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HO# 3.7 Mitigation Techniques for BoF 
Vulnerability 

 
Overview 
Buffer Overflow (BoF) vulnerabilities occur when a program writes more data to a buffer than it can 
hold, leading to potential overwriting of adjacent memory. This can result in crashes, data corruption, 
or security exploits, including arbitrary code execution. Various security measures and mitigation 
techniques have been developed to prevent or mitigate the risk of buffer overflows. We have 
categorized them into developer-based, OS-based, and compiler-based techniques. By employing a 
combination of these techniques, systems can be hardened against buffer overflow attacks and other 
memory corruption vulnerabilities. 

Developer-Based Techniques 
These are techniques that developers can/should use during the design and coding phases to reduce 
the chances of a buffer overflow: 
 
1. Input Validation: Always validate input data to ensure it conforms to expected lengths, types, 

and formats. For example: 
• A developer should check data lengths before copying them to buffers inside the memory. (e.g., 

strlen to ensure the length is within bounds). 
• It is always a good practice to set the size of buffer yourself, and do not let users set the length. 
• Validate user input (e.g., checking for null-termination or controlling the size of arrays). 

 
2. Use Safe C Functions: Use safer versions of functions that deal with buffers, which limit the 

amount of data written to a buffer. It is best practice to replace unsafe C functions like strcpy, 
strcat, sprintf, scanf, and gets with their safer counterparts such as strncpy, 
strncat, snprintf, fscanf, and fgets respectively, that allow you to specify buffer sizes. 
Similarly, in C++, use std::vector or std::string instead of raw arrays for dynamic memory 
management, which handles resizing and bounds checking. Moreover, while using C’s dynamic 
memory allocation (e.g., malloc, calloc, realloc, and free) functions, ensure the allocated 
buffer size is correct, avoid fixed size buffers, and initialize pointers and check for null pointers 
before dereferencing.  

 
3. Use of Safe Libraries: Instead of linking your C program with standard C library, you can use 

libsafe.so, which is a shared library that intercepts and replaces dangerous C functions known 
to cause buffer overflows. By linking your application with libsafe, it hooks into the program and 
replaces unsafe functions with safer alternatives. Although it was a useful tool, today’s compilers 
and libraries offer more integrated and modern security mechanisms.  

 
4. Use of Safer Programming Languages: Use safer programming languages if you have choice. 

For example, Rust is a modern systems programming language that enforces memory safety 
without a garbage collector. Rust’s ownership and borrowing system guarantees that common 
vulnerabilities (e.g., buffer overflows, use-after-free) do not occur.  
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OS-Based Techniques 

No-eXecute (NX) / Data Execution Prevention (DEP) 
 
Dear students buffer overflow attacks in general and code injection attacks, in particular, are possible 
due to the common memory space for both code and data (Von Neumann architecture). The buffer 
overflow attack we have discussed so far depends on the execution of the shellcode, which is placed on 
the stack. The stack is mostly used for storing data, so a $100 question is: Do we need to make 
the data memory (stack or heap) executable? and the answer is NO. For most of the regular 
applications, there is no need to give execute permissions to data memory, which will prevent code 
injection attacks and can make the BOF attacks difficult.  
 
The No-eXecute (NX) bit is a technology used in the hardware of CPUs to separate code from data. 
The Advanced Micro Devices (AMD) has introduced NX bit in x64 processors to reduce the BOF 
attacks. While using NX bit, OS marks certain regions (stack and heap) of memory as non-executable 
for security purposes. It is supported by most modern operating systems, including Windows (DEP), 
Linux (NX bit), and macOS. While compiling a C program you can set/reset it using -z flag of gcc. OR 
on Linux you can use the $ execstack -s ./a.out or $ execstack -c ./a.out command to 
execute the binary with the bit set/clear respectively in the header of ELF binary. 
 

 
 

 
How secure is this counter measure? 
Well, this will certainly defeat the technique using 
which we have exploited the BOF vulnerability by 
placing the shellcode inside the stack. However, we can 
switch control to Program’s own code, Library code, or 
OS code. Jumping to an application’s code is not very 
useful, and jumping to kernel code is not possible as it 
is protected. So, we are left with only one option and 
that is jumping to library code. The return-into-
libc attack is a category of attack, where instead of 
jumping to our injected shellcode on the stack, we jump 
to some existing library code. So, we can find some 
function (e.g., system, execve) inside the glibc 
library, which allows us to run a shell program. The main task to do in such type of attack is to find 
the address of system() function, the address of the /bin/sh program or the string itself inside the 
memory and how to pass this string to the system function. RILC attack is a subset of Return-
Oriented-Programming (ROP) attacks and focuses on calling functions already present in libc, while 
the ROP attacks actually chain smaller code gadgets. More on this later J 

//3.6/myshell.c 
#include <stdio.h> 
#include <string.h> 
int main(){ 
    char code[] = "\x31\xc0\x48\xbb\xd1\x9d\x96\x91\xd0\x8c” 
                  “\x97\xff\x48\xf7\xdb\x53\x54\x5f\x99\x52” 
                  “\x57\x54\x5e\xb0\x3b\x0f\x05"; 

    printf("Length:%d bytes\n", strlen(code)); 

    int(*foo)() = (int(*)())code; 

    foo(); 

    return 0; 
} 
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Address Space Layout Randomization (ASLR) 
Dear students, we all know that in order to launch a 
BOF attack, the attacker needs to know the stack 
address where the return address is saved, as well as 
the stack address where the malicious code is to be 
injected. If the location where the rbp register is 
pointing to in a Function Stack Frame is known to us 
or if the starting address of buffer is known to us, we 
can guess the location of the saved return address and 
thus can craft an input string that will successfully 
launch the BOF attack. A $100 question is: Do we 
need to have a fixed location for the start of the 
function stack frame? and the answer is NO. 
Address Space Layout Randomization (ASLR) is an operating system based defensive mechanism that 
protects against memory corruption vulnerabilities using a randomization strategy. ASLR is typically 
implemented at the operating system level and is supported by all modern operating systems like 
Linux, Windows, and macOS. Since, it randomizes the base addresses of stack and heap, so it makes 
the standard BOF attack that we have done quite difficult to perform. Moreover, since it also 
randomizes the addresses of shared libraries loaded in memory, so it also makes the return-into-
libc attack difficult as well.  
On Linux, one can set the ASLR setting using any of the following two commands by giving it a value 
of 0 (no randomization, 1 (partial randomization) or 2 (full randomization): 

$ sudo sysctl kernel.randomize_va_space=0 
$ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space 

 
To practically understand this, let us run the following C program multiple times with different 
settings of ASLR. The output is also shown for your understanding: 

How secure is this counter measure? 
Even with ASLR in place, an attacker could still 
perform a Return-Oriented Programming 
(ROP) attack, which allows an attacker to execute 
code by chaining together short snippets of existing 
code (called "gadgets") found in the address space of 
the program or libraries. These gadgets are usually 
small instruction sequences ending with a ret 
instruction. The attacker then crafts a payload that 
overwrites the return addresses on the stack, 
redirecting execution to the chained gadgets. More on this later J 
 
  

//3.6/aslr.c 
#include <stdio.h> 
#include <stdlib.h> 
void main(){ 
   char x[12]; 
   char* y = malloc(sizeof(char)*12); 
   printf(“Address of buffer x (on stack): 0x%z\n”, x); 
   printf(“Address of buffer y (on heap): 0x%z\n”, y); 
}    
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Compiler-Based Techniques 

Stack Canary 
Stack canary is a GCC compiler extension that is used to protect 
the application from BOF attacks by exploiting a function’s 
return address. It was first introduced in Intel x86 as a patch to 
GCC compiler version 4.1 (2006). When a program calls a 
function, the return address is pushed in the FSF, and the stack 
canary/guard (a random value) is also placed on the stack right 
after the return address. This canary value is also saved 
somewhere else in a safer place. When the function returns after 
execution, the canary value is compared to the actual value. If 
both values are the same, it means the return address is 
protected. If a buffer overflow overwrites the canary value, the 
program detects the modification and terminates before the 
attack can proceed. 
The gcc compiler from version 4.9 (2014) onwards provides 
following levels of stack protection using following flags: 
• -fstack-protector: Enables basic stack protection, 

placing a canary value on the stack to detect overflows in 
functions with local buffers (especially those that might be 
vulnerable to overflow). 

• -fstack-protector-all: Adds protection to all functions, 
not just those with local buffers.  

• -fstack-protector-strong: A middle ground between -fstack-protector and -fstack-
protector-all. It enables stack protection for functions that are more likely to be vulnerable 
(i.e., functions with local buffers or arrays), but not universally for all functions. 

• -fstack-protector-explicit: Only the functions that are explicitly marked with the 
__attribute__((stack_protector)) attribute in the code will have stack protection enabled. 

• -fno-stack-protector: Disables stack protection (useful for situations where stack protection 
causes issues or is unnecessary). 
 

Let us run a program and have a proof of this concept:  

 
The above output shows that on my gcc the stack guard/canary is by default disabled. So, when I 
compile above program using -fstack-protector-all flag, and have given it a large input, the 
program crashes, however, it will not overwrite the return address and the program will not return to 
the malicious code injected by the user.  

//3.6/canary.c 
#include <stdio.h> 
#include <string.h> 
void foo(char* str){ 
   char buff[10]; 
   strcpy(buf, str); 
} 
void main(int argc, char* argv[]){ 
   foo(argv[1]; 
   printf(“Returned properly from foo\n”); 
   return 0; 
}    
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Following screenshots display the disassembly of the function foo, after compiling with and without 
the stack guard. Compare the assembly to understand to have a clear understanding of working of 
stack guard J 
 
 

 
 
 
 
 
 
 
How secure is this counter measure? 
An attacker might use information leaks to determine the canary value (e.g., by exploiting format 
string vulnerabilities, buffer overflows, or side-channel attacks). Once the canary is known, the 
attacker can overwrite it along with the return address and proceed with exploiting the overflow. More 
on this later J 
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The Position Independent Code/Executable (PIC/PIE) 

Dear students, we have already discussed that full ASLR randomizes the addresses of code section, 
data section, stack, heap, as well as the shared libraries. The Position Independent Code (PIC) and 
Position Independent Executable (PIE) are techniques where the .text section is made position-
independent.  

• The -fPIC flag is a compilation option of gcc that generates position-independent code (object 
files) for later creation of a shared library using the –-shared flag of gcc. This allows the library 
to be loaded at any address in memory to be used by different programs. 

• The -fPIE flag is a compilation option of gcc that generates position-independent code (object 
files) for later creation of a position-independent executable using the -pie flag of gcc. Remember, 
the -pie flag is a linking option of gcc that primarily affects the text segment of the executable 
by making it position-independent, allowing it to be loaded at any address in memory. Remember, 
the -pie flag does not affect the stack or heap directly.  

In Linux implementation of ASLR, if the binary executable itself is not PIE compiled, using the -no-
pie flag of gcc, it will limit the effectiveness of ASLR. The executable’s text segment (code) may not 
be randomized. The proof of this concept is shown in the following screenshot. In the output, note that 
ASLR is randomizing the locations of stack and heap, however, when the executable is generated with 
-no-pie option, the program code is loaded at the same address each time. J 

 

 
 
 
 
 
 
 
 
 
 
 
  

//3.6/pie.c 
#include <stdio.h> 
#include <stdlib.h> 
void main(){ 
   char x[12]; 
   char* y = malloc(sizeof(char)*12); 
   printf(“Address of buffer x (on stack): 0x%z\n”, x); 
   printf(“Address of buffer y (on heap): 0x%z\n”, y); 
   printf(“Address of main (on .text): 0x%z\n”, main); 
 
}    
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The Control Flow Protection (CFP) 

Control Flow Protection works by introducing security mechanisms that prevent an attacker from 
taking control of the program's execution flow by manipulating function pointers, return addresses, or 
other control data. The protection ensures that the control flow of the program is checked at runtime, 
and any invalid or unexpected jumps (such as those caused by an attacker manipulating return 
addresses or function pointers) are blocked. The -fcf-protection flag of gcc provides a safeguard 
against following types of attacks: 
• Buffer overflow attacks leading to control flow hijacking. 
• Function pointer manipulation, where an attacker can manipulate a function pointer to point to 

malicious code. 
• Return-Oriented Programming (ROP), where attacker manipulates the return address to redirect 

the program’s execution to "gadgets" (small code snippets) 
• Jump-Oriented Programming (JOP), which is similar to ROP, but uses jumps instead of returns.  
 
The gcc compiler provides different levels of -fcf-protection with following levels: 
• -fcf-protection=none: No control flow protection is applied, which is the default. 
• -fcf-protection=ret: This applies protection only to ret instructions, which prevents 

attackers from manipulating return addresses, which is a common technique in ROP attacks. It 
ensures that the return address at the end of a function points to a valid location and not to an 
attacker-controlled location. 

• -fcf-protection=full: This is the most robust protection level, that applies control flow 
protection to all indirect branches, including function calls, returns, and other jumps (like those 
using function pointers).  

 
 

FORTIFY_SOURCE 

The -D_FORTIFY_SOURCE macro in GCC is a feature designed to provide extra protection against 
certain types of common vulnerabilities, such as buffer overflows. While compiling your program, one 
can use -D_FORTIFY_SOURCE=level macro that enables compile-time or runtime BOF detection 
depending on the protection level (for functions like strcpy, sprintf, memcpy etc.) The 
_FORTIFY_SOURCE macro can be defined with different levels, each providing different amounts of 
protection: 

• -D_FORTIFY_SOURCE=0: This is the default setting, in which there are no extra checks or 
optimizations to catch overflows or misuse of memory-related functions. 

• -D_FORTIFY_SOURCE=1: This level performs some basic compile-time checks on certain 
functions to ensure they aren't misused. 

• -D_FORTIFY_SOURCE=2: This is the most aggressive level of fortification, and increases the 
likelihood that dangerous operations (such as accessing memory beyond the bounds of a buffer) 
will trigger a compile-time or runtime error. 

 
Disclaimer 
The series of handouts distributed with this course are only for educational purposes. Any actions and 
or activities related to the material contained within this handout is solely your responsibility. The 
misuse of the information in this handout can result in criminal charges brought against the persons 
in question. The authors will not be held responsible in the event any criminal charges be brought 
against any individuals misusing the information in this handout to break the law. 


