passing 8 parameters to that function. The function f1() receives 8 parameters and further
creates two local variables and then calls another function f2() and passes one parameter to it. The
f2() function receives a single a parameter, performs some operations and returns a value to f1()
that further returns 1 to parent function which is main() and finally main() returns 0 to its parent
which is the shell program.

Compile the debugme.c program using gcc (for 64-bit and 32-bit), load it inside GDB with GEF to
practically understand all the concepts discussed in this handout specially the function calling
convention, stack growing and shrinking etc. Happy Learning J

//3.2/cprogs/gef/debugme.c

#include <stdio.h>

#include <stdlib.h>

 int f2(int a){

 int b = a +1;

 return b;

}

int f1(long a, long b, long c, long d, long e, long f, long g, long h){

 unsigned long f1_var1 = 0x123456789;

 unsigned long f1_var2 = 0x0abcdef;

 int rv = f2(5);

 return 1;

}

int main(int argc, char *argv[]){

 unsigned long main_var1 = 0x1122334455667788;

 unsigned long main_var2 = 0x99aabbccddeeff00;

 char *main_str2 = "Arif";

 int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444, 0x55555555,
0x66666666, 0x77777777, 0x88888888);

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

25

GEF Interface

After successful installation of the gef plug-in, when you run gdb, you get the following prompt:

 $ gdb

Note the prompt is not (gdb), rather is gef>, that means gdb with enhanced features. Inside gef,
you can give the gef command, which will display brief description of different gef commands:

gef> gef

Let us load the binary named debugme (3.2/cprogs/debugme.c) from the current working
directory, set a breakpoint at main, and run the program:

gef> file debugme
Reading symbols from debugme …
gef> break main
Breakpoint 1 at 0x1197: file debugme.c, line 17.
gef> run

When you run a binary inside gef, you get six panels, showing different information about the running
process:

• Registers:
• Stack:
• Code:
• Source:
• Threads:
• Trace

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

26

1. Registers Panel: The Registers Panel in GEF displays the current values of the CPU

registers/flags, providing an organized and easily readable view. It helps in analyzing the state
of the CPU, tracking changes in register values, and debugging at a lower level. It does not
show the floating-point registers, however, you can view the contents of all registers, use the
info all command of gdb.

2. Stack Panel: The Stack Panel displays top of the call stack, which includes a list of function
calls that are currently active. This is really beneficial to understand the current Function
Stack Frame of a function. Remember, the top of the stack is displayed at the top of this panel,
where the rsp register is pointing.

3. Code Panel: The Code Panel displays the assembly code along with the virtual addresses. The
line currently being executed or where the breakpoint is set is typically highlighted or marked
to provide a clear point of focus.

4. Source Panel: This panel displays the corresponding high level language code, with the
current LOC highlighted. This way you can corelate the high-level code with its corresponding
assembly.

5. Threads & Trace Panels: This provides information about the threads in a multithreaded
program, including their states and stack traces.

Note: To configure the panels to be displayed, you can use the following command inside gef:
gef> gef config context.layout “regs stack code source”

1

2

3

4

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

27

Loading and Running a Program inside GDB with GEF

• Disable ASLR: Before performing any step let’s just check if ASLR (Address Space layout
randomization) is enabled on our machine, and if yes then we need to disable it. ASLR is a security
feature of the operating system that randomizes the memory addresses used by system and
application processes, making it harder for attackers to predict memory locations. On Linux
systems, the ASLR setting can have following three values, which can be changed as well:

o 0: No randomization. Everything is static.
o 1: Conservative randomization. Shared libraries, stack, mmap(), heap, and VDSO are

randomized.
o 2: Full randomization.

To check the current state of ASLR, you can view the contents of randomize_va_space file:
$ cat /proc/sys/kernel/randomize_va_space

To change the current state of ASLR, you can use any of the following commands:
 $ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space
 $ sudo sysctl -w kernel.randomize_va_space=0

• Disassemble main() in GEF: To show the disassembly of the main function in GDB with GEF

(GDB Enhanced Features) without running the program, you can use GDB’s disassembly
commands directly after loading the binary.

 Gef➤ disassemble main

Similarly, you can check the disassembly of f1() and f2() functions as well.

Procedure Prolog

call to f1()

Procedure Epilog

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

28

• Disable CET: You may have noticed the endbr64 instruction before procedure prolog in the
above screenshot. The endbr64 instruction is part of the Intel Control-flow Enforcement
Technology (CET), specifically the Indirect Branch Tracking (IBT) feature, which is designed to
enhance security by protecting against certain types of control-flow attacks such as Return
Oriented Programming (ROP) and Jump Oriented Programming (JOP). It helps ensure that
indirect branches (such as calls and jumps) are redirected to valid locations. This instruction is
used to mark valid targets for indirect branches, ensuring that the control flow cannot be hijacked
by malicious code. Excluding or removing the endbr64 instruction from binaries generally
involves manipulating the binary code, which can be done for various purposes such as reverse
engineering, debugging, or modifying software behavior. You can experiment with turning it off to
disable CET. Thus, compile your source file again with –fcp-protection=none and generate
executable. After that load it in GDB.

 $ gcc -ggdb -fcf-protection=none debugme.c -o debugme
 $ gdb debugme

If you view the disassembly again, you can note that CET has been excluded or disabled.
 gef➤ disassemble main

• Run the Program: Now you can apply break point and run the program:

 gef➤ break main
 gef➤ run

• Since we are running the program in GDB with GEF, it shows the output in different sections

including registers, stack, code section, threads etc, as we have discussed earlier. Here you need to
understand multiple things as shown in the screenshot:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

29

• If you give the step command, you can see that main_var1 has been created on the function

stack frame of the main function:

rip containing the
address of current
instruction

stack growing
towards lower
addresses

variable
created on the
stack

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

30

• Similarly, after giving the step command multiple times, you can see main_var1, main_var2
and *main_str2 have been created.

• Function Call: The next instruction is the function call. Before the control transfers, the 8th and
the 7th arguments to the functions are pushed on the stack (from right to left). Then the remaining
six arguments will be placed inside the registers (rdi, rsi, rdx, rcx, r8, r9). This is shown in the
screenshot below:

int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444,
0x55555555, 0x66666666, 0x77777777, 0x88888888);

You can also observe that before the control
is actually transferred to the function f1(),
the address of the next instruction
(0x55201) after the call instruction is
pushed at the top of the stack.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

31

• Once the control goes inside the function f1(), as two arguments are already on the stack, the
remaining six arguments which are there in the registers are also moved on the stack (space for
local arguments).

• However, after those two local variables have been created, we can’t see them on stack. They have
been created on the stack, but some other location that isn’t visible in our stack panel. So, just to
verify that they have been created let’s copy address from the assembly instruction:

• After stepping in multiple times, let’s get into function f2(), where you can see that the return

address of the very next instruction of f1() has been pushed on the stack.

next instruction
to be executed

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

32

• As we already know, f2() performs add operation and returns 6 in rax register, we can also verify
this by checking content of rax register:

• In the same fashion, you can run this program to completion to practically understand what all

concepts we have discussed in this handout JSample Program Adjusted According to 32-bit
Architecture:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

33

Loading and running a 32 Bit Binary inside GDB with GEF

• Pre-requisites for Creating 32-bit Binary: We need to use some previous version of GCC such

as gcc-7 to compile 32-bit binary on 64-bit architecture, other ld linker throws error due to some
unknown reasons.

$ sudo apt-get update
$ sudo apt-get install gcc-7 g++-7 gcc-multilib g++-7-multilib

• Compiling and Loading Program in GDB with GEF: Following are the commands to create a

32-bit binary and then loading it inside GDB in quite mode:

$ gcc-7 –ggdb -m32 debugme_x32.c –o debugme_x32
$ gdb –q ./debugme_x32

• View Disassembly: From the

disassembly of the main function, you
can observe that all the eight
arguments to the f1() function are
pushed on the stack from right to left
instead of passing six via registers and
remaining tow via stack.

//3.2/cprogs/debugme_x32.c

#include <stdio.h>
#include <stdlib.h>
int f2(int a) {
 int b = a + 1;
 return b;
}
int f1(int a, int b, int c, int d, int e, int f, int g, int h) {
 unsigned int f1_var1 = 0x12345678; // Adjusted to fit within 32 bits
 unsigned int f1_var2 = 0x0abcdef0; // Adjusted to fit within 32 bits
 int rv = f2(5);
 return 1;
}
int main(int argc, char *argv[]) {
 unsigned int main_var1 = 0x11223344; // Adjusted to fit within 32 bits
 unsigned int main_var2 = 0x99aabbcc; // Adjusted to fit within 32 bits
 char *main_str2 = "Arif";
 int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444,
0x55555555, 0x66666666, 0x77777777, 0x88888888);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

34

• After running the program in GDB with gef and after multiple step in, here are the variables
created on stack:

• According to C calling convention function parameters are also passed on the stack instead of
registers and return address is also pushed on stack. Some of them are shown below:

• From f1() function, local variables are also created on stack as shown:

• After stepping in through f2(), return value which is 6 can also be seen in eax register:

• Practice running 32-bit and 64-bit versions of the debugme.c program to have a crystal-clear
understanding of difference in function calling convention in the two architectures.
Happy Learning J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

35

To Do:
• Given the following C program, where

the virus function is not being called
from anywhere inside the code. You are
required to compile and load the binary
of this source program inside gdb, and
then execute it in such a way that the
virus function gets executed and you
get the output: “Let us Hack Planet
Earth with Arif”. Interested
students can watch my video at the
following link, where I have performed
this task in Video Lecture # 38, from
time 57:00 to 1:01:00. Happy Learning
J

https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

void f3(){
 return;
}
void f2(){
 f3();
}
void f1(){
 f2();
}
int main(){
 f1();
 return 0;
}
int virus(){
 printf("Let us Hack Planet Earth with Arif.\n");
 exit(0);
}

