
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 1.2
Recap of x86-64 Assembly

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● System Programming Tool Chain
● AMD x86-64 Processor Architecture
● x86-64 Assembly Instructions
● Structure of x86-64 Assembly Program
● What is a System Call?
● Why are System Calls Necessary?
● How to make a System Call in Assembly?
● What is a Library Call?
● Why use Library Calls?
● How to make a Library Call in Assembly?
● GNU Project Debugger

Instructor: Muhammad Arif Butt, PhD 3

System Programming Tools and Environment

● Processor: Intel IA-32, Intel IA-64, AMD x86-64, Microprocessor without Interlocked Pipeline Stages
(MIPS), Advanced RISC Machine (ARM), Sun Scalable Processor ARChitecture (Sun SPARC)

● Operating System: Windows, UNIX, Linux, MacOS

● Editor/IDE:

○ Text Editors: gedit, vim, notepad

○ Code Editors: Atom, Sublime, Brackets, Cursor, VS Code + GitHub Copilot

○ IDEs: Visual Studio, Code::Blocks, PyCharm, Spider, Eclipse, Xcode, Trae

● Assembler: nasm, yasm, gas, masm

● Linker: ld a GNU linker

● Loader: Default OS

● Debugging/RE: readelf, objdump, nm, strings, file, hexedit, objcopy, strip, gdb (PEDA/GEF),
valgrind, strace, ltrace, ftrace, bftrace, IDA Pro, ghidra, radare2, cutter, binaryninja

The set of programming tools used to create a program is referred to as the Toolchain.

Instructor: Muhammad Arif Butt, PhD 4

Basic Necessary Installations
• Update Package List:

$ sudo apt update

• Common Shell utilities (readelf, objdump, nm, strings, objcopy, strip) :
$ sudo apt install binutils file hexedit

• Core compilation tools + debugging + docs:
$ sudo apt install build-essential gdb git manpages-dev

• Autotools, CMake, pkg-config, assembler:
$ sudo apt install nasm autoconf automake libtool cmake pkg-config

• Common Development Libraries:
$ sudo apt install libssl-dev zlib1g-dev libncurses5-dev libncursesw5-dev

Checkout the versions:
$ uname –a [Linux kali 6.12.20-amd64]
$ gcc -–version [14.2]
$ nasm –-version [2.16]

$ gdb –-version [16.3]
$ git –-version [2.47.2]

Checkout the versions:
$ ldd –-version [GLIBC 2.41]
$ make --version [4.4.1]
$ cmake --version [3.31.6]

$ autoconf --version [2.72]
$ openssl --version [3.5.1]

Instructor: Muhammad Arif Butt, PhD

x86-64
Assembly Programming

5

Instructor: Muhammad Arif Butt, PhD 6

AMD x86-64 Processor Architecture

Instructor: Muhammad Arif Butt, PhD 7

Categories of x86-64 Assembly Instructions
Category Description Examples

Data Transfer Move from source to
destination

mov, movzx, movsx, lea, lds, lss, xchg, push,
pop, pusha, popa, pushf, popf

Arithmetic Arithmetic on integer add, addc, sub, subb, mul, imul, div, idiv, neg,
inc, dec, cmp

Bit Manipulation Logical & bit shifting
operations

and, or, not, xor, test, shl/sal, shr, sar, ror,
rol, rcr, rcl

Control Transfer Conditional and unconditional
jumps, and procedure calls

jmp
jcc(jz,jnz,jg,jge,jl,jle,jc,jnc,...)
call, ret

String Move, compare, input and
output

movsb, movsw, lodsb, lodsw, stosb, stosw, rep,
repz, repe, repnz, repne

Floating Point Arithmetic fld, fst, fstp, fadd, fsub, fmul, fdiv

Conversion Data type conversions cbw, cwd, cdq, xlat

Input Output For input and output in, out

Miscellaneous Manipulate individual flags clc, stc, cld, std, sti

Note: A discussion on the working of all of the assembly instructions is beyond the scope of this session. Interested students are advised
to go through related Video Lectures (26 – 46) from the x86-64 Assembly Programming course at the following link:

Video URL: https://www.youtube.com/playlist?list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz

https://www.youtube.com/playlist?list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz

Instructor: Muhammad Arif Butt, PhD 8

Structure of x86-64 Assembly Program
The figure describes the structure of an x86-64 assembly program in a
text file named first.nasm. We can assemble it using nasm, to get an
object file name first.o. Finally, we need to link the object file with the
standard C to make an executable named myexe, ready to be loaded inside
the memory and executed.

There are three types of statements in assembly language programming:
• x86-64 Assembly Instructions: are converted into machine code. (mov, add, sub, syscall)
• Pseudo Instruction: are not real x86 machine instructions. Some NASM specific pseudo instructions are DB, DW, RESB, RESW
• Assembler Directives: are statements that direct the assembler to do something. Some NASM specific directives are SECTION, EXTERN,

GLOBAL, BITS

An assembly program is normally divided into three sections:
• SECTION .data: All initialized data like variables and constants are

placed in the .data section
• SECTION .bss: All uninitialized data is declared in the .bss section

(Block Storage Start)
• SECTION .text: This is actually the code section, and it will always include at least one label named _start or main, that defines the

initial program entry point. The Linux linker ld(1), expect the program entry point label with the name of _start, while gcc(1) expect
the program entry point label with the name of main. The global directive is used to define a symbol, which is expected to be used by
another module using the extern directive. The extern directive is used to declare a symbol which is not defined anywhere in the module
being assembled, but is assumed to be defined in some other module.

Instructor: Muhammad Arif Butt, PhD

What is a System Call

9

Instructor: Muhammad Arif Butt, PhD

What is a System Call?

A programmatic way for a computer program to request a service from
operating system (OS) kernel is to make a System Call. It's a controlled entry point

that allows user programs to interact with the kernel and access resources or perform
actions that require special privileges.

10

Instructor: Muhammad Arif Butt, PhD

Why are System Calls Necessary?
• The two methods using which a program can request the

operating system to perform a service like printing on screen or
reading from keyboard and so on are:
o By making a system call
o By making a library call

• A system call is a controlled entry point into the OS code,
allowing a process to request OS to perform a privileged
operation

; comment

SECTION .data
msg db "Learning is fun with Arif", 0xA

EXIT_STATUS equ 54

SECTION .bss
;nothing here yet

SECTION .text
global _start

_start:

;display a message on screen

mov rax,1

mov rdi,1

mov rsi,msg

mov rdx,26

syscall

;exit the program

mov rax,60

mov rdi, EXIT_STATUS

syscall

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

System
Calls ID

read() 0

write() 1

open() 2

close() 3

getpid() 39

shutdown() 48

fork() 47

exit() 60

List of available System Calls
• Every OS has its own set of system calls
and every system call has an associated ID

• On my Intel Core i7 CPU, running Kali
Linux 6.12, there are a total of 462 system
calls, whose IDs can be seen from the file
/usr/include/x86_64-linux-gnu/asm/unistd_64.h

11

Instructor: Muhammad Arif Butt, PhD

How to make a System Call?
; comment

SECTION .data
msg db "Learning is fun with Arif", 0xA

EXIT_STATUS equ 54

SECTION .bss
;nothing here yet

SECTION .text
global _start

_start:

;display a message on screen

mov rax,1

mov rdi,1

mov rsi,msg

mov rdx,26

syscall

;exit the program

mov rax,60

mov rdi, EXIT_STATUS

syscall

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

• Depending on your processor architecture, you need to place the system
call ID and arguments inside appropriate registers. Then you need to call
the specific instruction to make the system call. Once the system call
returns the return value can also be found inside a specific register as
shown in the table below:

Architecture System call ID Instruction Return Value
X86_64 rax syscall rax

80386 eax int 0x80 eax

ARM r7 svc 0 r7

ARM-64 x8 svc 0 r8

• For Linux running on x86_64 processor, first six integer arguments are
passed via rdi, rsi, rdx, r10, r8, r9 registers and remaining (if
any) are pushed on the stack.

• For MS Windows running on x86-64 processor, first four integer arguments
are passed via rcx, rdx, r8, r9 registers and remaining (if any) are
pushed on the stack.

• The Linux kernel interface avoids passing floating-point types to system
calls as they are designed to work with integer types, pointers, and flags.

12

Instructor: Muhammad Arif Butt, PhD

How to make a System Call? (cont…)
How to Display a Messsage on Screen

int write(int fd, void *buf, int count);

ID of write() system call rax 1

arg1 (file descriptor) rdi 1

arg2 (address of string) rsi msg

arg3 (length of string) rdx 26

How to Terminate the Program
void exit(int status);

ID of exit() system call rax 60

arg1 (exit status) rdi 54

; comment

SECTION .data
msg db "Learning is fun with Arif", 0xA

EXIT_STATUS equ 54

SECTION .bss
;nothing here yet

SECTION .text
global _start

_start:

;display a message on screen

mov rax,1

mov rdi,1

mov rsi,msg

mov rdx,26

syscall

;exit the program

mov rax,60

mov rdi, EXIT_STATUS

syscall

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

13

Instructor: Muhammad Arif Butt, PhD

System Call

Lec1.2/syscalls.nasm

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

14

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

What is a Library Call

15

Instructor: Muhammad Arif Butt, PhD

What is a Library Call?

A request made by a program to use a specific function or set of functions that are
stored in a pre-compiled library.

(It acts as a wrapper around system calls to provide user-friendly interfaces)

16

Instructor: Muhammad Arif Butt, PhD

Why Use Library Calls?
• Convenience: Easier syntax, handles formatting and buffering.
• Portability: Same library code may work across platforms.
• Functionality: Combines multiple syscalls for complex tasks.
• Examples:

○ printf() - to display formatted output
○ fopen() - to open a file associating with a stream
○ malloc() - for dynamic memory allocation
○ read() - to read data from a file or input stream

17

Instructor: Muhammad Arif Butt, PhD

How Library Call Work?
● Program calls a library function (e.g., printf())
● The library processes arguments (e.g., formats string).
● It may eventually uses a system call like write() to display text.
● Control never leaves user mode until the system call is invoked.

Application Code

System Functions

Kernel

Computer Hardware

Library
Functions

18

Instructor: Muhammad Arif Butt, PhD

How to make a Library Call?
; comment

SECTION .data
msg db ”A hello to C library functions", 0xA

EXIT_STATUS equ 54

SECTION .bss
;nothing here yet

SECTION .text
global main

extern printf, exit

main:

;display a message on screen

lea rdi, msg

xor rax, rax

call printf

;exit the program

mov rdi, EXIT_STATUS

call exit

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

• An x86-64 machine running Linux make a library call (user space
function) using the System V AMD64 ABI. The first six integer
arguments are placed inside rdi, rsi, rdx, rcx, r8, r9
registers and remaining (if any) are pushed on the stack, finally you
make the call instruction to shift the control of execution to the
library function. In case of floating-point arguments, the first eight
are passed via xmm0 – xmm7 registers, rest are passed via stack. In
case of integer return value it is saved in rax register, and the
floating-point return value is stored in xmm0 register.

Note: The fourth argument in case of library call is stored in rcx, while in case of system call it is stored
in r10. This is because, the syscall instruction clobbers the rcx register (it stores the return address
there), so the system call convention had to use r10 to avoid this conflict.

• An x86-64 machine running Windows makes a library call using
the Microsoft x64 calling convention. The first four integer
arguments are placed inside rcx, rdx, r8, r9 registers and
remaining (if any) are pushed on the stack. In case of floating-point
arguments, the first four are passed via xmm0-xmm3 registers, rest
are passed via stack. In case of integer return value it is saved in
rax register, and the floating-point return value is stored in xmm0
register.

19

Instructor: Muhammad Arif Butt, PhD

How to make a Library Call? (cont…)
; comment

SECTION .data
msg db ”A hello to C library functions", 0xA

EXIT_STATUS equ 54

SECTION .bss
;nothing here yet

SECTION .text
global main

extern printf, exit

main:

;display a message on screen

lea rdi, [msg]

xor rax, rax

call printf

;exit the program

mov rdi, EXIT_STATUS

call exit

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

• The global directive is used to define a symbol, which is
expected to be used by another module using the extern
directive. The extern directive is used to declare a symbol
which is not defined anywhere in the module being assembled,
but is assumed to be defined in some other module.

• Before calling the printf function, we need to place the first
argument to printf inside the rdi register. Similarly, before
calling the exit function, we need to place its first argument
inside the rdi register.

• Since, printf is a variadic function, and it can be passed
integer arguments as well as floating point arguments. In the
x86-64 System-V calling convention, the rax register is used to
specify the number of floating-point arguments passed to a
function via vector registers (xmm0, xmm1, etc.). Since in the
sample code, no floating-point arguments are passed to printf
function, so raxmust be set to 0. This ensures that the printf
function knows that it doesn't need to fetch any values from the
xmm registers.

20

Instructor: Muhammad Arif Butt, PhD

Library Call
Lec1.2/libcalls.nasm

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

21

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

System Call vs Library Call
Aspect System Call Library Call

Definition A privileged operation that requires a transition from user
mode to kernel mode to access operating system services

A function provided by programming libraries that
executes in user space (may or may not call a system call)

Execution Mode Executes in kernel mode with full system privileges and
hardware access

Executes entirely in user mode with restricted access to
system resources

Mode Transition Requires special instructions to switch from user mode to
kernel mode and back

No mode transition required and remains in user mode
throughout execution

Performance Slower execution due to context switching overhead and
security validations like Spectre protection

Faster execution as there is no mode switching or context
switching overhead

Implementation Implemented in the kernel and provides direct interface to
operating system services

Often implemented as wrappers around system calls or as
standalone user-space functions

Security &
Privileges

Runs with kernel privileges and includes
permission/security validations

Runs with the calling process's privileges and typically has
no additional security considerations

Portability System-specific and closely tied to the underlying operating
system

Generally more portable across different systems and
platforms

Use Cases Essential for operations requiring kernel services: file I/O,
process management, memory allocation, network
operations

Utility functions, data processing, mathematical
operations, string manipulation

Examples open(), read(), write(), fork(), exec() fopen(), printf(), malloc(), strcpy()

22

Instructor: Muhammad Arif Butt, PhD

User Defined Function
;1.2/funccalling.nasm
SECTION .data
msg db “OS course is fun!”, 0

SECTION .text
global main
extern printf, exit
main:
call printmsg
mov rdi, 0
call exit

printmsg: ; display msg2 on screen
lea rdi, [msg]
xor rax, rax
call printf
ret

$ nasm -f elf64 -g funccalling.nasm
$ gcc -no-pie -g funccalling.o
$./a.out
OS course is fun!
$./a.out
5

23

Instructor: Muhammad Arif Butt, PhD

Conditional Jump
;1.2/condjump.nasm
SECTION .data
msg1 db “Negative Number!”, 0
msg2 db “Positive Number!”, 0
SECTION .text
global main
extern printf, exit
main:

mov ax, -5d
cmp ax, 0
jge _positive
lea rdi, [msg1] ; display msg1 on screen
xor rax, rax
call printf
jmp _end

_positive: ; display msg2 on screen
lea rdi, [msg2]
xor rax, rax
call printf

_end: ; exit the program gracefully
mov rdi, 0
call exit

$ nasm -f elf64 -g condjump.nasm
$ gcc -no-pie -g condjump.o -o myexe
$./a.out
Negative Number!

24

Instructor: Muhammad Arif Butt, PhD

Library Call
Lec1.2/funccallling.nasm
Lec1.2/condjump.nasm
Lec1.2/uncondjump.nasm

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

25

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Running Assembly with
gdb (GEF)

26

Instructor: Muhammad Arif Butt, PhD

GNU Project Debugger (GDB)
A debugger is a program running another program allowing you to see what is going on inside
another program while it executes, or what another program was doing at the moment it crashed.
There exist different types of debuggers like GNU gdb (PEDA/GEF), IDA Pro, radare2,
cutter, ghidra, OllyDbg, binaryninja, ptrace, strace, ltrace, ftrace,
bpftrace and so on. Using a debugger, a programmer can:
• Start a program, specifying anything that might affect its behavior.
• Make a program stop on specified conditions.
• Examine what has happened, when a program has stopped/crashed.
• Change things in a program, so you can experiment with correcting the effects of one bug and go on to

learn about another.
• Last but not the least, can be used for run time analysis of binaries, disassembly, reverse engineering and

cracking binaries.
• We will be using GDB, the GNU Project debugger that can debug a program running on the same machine

as GDB (native), or may be another machine (remote), or may be on a simulator.
• GDB is a portable debugger that can run on the most popular UNIX and Microsoft Windows variants, as

well as on Mac OS X. The target processors include IA-32, x86-64, arm, mips, powerpc, sparc, alpha and
many others. GDB works for many programming languages including Assembly, C/C++, Objective C,
OpenCL, Go, Modula-2, Fortran, Pascal and Ada.

27

Instructor: Muhammad Arif Butt, PhD

Summary of GDB Commands
Commands Description
$ nasm –g -felf64 prog1.nasm To load and properly analyze a program in gdb you need to compile it with –g option, to instruct

the compiler to keep debugging symbols, source file names and line numbers in the object files
$ gdb
(gdb)file myexe
$ gdb myexe

There are two ways to load a binary inside gdb by either running gdb command and then
specifying the binary name with the file command. Or by specifying the binary name as an
argument to gdb.

(gdb)quit Exits the current session of gdb.
(gdb)help
(gdb)help <classname>
(gdb)help <command>

The help command of gdb is used to display the listing of twelve different classes in which gdb
commands are categorized. You can also specify the classname (breakpoints, running, stack, …)
or the command to get help about it.

(gdb)run [arg1 arg2 …]
(gdb)set args arg1 arg2 …
(gdb)run

Once the program is loaded and gdb is running, you can pass command line arguments to the
binary using the run command of gdb. Or can use the set command instead and later use the
run command.

(gdb)info sources/functions
(gdb)info registers/all
(gdb)info sharedlibrary
(gdb)info address <function name>

Once a program is loaded inside gdb, you can use the info command to display the name of all
the source files from which symbols have been read in, name of functions, global variables, name
of local variables inside a FSF, and the CPU registers.

(gdb)disassemble
(gdb)disassemble <function name>
(gdb)set disassembly-flavor intel

Disassembles the current function or code segment. By default, gdb disassembles in AT&T
format, to change the format to intel, use the set disassembly-flavor command.

(gdb)break <filename>:<line#>
(gdb)break <filename>:<func-name>
(gdb)break <filename>:*0x2xfff0500

Breakpoint is the LOC in your program where you want to stop the execution. You can set as
many break points as you feel like using the break command of gdb by mentioning the line#,
function name, or by virtual address

28

Instructor: Muhammad Arif Butt, PhD

Summary of GDB Commands (cont…)
Commands Description
(gdb)info break
(gdb)delete <breakpoint#>
(gdb)clear <breakpoint#>

To get the information about the existing breakpoints already set in your program, you can use
the info command. Moreover, you can disable, enable, delete, and clear breakpoints.

(gdb)watch <variable name>
(gdb)info watch
(gdb)clear <watchpoint#>

Like breakpoints, we can set watchpoints on variables. Whenever the value of that variable will
change, gdb will interrupt the program and print out the old and the new value. Moreover, you
can disable, enable, delete and clear watchpoints.

(gdb)continue / c / ci
(gdb)next / n / ni
(gdb)step / s / si
(gdb)finish

Once a breakpoint is hit, you can do the following:
o c: Continue till the next breakpoint or end of program.
o n: Execute and move to next instruction, but don’t dive into functions.
o s: Execute and move to next instruction, by diving into functions.
o finish: Continue until the current function returns.

(gdb)print /format-char <var-name> Once a breakpoint is hit during execution of a program, you can inspect contents of variables
using the print command in the specified format (/d is for signed decimal, /x for printing as
hex, /o for printing as octal, /t for printing as binary, /f for floating point number, /s for C-
string, /a for address). You can also use the display command that displays the value of
variable, each time the program stops.

(gdb)set variable var1 = <value>
(gdb)set $rdi = 0x7fff12345678

Once a breakpoint is hit during execution of a program, you can use the set command to modify
the value of a variable or register.

(gdb)x/12cb <address>
(gdb)x/12db &var1
(gdb)x/4xb *0x601000
(gdb)x/32b $rsp

Once a breakpoint is hit during execution of a program, the examine command or its alias x is
passed a memory address to display its contents. It is optionally followed by a forward slash (/)
and then a count field, which is a number in decimal, a format field, which is a single letter
with d for decimal, o for octal, x for hex, t for binary, c for ASCII, and s for string a size field,
which is single letter with b for byte, h for 16-bit word, w for 32-bit word and g for 64-bit word.

(gdb)! clear To run the OS shell commands inside gdb, you can precede the command with a ! symbol.
29

Instructor: Muhammad Arif Butt, PhD

GDB with GEF Plugin
• GNU GDB is too good a debugger, however, it lacks intuitive interface, do not have a smart
context display, do not have commands for exploit development, and has weak scripting support.
So, to enhance the fire power of gdb for analyzing, exploiting and doing reverse engineering on
executables, one can use:
o a gdb plug-in called PEDA (Python Exploit Development Assistance)
o a gdb plug-in called GEF (GDB Enhanced Features)

Installation of PEDA: https://github.com/longld/peda
PEDA is available only on Linux and supported by gdb 7.x and Python 2.6 onwards. In order to install PEDA plugin
for gdb, you simply have to download or clone its repository and then update the .gdbinit file in your home directory:

$ git clone https://github.com/longld/peda.git ~/peda
$ echo “source ~/peda/peda.py” >> ~/.gdbinit

Installation of GEF: https://github.com/hugsy/gef.git
On the same grounds, if you want to install GEF plugin for gdb, you simply have to download it and then update
the.gdbinit file in your home directory as shown below:

$ git clone https://github.com/hugsy/gef.git ~/gef
$ echo “source ~/gef/gef.py” >> ~/.gdbinit

30

https://github.com/longld/peda
https://github.com/longld/peda.git
https://github.com/hugsy/gef.git
https://github.com/hugsy/gef.git

Instructor: Muhammad Arif Butt, PhD

Debugging C Program inside GEF
1

2

3

4
31

Instructor: Muhammad Arif Butt, PhD

GDB with GEF Plugin (cont…)
1. Registers Panel: The Registers Panel in GEF displays the current values of the CPU registers/flags,

providing an organized and easily readable view. It helps in analyzing the state of the CPU, tracking changes
in register values, and debugging at a lower level. It does not show the floating-point registers, however, you
can view the contents of all registers, use the info all command of gdb.

2. Stack Panel: The Stack Panel displays top of the call stack, which includes a list of function calls that are
currently active. This is really beneficial to understand the current Function Stack Frame of a function.
Remember, the top of the stack is displayed at the top of this panel, where the rsp register is pointing.

3. Code Panel: The Code Panel displays the assembly code along with the virtual addresses. The line currently
being executed or where the breakpoint is set is typically highlighted or marked to provide a clear point of
focus.

4. Source Panel: This panel displays the corresponding high level language code, with the current LOC
highlighted. This way you can corelate the high-level code with its corresponding assembly.

5. Threads & Trace Panels: This provides information about the threads in a multithreaded program,
including their states and stack traces.

Note: To configure the panels to be displayed, you can use the following command inside gef:
gef> gef config context.layout “regs stack code source”

32

Instructor: Muhammad Arif Butt, PhD

Running Assembly
inside GDB

Lec1.2/gdb/movingdata.nasm
Lec1.2/gdb/arithmetic.nasm
Lec1.2/gdb/logical.nasm
Lec1.2/gdb/bitshift.nasm
Lec1.2/gdb/bitrotate.nasm
Lec1.2/gdb/stack.nasm

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes
33

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 34

To Do

Coming to office hours does NOT mean that you are academically weak!

• Install the required tool chain discussed in today’s session on your Linux
system.

• Watch COAL videos on x86-64 Assembly:
https://www.youtube.com/watch?v=sg3GIXvS36w&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=29&t=1s
https://www.youtube.com/watch?v=aed7-FDu0qg&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=30&t=2s
https://www.youtube.com/watch?v=9vkRSkS26_k&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=31&t=3s
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=32&t=467s

• Watch GDB video for Assembly:
https://www.youtube.com/watch?v=WgGogyMcM7s&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=41

https://www.youtube.com/watch?v=sg3GIXvS36w&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=29&t=1s
https://www.youtube.com/watch?v=aed7-FDu0qg&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=30&t=2s
https://www.youtube.com/watch?v=9vkRSkS26_k&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=31&t=3s
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=32&t=467s
https://www.youtube.com/watch?v=WgGogyMcM7s&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=41

