

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.3: Reverse Engineering C Binaries
Reverse engineering in cybersecurity refers to the process of analyzing and
disassembling software, hardware, or protocols to understand their inner workings,
often with the goal of extracting valuable information, identifying vulnerabilities,
malicious behavior or weaknesses. In order to perform reverse engineering, you need
to have following skills:
• Proficiency in assembly language (e.g., x86/x64, ARM).
• Knowledge of binary file formats (e.g., ELF, PE).
• Familiarity with debugging tools and techniques.
• Understanding of operating systems, memory management, and processor

architecture.
• Programming skills (e.g., C, C++, Python).

Key Purposes of Reverse Engineering
• Malware Analysis:

o Understand the behavior of malware (viruses, ransomware, worms).
o Identify how the malware spreads, its payload, and any vulnerabilities it

exploits.
o Develop antivirus signatures or patches to mitigate the threat.

• Vulnerability Research:

o Analyze software or systems to uncover security flaws.
o Help in the creation of exploits or, conversely, in fixing vulnerabilities through

patches.

• Software Cracking or Protection:
o Understand how software license checks or protections are implemented.
o Develop mechanisms to strengthen software protection or, in some cases, bypass restrictions

(though this can be illegal depending on the context).

• Digital Forensics:
o Analyze compromised systems to determine the root cause of an incident.
o Extract data or artifacts from damaged or encrypted systems.

How Reverse Engineering Works
• Static Analysis: It involves examining the software or system without running it, with the focus on

assembly code, binary structure, strings, imports/exports. The tools for this task do not debug or trace
execution flow, rather perform static disassembly, Decompilation, or code analysis. The tools used are
readelf, objdump, nm strings, file, hexedit, objcopy, strip, addr2line.

• Dynamic Analysis: It involves analyzing the software or system while it runs, with the focus on its runtime
behavior, memory usage and system interactions. The tools used are GNU gdb (PEDA/GEF), valgrind,
ptrace, strace, ltrace, ftrace, perf, frida.

• Hybrid Analysis Tools: The tools used for both static and dynamic analysis are Radare2, Cutter, IDA
Pro, Ghidra, Binary Ninja.

• Protocol Analysis: It involves intercepting and analyzing communication between devices or softwares.
The tools used are Wireshark, tcpdump, Burp Suite, Ettercap, Bettercap, scappy, Fiddler.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

A Hello to Reversing Binaries

Example 1: Hello World with puts() Function
Create an executable of this simple C program:

$ gcc rev1.c -o rev1
Let us view the disassembly of this binary file using say
objdump command. Right now, we are interested in the
disassembly of main function shown below:
$ objdump -M intel -D ./rev1
$ objdump -M intel -D ./rev1 | grep -A 9 “<main>:”

0000000000001139 <main>:
 1139: 55 push rbp
 113a: 48 89 e5 mov rbp, rsp
 113d: 48 8d 05 c0 0e 00 00 lea rax, [rip+0xec0]
 1144: 48 89 c7 mov rdi, rax
 1147: e8 e4 fe ff ff call 1030 <puts@plt>
 114c: 90 nop
 114d: 5d pop rbp
 114e: c3 ret
Description:
o The first two lines of assembly represent the function prologue. The push rbp stores the rbp

register of caller on stack, so we can use rbp for our purpose. The mov rbp,rsp copies the value
of rsp, which is pointing to the stack frame of main, to rbp. Now both rsp and rbp are pointing
to the same location in memory.

o The third line: lea rax,[rip+0xec0] is the load effective address instruction that is calculating
an address by adding the contents of rip with a constant. This is actually the address of the string
passed to the puts() function. The rip register contains an address, and 0xec0 is the offset from
this address to where the string starts. The string is stored in the .rodata section, which is part
of the binary file and is loaded in memory with the program. It usually contains program constants.

o Let us examine the .rodata section.

$ objdump -d -s -j .rodata ./rev1

Disassembly of section .rodata:

0000000000002000 <_IO_stdin_used>:
 2000: 01 00 02 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 21 Hello World!

o From above output, you can note that the .rodata section starts at address 0x2000 while the
string starts four bytes farther, i.e., 0x2004.

o At this moment the contents of rip register are 0x1144 and when you add 0xec0 in it you get
0x2004, which is the address where the string starts. Thus, the lea rax, [rip+0xec0] will
place 0x2004 inside the rax register, which is the starting address of the string.

o After this, the mov rdi, rax instruction will copy the address of the string inside the rdi
register, which is the only and 1st argument to the puts function. J

o The fifth instruction calls the puts() function. This function is implemented in the GNU C library
and its address is stored in the .plt section, hence the puts@plt. The .plt section (Procedure
Linkage Table) is used by the dynamic linker/loader for handling function calls to dynamically
linked libraries. For example, if the program calls a function in a shared library, the control is
transferred to a .plt entry, which then calls the dynamic linker to look up the function's real
address and jumps to it. On subsequent calls, the .plt entry has been updated to directly jump to
the function's resolved address. The last two instructions are the function epilog, which restores
the previously saved rbp value into rbp. Finally, we have the ret instruction J

//module3/3.3/rev1.c

#include <stdio.h>

void main(void){

 puts("Hello World!");

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Example 2: Hello World with printf() Function
Create an executable of this simple C program:
$ gcc rev2.c -o rev2

Let us view the disassembly of this binary file using say
objdump command. Right now, we are interested in the
disassembly of main function shown below:

$ objdump -M intel -D ./rev2 | grep -A 14 “<main>:”

0000000000001139 <main>:
 1139: 55 push rbp
 113a: 48 89 e5 mov rbp, rsp
 113d: 48 83 ec 10 sub rsp, 0x10
 1141: c7 45 fc 0a 00 00 00 mov DWORD PTR [rbp-0x4], 0xa
 1148: 8b 45 fc mov eax, DWORD PTR [rbp-0x4]
 114b: 89 c6 mov esi, eax
 114d: 48 8d 05 b0 0e 00 00 lea rax, [rip+0xeb0]
 1154: 48 89 c7 mov rdi, rax
 1157: b8 00 00 00 00 mov eax, 0x0
 115c: e8 cf fe ff ff call 1030 <printf@plt>
 1161: b8 00 00 00 00 mov eax, 0x0
 1166: c9 leave
 1167: c3 ret
Description:
o Most of the code generated by the compiler is similar to the one as in the previous example, so we

will discuss the lines which are new to us.
o The 113d: sub rsp,0x10 instruction is part of function prolog, which is actually creating space

for the local integer variable named x. Although it needs 4 bytes but additional space is allocated
for alignment purposes.

o The 1141: mov DWORD PTR [rbp-0x4],0xa instruction is copying the decimal value 10 (0xa)
on the stack for variable x. Since the variable has type integer, so it is stored in 4 bytes and its
value starts 4 bytes below the rbp.

o Now before calling the printf function, we need to place its two arguments inside the rdi and
rsi registers respectively, starting from right to left.
• The 1148: mov eax, DWORD PTR [rbp-0x4] is copying the value of variable x from stack

into the eax register. Since this will be second argument to the printf() function, so in the
next instruction, it is copied to rsi as shown 114b: mov esi,eax

• The 114d: lea rax, [rip+0xeb0] is loading the address of the format string inside rax
register. Since this will be first argument to the printf() function, in the next instruction it
is copied to rdi as shown 1154: mov rdi,rax

• Next 1157: mov eax, 0x0 the compiler places a zero in the eax register and then call to
printf is made. The System-V AMD64 ABI specifies that before a function from the standard
C library is called, the value in the rax register must specify the number of floating-point
arguments passed to the function in XMM registers. So rax register is explicitly set to 0,
indicating that no floating-point arguments are passed to printf.

o Next 1161: mov eax, 0x0 the compiler places a zero in the eax (or rax) register as the return
value from the main() function.

o Finally, we have the function epilog containing the leave and the ret instructions, that will roll
back the FSF.

//module3/3.3/rev2.c

#include <stdio.h>

int main(void){

 int x = 10;

 printf(“x=%d\n”, x);

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Example 3: Hello World with Arrays
Create an executable of this simple C program:
$ gcc rev3.c -o rev3

Let us view the disassembly of this binary file using say
objdump command. Right now, we are interested in the
disassembly of main function shown below:

$objdump -M intel -D ./rev3 | grep -A 17 “<main>:”

0000000000001139 <main>:
 1139: 55 push rbp
 113a: 48 89 e5 mov rbp, rsp
 113d: 48 83 ec 10 sub rsp, 0x10
 1141: c7 45 f0 01 00 00 00 mov DWORD PTR [rbp-0x10], 0x1
 1148: c7 45 f4 02 00 00 00 mov DWORD PTR [rbp-0xc], 0x2
 114f: c7 45 f8 03 00 00 00 mov DWORD PTR [rbp-0x8], 0x3
 1156: c7 45 fc 04 00 00 00 mov DWORD PTR [rbp-0x4], 0x4
 115d: 8b 45 f4 mov eax, DWORD PTR [rbp-0xc]
 1160: 89 c6 mov esi, eax
 1162: 48 8d 05 9b 0e 00 00 lea rax, [rip+0xe9b]
 1169: 48 89 c7 mov rdi, rax
 116c: b8 00 00 00 00 mov eax, 0x0
 1171: e8 ba fe ff ff call 1030 <printf@plt>
 1176: b8 00 00 00 00 mov eax, 0x0
 117b: c9 leave
 117c: c3 ret

Description:
o The 1141: mov DWORD PTR [rbp-0x10],0x1 instruction is copying the decimal value 1 (0x1)

on the stack as the first integer value inside the array x. Since the variable has type integer, so it
is stored in 4 bytes and its value starts 0x10 bytes below the rbp.

o Similarly, the 1148: mov DWORD PTR [rbp-0xc],0x2 instruction is copying the decimal value
2 (0x2) on the stack as the second integer value inside the array x. Note that the value is stored
starting at address 0xc bytes below the rbp. In the same fashion, all the four values. Of the array
are stored on the stack.

o Now before calling the printf function, we need to place its two arguments inside the rdi and
rsi registers respectively, starting from right to left.

o Following two instructions places the 2nd argument inside esi, which is x[1] i.e., 2:
mov eax, DWORD PTR [rbp-0xc]
mov esi, eax

o Next two instruction places the 1st argument inside esi, which is address of format string:
lea rax,[rip-0xe9b]
mov rdi,rax

o Next 116c: mov eax, 0x0 the compiler places a zero in the eax register to specify that
XMM registers are not involved in arguments passing.

o Remaining code is already discussed in previous examples.

//module3/3.3/rev3.c

#include <stdio.h>

int main(){

 int x[4] = {1,2,3,4};

 printf("x[1] = %d\n",x[1]);

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Example 4: Hello World with if---else

Create an executable of this simple C program:
$ gcc rev4.c -o rev4

Let us view the disassembly of this binary file using
say objdump command. Right now, we are interested
in the disassembly of main function shown below:

$objdump -M intel -D ./rev4 | grep -A 20 “<main>:”

0000000000001139 <main>:
 1139: 55 push rbp
 113a: 48 89 e5 mov rbp, rsp
 113d: 48 83 ec 10 sub rsp, 0x10
 1141: c7 45 fc 0a 00 00 00 mov DWORD PTR [rbp-0x4], 0xa
 1148: c7 45 f8 05 00 00 00 mov DWORD PTR [rbp-0x8], 0x5
 114f: 83 7d fc 64 cmp DWORD PTR [rbp-0x4], 0x64
 1153: 7f 15 jg 116a <main+0x31>
 1155: 83 6d f8 03 sub DWORD PTR [rbp-0x8], 0x3
 1159: 48 8d 05 a4 0e 00 00 lea rax, [rip+0xea4]
 1160: 48 89 c7 mov rdi, rax
 1163: e8 c8 fe ff ff call 1030 <puts@plt>
 1168: eb 13 jmp 117d <main+0x44>
 116a: 83 45 f8 03 add DWORD PTR [rbp-0x8],0x3
 116e: 48 8d 05 99 0e 00 00 lea rax,[rip+0xe99]
 1175: 48 89 c7 mov rdi,rax
 1178: e8 b3 fe ff ff call 1030 <puts@plt>
 117d: b8 00 00 00 00 mov eax,0x0
 1182: c9 leave
 1183: c3 ret

To Do:
Understand the disassembly, and write down description of above compiler generated assembly code.
Happy Learning J
	

//module3/3.3/rev4.c

#include <stdio.h>

int main(){

 int x = 10;

 int y = 5;

 if(x<=100){

 y = y - 3;

 printf("Less than\n");

 }

 else{

 y = y + 3;

 printf("Greater than\n");

}

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Example 5: Hello World with Loops

Create an executable of this simple C program:
$ gcc rev5.c -o rev5

Let us view the disassembly of this binary file
using say objdump command. Right now, we are
interested in the disassembly of main function
shown below:

$ objdump -M intel -D ./rev5 | grep -A 22 “<main>:”

0000000000001149 <main>:
 1149: 55 push rbp
 114a: 48 89 e5 mov rbp, rsp
 114d: 48 83 ec 10 sub rsp, 0x10
 1151: c7 45 fc 00 00 00 00 mov DWORD PTR [rbp-0x4], 0x0
 1158: c7 45 f8 05 00 00 00 mov DWORD PTR [rbp-0x8], 0x5
 115f: c7 45 fc 00 00 00 00 mov DWORD PTR [rbp-0x4], 0x0
 1166: eb 1d jmp 1185 <main+0x3c>
 1168: 8b 45 fc mov eax, DWORD PTR [rbp-0x4]
 116b: 89 c6 mov esi, eax
 116d: 48 8d 05 90 0e 00 00 lea rax, [rip+0xe90]
 1174: 48 89 c7 mov rdi, rax
 1177: b8 00 00 00 00 mov eax, 0x0
 117c: e8 bf fe ff ff call 1040 <printf@plt>
 1181: 83 45 fc 01 add DWORD PTR [rbp-0x4], 0x1
 1185: 8b 45 fc mov eax, DWORD PTR [rbp-0x4]
 1188: 3b 45 f8 cmp eax, DWORD PTR [rbp-0x8]
 118b: 7c db jl 1168 <main+0x1f>
 118d: bf 0a 00 00 00 mov edi,0xa
 1192: e8 99 fe ff ff call 1030 <putchar@plt>
 1197: b8 00 00 00 00 mov eax,0x0
 119c: c9 leave
 119d: c3 ret

To Do:
Understand the disassembly, and write down description of above compiler generated assembly code.
Happy Learning J

//module3/3.3/rev5.c

#include <stdio.h>

int main(){

 int i = 0;

 int limit = 5;

 for(i = 0;i<limit; i++){

 printf("%d ",i);

 }

 printf("\n");

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Example 6: Hello World with Function Call

Create an executable of this simple C program:
$ gcc rev6.c -o rev6

Let us view the disassembly of this binary file using say
objdump command. Right now, we are interested in the
disassembly of main function shown below:

$ objdump -M intel -D ./rev6 | grep -A 33 “<main>:”

0000000000001139 <main>:
 1139: 55 push rbp
 113a: 48 89 e5 mov rbp, rsp
 113d: 48 83 ec 10 sub rsp, 0x10
 1141: c7 45 fc 0a 00 00 00 mov DWORD PTR [rbp-0x4], 0xa
 1148: c7 45 f8 14 00 00 00 mov DWORD PTR [rbp-0x8], 0x14
 114f: 8b 55 f8 mov edx, DWORD PTR [rbp-0x8]
 1152: 8b 45 fc mov eax, DWORD PTR [rbp-0x4]
 1155: 89 d6 mov esi, edx
 1157: 89 c7 mov edi, eax
 1159: e8 23 00 00 00 call 1181 <foo>
 115e: 89 45 f4 mov DWORD PTR [rbp-0xc], eax
 1161: 8b 45 f4 mov eax, DWORD PTR[rbp-0xc]
 1164: 89 c6 mov esi, eax
 1166: 48 8d 05 97 0e 00 00 lea rax, [rip+0xe97]
 116d: 48 89 c7 mov rdi, rax
 1170: b8 00 00 00 00 mov eax, 0x0
 1175: e8 b6 fe ff ff call 1030 <printf@plt>
 117a: b8 00 00 00 00 mov eax, 0x0
 117f: c9 leave
 1180: c3 ret

0000000000001181 <foo>:
 1181: 55 push rbp
 1182: 48 89 e5 mov rbp,rsp
 1185: 89 7d ec mov DWORD PTR [rbp-0x14], edi
 1188: 89 75 e8 mov DWORD PTR [rbp-0x18], esi
 118b: 8b 55 ec mov edx, DWORD PTR [rbp-0x14]
 118e: 8b 45 e8 mov eax, DWORD PTR [rbp-0x18]
 1191: 01 d0 add eax, edx
 1193: 89 45 fc mov DWORD PTR [rbp-0x4], eax
 1196: 8b 45 fc mov eax, DWORD PTR [rbp-0x4]
 1199: 5d pop rbp
 119a: c3 ret

//module3/3.3/rev6.c

#include <stdio.h>
int foo(int,int);
int main(){
 int val1 = 10;
 int val2 = 20;
 int sum = foo(val1,val2);
 printf("sum is: %d\n",sum);
 return 0;
}
int foo(int a, int b){
 int out = a + b;
 return out;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Example 7: Cracking a Binary

$ objdump -M intel -d ./rev7 | grep -A 39 “<main>:”
0000000000001159 <main>:
 1159: 55 push rbp
 115a: 48 89 e5 mov rbp,rsp
 115d: 48 83 ec 10 sub rsp,0x10
 1161: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 1164: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 1168: 83 7d fc 02 cmp DWORD PTR [rbp-0x4],0x2
 116c: 75 65 jne 11d3 <main+0x7a>
 116e: 48 8b 45 f0 mov rax,QWORD PTR [rbp-0x10]
 1172: 48 83 c0 08 add rax,0x8
 1176: 48 8b 00 mov rax,QWORD PTR [rax]
 1179: 48 89 c6 mov rsi,rax
 117c: 48 8d 05 81 0e 00 00 lea rax,[rip+0xe81]
 1183: 48 89 c7 mov rdi,rax
 1186: b8 00 00 00 00 mov eax,0x0
 118b: e8 b0 fe ff ff call 1040 <printf@plt>
 1190: 48 8b 45 f0 mov rax,QWORD PTR [rbp-0x10]
 1194: 48 83 c0 08 add rax,0x8
 1198: 48 8b 00 mov rax,QWORD PTR [rax]
 119b: 48 8d 15 74 0e 00 00 lea rdx,[rip+0xe74]
 11a2: 48 89 d6 mov rsi,rdx
 11a5: 48 89 c7 mov rdi,rax
 11a8: e8 a3 fe ff ff call 1050 <strcmp@plt>
 11ad: 85 c0 test eax,eax
 11af: 75 11 jne 11c2 <main+0x69>
 11b1: 48 8d 05 68 0e 00 00 lea rax,[rip+0xe68]
 11b8: 48 89 c7 mov rdi,rax
 11bb: e8 70 fe ff ff call 1030 <puts@plt>
 11c0: eb 20 jmp 11e2 <main+0x89>
 11c2: 48 8d 05 67 0e 00 00 lea rax,[rip+0xe67]
 11c9: 48 89 c7 mov rdi,rax
 11cc: e8 5f fe ff ff call 1030 <puts@plt>
 11d1: eb 0f jmp 11e2 <main+0x89>
 11d3: 48 8d 05 6b 0e 00 00 lea rax,[rip+0xe6b]
 11da: 48 89 c7 mov rdi,rax
 11dd: e8 4e fe ff ff call 1030 <puts@plt>
 11e2: b8 00 00 00 00 mov eax,0x0
 11e7: c9 leave
 11e8: c3 ret

//module3/3.3/rev7.c

#include <string.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 if(argc==2) {
 printf("Checking License: %s\n", argv[1]);
 if(strcmp(argv[1], "kakamanna")==0)
 printf("Access Granted!\n");
 else
 printf("WRONG!\n");
 }else
 printf("Usage: <key>\n");
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

A Hello to Crack-Me CTFs (ctf1, ctf2, ctf3, ctf4)
Download these binaries from the Cyber Security course page from our course link:
https://www.arifbutt.me/courses/. For your ease I have compiled all these binaries with -ggdb option of
gcc and the symbols are not stripped from the binary using the strip utility. Perform static as well as
dynamic analysis of these binaries one by one and see if you can crack the hidden key in each of the binary.
Follow the following steps to achieve your goal:
a. Execute the binary, understand its behavior, and try your luck by giving different sample inputs.
b. Use file utility and check the details about the file type (whether it is a Linux or Windows binary,

whether it is 32-bit or 64-bit, whether data is stored in little endian or big endian and so on).
c. Use less utility and try reading the contents of the binary, and see what all information is visible.
d. Use hexdump -C utility to
e. Use ldd utility to display the shared object files that are linked with this binary.
f. Use readelf -h utility to display the header that will contain metadata about the ELF.
g. Use nm utility to display the header that will contain metadata about the ELF.
h. Use strings utility to extract/display ASCII/Unicode sequences of printable characters embedded

inside the binary.
i. Use objdump -d -M intel utility to display the disassembly of the main function and any other

user defined function.
j. Use objdump -dsj .rodata to display the strings used by printf and puts functions.
k. Use ltrace and strace to display the strings
l. Finally load the binary inside a debugger and perform dynamic analysis to understand its behavior

in depth. For complex CTFs, you cannot capture the hidden key by just using the static analysis
tools, and you have to perform dynamic analysis using some disassembler/decompiler of your choice
like gdb (PEDA/GEF), ghidra, radare2, cutter, OllyDbg, binaryninja and so on.

To Do:
ctf5: Download this binary from the Cyber
Security course page from your course link:
https://www.arifbutt.me/courses/. Perform all the
steps that we have performed to do static as well as
dynamic analysis of the binaries inside the class on
this binary as well. A sample run of the binary is
shown in the screenshot, which requires you to give
three input values, and on entering all three
correctly, it will display the message: “[+] Good
work!”
Ø Task 1: The first part of the program involves determining a hardcoded string in the main function. This is

the simplest task.
Ø Task 2: The second task involves determining a string that is XORed with a key. Your goal is to figure out

how the program obfuscates and later de-obfuscates this string. Hint: Set a breakpoint at the function
responsible for handling the obfuscated string. Step through the function, paying close attention to the XOR
operation. Identify the key used and reverse the XOR to get the original string. Inspect the function's
arguments and local variables to analyze how the obfuscated string is processed.

Ø Task 3: The third task involves determining a dynamically generated string where the case of each character
is flipped. Hint: Set a breakpoint inside the function that generates the dynamic string. Step through the
code to see how the case of each character is flipped (likely using XOR with 0x20). Inspect the program’s
memory and registers to view the generated string before and after case-flipping.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Techniques Used to Evade Static and Dynamic Analysis

Dear students, in real life you will seldom get a binary like the ones I have shared. In order to make
the binaries, harder to analyze, examine, crack, and debug, developers implement various defensive
techniques like:

• Code Obfuscation: Involves transforming the program’s structure to impede static analysis.
Techniques include string encryption (hiding sensitive strings by decrypting them at runtime),
function in-lining (replacing function calls with their actual code to increase complexity), dead code
insertion (adding irrelevant instructions to mislead analysts), and control flow obfuscation
(manipulating execution paths to obscure program logic).

• Anti-Debugging Mechanisms: Detects and disrupts debugging attempts using methods such as
blocking tracing with ptrace, process status checks (examining /proc/self/status for a nonzero
TracerPid value), and software breakpoints traps (inserting int 3 or ud2 instructions to crash
debuggers).

• Anti-Static Analysis Protections: Prevents easy disassembly and inspection by stripping
symbols (removing function names and debugging information), binary packing (compressing and
encrypting executables using tools like Ultimate Packer for Executables UPX), and code section
encryption (requiring runtime decryption to access executable code).

• Anti-Dynamic Analysis Techniques: Detects execution in controlled environments such as
sandboxes or virtual machines through system artifact checks (identifying VM-specific hardware
or registry keys), timing-based detection (measuring instruction execution time to reveal
slowdowns caused by emulation), and system call fingerprinting (observing deviations in syscall
behavior under analysis tools).

• Self-Modifying and Polymorphic Code: Implements runtime code modification (altering
instructions dynamically to disrupt pattern-based detection), polymorphism (changing instruction
sequences while preserving functionality), and metamorphism (rewriting entire code segments
across executions) to evade signature-based and heuristic analysis.

Further Learning:
• For further Learning visit https://crackmes.one/, and download crackmes, which are small

programs designed to test a hacker’s reverse engineering skill.
• You can also visit https://pwn.college/, which is an education platform for students to learn about

and practice core cybersecurity concepts in a hands-on fashion.
• Visit https://tryhackme.com/, which is an online platform designed for learning cybersecurity

through hands-on practice in an interactive gamified environment. It provides CTF-style
challenges where users solve puzzles, exploit vulnerabilities, and submit "flags" as proof of success.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and
or activities related to the material contained within this handout is solely your responsibility. The
misuse of the information in this handout can result in criminal charges brought against the persons
in question. The authors will not be held responsible in the event any criminal charges be brought
against any individuals misusing the information in this handout to break the law.

