
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 1.3
C-Compilation Toolchain: Static and Dynamic Libraries

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● C Compilation Process & its Tool Chain

● Static vs Dynamic Linking
● Multi-File C Compilation
● Loading and Executing a Program
● Creating & using your own Static Libraries
● Creating & using your own Dynamic

Libraries
● PLT and GOT
● GDB with PEDA/GEF

Instructor: Muhammad Arif Butt, PhD 3

System Programming Tools and Environment

● Processor: Intel IA-32, Intel IA-64, AMD x86-64, Microprocessor without Interlocked Pipeline Stages
(MIPS), Advanced RISC Machine (ARM), Sun Scalable Processor ARChitecture (Sun SPARC)

● Operating System: Windows, UNIX, Linux, MacOS

● Editor/IDE:

○ Text Editors: gedit, vim, notepad

○ Code Editors: Atom, Sublime, Brackets, Cursor, VS Code + GitHub Copilot

○ IDEs: Visual Studio, Code::Blocks, PyCharm, Spider, Eclipse, Xcode, Trae

● Assembler: nasm, yasm, gas, masm

● Linker: ld a GNU linker

● Loader: Default OS

● Debugging/RE: readelf, objdump, nm, strings, file, hexedit, objcopy, strip, gdb (PEDA/GEF),
valgrind, strace, ltrace, ftrace, bftrace, IDA Pro, ghidra, radare2, cutter, binaryninja

The set of programming tools used to create a program is referred to as the Toolchain.

Instructor: Muhammad Arif Butt, PhD

C Compilation Process
& its Tool Chain

Video Lecture: https://youtu.be/a7GhFL0Gh6Y?si=63ZfsCCN_9jiBrG3

4

https://youtu.be/a7GhFL0Gh6Y?si=63ZfsCCN_9jiBrG3

Instructor: Muhammad Arif Butt, PhD 5

module1/1.2/hello/hello.c

#include <stdio.h>

int main() {

printf("Hello World.\n");

return 0;

}

The C compilation process transforms source code into an
executable in four phases—preprocessing, compiling,
assembling, and linking.

Instructor: Muhammad Arif Butt, PhD

C Compilation
Step-by-Step

Lec1.3/hello/hello.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

6

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 7

Preprocessing
• The preprocessing step handles pre-processor directives, and remove comments.
• The pre-processor directives are not part of the C language but are used to perform operations
before the actual compilation begins.

• The result of preprocessing is a preprocessed source file, which is usually saved with .i or .ii
extension.

• The pre-processor directives perform following tasks:
a. File Inclusion: #include directives are replaced with the contents of the specified files. This
is typically used to include header files, whose default location is /usr/include/.

b. Macro Expansion: #define macros are expanded to their defined values or code snippets.
c. Conditional Compilation: #ifdef, #ifndef, #else, #elif, and #endif are used to
include or exclude parts of the code based on certain conditions.

$ gcc –E hello.c -I ./ 1> hello.i

Instructor: Muhammad Arif Butt, PhD 8

Compiling
• The compiler takes the preprocessed source code (.i) and translates it into assembly code for the underlying

architecture and generate the output file(s) with .s or .asm extension.
• This step involves several key activities like syntax analysis, semantic analysis, optimization, and

code generation.
• During compilation, we can mention the following (default settings depends on the gcc version):

o C-Standard to use: The C programming language has several standard versions, that are aimed to
unify various implementations of C and ensure code portability across different platforms. The most
commonly used ones are K&R C, c89/90, c95, c99, c11, c18, c23.

o Optimization Level: Use -O0, -O1, -O2, -O3, -Ofast, -Os, -Og flags, which instruct the
compiler to optimize the generated machine code for performance, size, or a balance of both.

o Generate Code for Specific Architecture: Use -m32 or -m64 flags, to instruct gcc to generate code
for specific architecture, which affects the size of pointers, integer types, and function calling
conventions used in the generated binary. By default, gcc generates 64-bit binaries on a 64-bit Linux
system. If you want to generate 32-bit binary, you need to have the 32-bit libraries and development
tools installed on your system. On Debian-based systems like Ubuntu, you can install the necessary
packages by installing gcc-multilib package, and then need to mention the -m32 option during
compilation, assembling and linking phases.

$ gcc –S hello.i -std=c18 –Ofast -m64

Instructor: Muhammad Arif Butt, PhD 9

Assembling
• The assembler converts the assembly code into machine code, which is an object file, typically with .o or

.obj extension. Moreover, the assembler resolves symbolic names (e.g., variable names) to actual memory
addresses and generates a symbol table. If you want to include debugging symbols, so as to load this file
inside a debugger, use –ggdb option.

• In Linux, object files can be classified based on their formats and usage:
o Relocatable object file (.o file) is a file generated by a compiler or assembler that contains machine

code, data, and metadata, but is not yet a complete executable or library. Object files are intermediate
files that are linked together to produce final executables or shared libraries. They are crucial in the
software build process, allowing modular development and incremental compilation. Each .o file is
produced from exactly one .c file.

o Executable object file (a.out file) Contains binary code and data in a form that can be copied directly
into memory and executed. Linkers generate executable object files.

o Shared object file (.so file) A special type of relocatable object file that can be loaded into memory and
linked dynamically, at either load time or run time. Called dynamic link libraries (.dll) in Windows.
Compilers and assemblers generate shared object files.

o Core file: A disk file that contains the memory image of the process at the time of its termination. This
is generated by system in case of abnormal process termination.

$ gcc –c –ggdb hello.s

Instructor: Muhammad Arif Butt, PhD 10

Linking
• The linking phase combines object files and libraries into a single executable file with a specific format (e.g.,

ELF on Linux, PE on Windows). This format includes headers (containing information about how to load the
executable into memory) and sections for code, data, and metadata. The .text sections from multiple object
files are combined into a single .text section in the executable. Similarly, the .data and .bss sections from
multiple object files are merged, with .data holding initialized data and .bss holding uninitialized data.
Moreover, since every .o file has its own symbol table, so if the same symbol (e.g., a function or variable) is
defined in multiple object files, the linker must resolve which definition to use.

$ gcc hello.o –o dynamic-exe -lc

$ gcc --static hello.o –o static-exe -lc

• For x86_64 architecture running Linux, the
standard C library along with other libraries resides
in /usr/lib/x86_64-linux-gnu/ directory.
These libraries come into two flavors:
o Static Linking (/usr/lib/x86_64-linux-gnu/libc.a)

o Dynamic Linking (/usr/lib/x86_64-linux-gnu/libc.so)

Instructor: Muhammad Arif Butt, PhD 11

Static Linking vs Dynamic Linking
Aspect Static Linking Dynamic Linking
Definition Library code is copied into your executable file

at compile time
Library code is loaded into memory at run time

Linking Time Occurs during compilation/build process Occurs at program startup (load time) and potentially
during execution

File Structure Single monolithic executable containing all
dependencies

Executable with references to external shared libraries
(.so/.dll files)

Executable Size Significantly larger (includes complete library
code)

Smaller (contains only library references and linking
metadata)

Memory Usage
(Single Process)

Uses less runtime RAM because only functions
you actually need are loaded

Higher per-process memory usage as entire shared
objects are loaded

Memory Usage
(System-wide)

Higher, since each process contains duplicate
library code

More efficient as system libraries are loaded into
memory only once and shared by all processes

Startup
Performance

Faster execution because we don't have to run
the query for unresolved symbols at runtime

Slightly slower due to dynamic symbol resolution and
library loading overhead

Update &
Maintenance

For updated library versions, you need to re-
compile and re-link

For updated library versions, no need to re-compile,
just re-link

Portability Runs on any binary-compatible system Shared library need to be present on target system
Version
Management

No runtime version conflicts (libraries frozen
at compile time)

Potential for version conflicts and dependency issues
("DLL Hell")

Instructor: Muhammad Arif Butt, PhD 12

Loading and Executing a Program
• The ./ before the program name actually specifies that the loader should look for the program file in the current working

directory. Otherwise, the loader will look for the program inside the directories mentioned inside the PATH variable, which
is an environment variable that contains colon separated absolute path names of the directories where the shell look for the
executables.
o A process is created using fork() / clone() system call that create a nearly exact copy of the parent process.
o The program binary (a.out) is loaded inside the child process usually using the execve() system call.
o The binary is initialized, using constructors/functions that are there in every ELF, e.g., libc initialize memory regions for dynamic

allocations when the program is initialized.
o A normal ELF automatically calls __libc_start_main() in libc, which in turn calls the program's main() function and your code

starts running.
o The binary reads its input from the outside world, from command-line arguments and environment variables.
o The binary code executes and does what the developer has coded it for.
o The binary terminates by either receiving an unhandled signal or by calling the exit() system call. After termination, the process will

remain in a zombie state until they are wait()ed on by their parent. When this happens, their exit code will be returned to the parent,
and the process will be freed. If their parent dies without wait()ing on them, they are re-parented to the init/systemd process and
will stay there until they’re cleaned up.

• The program’s return value (often called the exit status or exit code) indicates whether the program completed successfully
or if an error occurred. This value is returned to the parent process (shell in our case) when the program finishes execution.
By convention, a return value of 0 typically indicates that the program was executed successfully. Any non-zero return value
usually indicates that an error occurred, specifying the type of error. In Linux Bash shell, you can check the return value of
the last executed program inside the environment variable $?. In Linux and other Unix-like operating systems, the exit
status of a process is represented as an 8-bit integer. This means that the exit status is effectively limited to values between
0 and 255. However, the convention is that exit statuses above 127 are reserved for special purposes related to process
termination via signals. More on this later…. J

Program Loading is a process of copying a program from disk to main memory in order to make it a process

Instructor: Muhammad Arif Butt, PhD 13

Making System Calls Directly & via wrappers
• System calls are the primary interface for user programs to request kernel services, which can be made:

o Using system call wrappers:
Ø The write() function is a C library wrapper in the glibc library.
Ø It performs argument validation and type checking.
Ø May do additional processing (buffering, signal handling).
Ø Eventually makes the actual system call via assembly (syscall instruction).
Ø Handles return values and sets errno appropriately.

o Using direct syscall() function:
Ø The syscall() system call is a direct interface to the kernel’s system call mechanism.
Ø Minimal overhead (almost direct kernel call)
Ø No additional validation or processing by glibc
Ø Raw Kernel interface

• Use system call wrapper for normal application development, cross-platform code and when you want library benefits.
• Use direct syscall() when, wrapper doesn’t exist, writing performance critical code, for educational purposes.

//Lec-1.3/syscalls/wrapper.c
#include <unistd.h>
int main(){

char str[] = “Welcome students!\n”;
int rv = write(1, str, sizeof(str)));
return rv;

}

//Lec-1.3/syscalls/syscall.c
#include <unistd.h>
int main(){

char str[] = “Welcome students!\n”;
int rv = syscall(1, 1, str, sizeof(str));
return rv;

}

/usr/include/x86_64-linux-gnu/asm/unistd_64.h

int write(int fd, void *buf, int count); long syscall(long ID,…);

Instructor: Muhammad Arif Butt, PhD

Making System
Calls in C

Lec1.3/syscalls/wrapper.c
Lec1.3/syscalls/syscall.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

14

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 15

Compiling Multi-File C Program
main.c has the entry point of the shell

parser.c has the code
for parsing user input and
command tokenization

executor.c has the code
to execute the parsed
commands

builtins.c has the code
that implements the
built-in commands (cd,
exit, export)

signal.c has the code for
handling signal-related
functionality (Ctrl+C)

env.c has the code for managing
environment variables

jobs.c has the code that
manages background and
foreground jobs

Instructor: Muhammad Arif Butt, PhD

C Compilation
Multi-Files

Lec1.3/multifile/*.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

16

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Program vs Process

17

Instructor: Muhammad Arif Butt, PhD

Mapping of C source into Process address space

18

Instructor: Muhammad Arif Butt, PhD

A Program on Disk
• A program file contains all the necessary data to create a process when

loaded into memory.
• Different operating systems use different formats for executable files,

e.g., a.out, COFF, PE, and ELF.
• On most modern UNIX and Linux systems, the ELF (Executable and

Linkable Format) is the standard format for executables, object code,
shared libraries, and core dumps.

• An ELF file is divided into logical parts that serve different roles in
building and running a program.

• The major components of an ELF file include:
o ELF Header: Contains overall information about the binary, like

file type, target architecture, and entry point address.
o Program Headers / Segments: Breakdown the structure of an

ELF binary into suitable chunks to prepare the executable to be
loaded into memory. Needed at run time.

o Section Headers / Sections: Comprise all the information
needed for linking the object file into working executable describes
sections like .text (code), .data (variables), .symtab (symbol table),
and more.

19

Instructor: Muhammad Arif Butt, PhD 20

Reading and Viewing Contents of Object Files
We have covered all four phases of the C Compilation process, and generated all the intermediate files
(preprocessed file, assembly file, object file) and the final executable. We have already read the contents of
preprocessed file with .i extension and the assembly file with .s extension, however, we haven’t checked the
contents of relocatable object files and final executable. You can’t view the contents of these files using normal
programs like cat and less. To deal with the object and executable files in Linux, you can use the following
utilities:
• readelf utility is used to display information about ELF files.
• objdump utility is used to disassemble and inspect object files, executables and libraries.
• nm utility is used to display the symbol table of object files, executables and libraries.
• strings utility is used to extract/display the ASCII/Unicode text embedded in binary files.
• file utility is used to determine the type of a file by inspecting the file’s header.
• ldd utility is used to display the shared libraries with which the final executable is linked.
• strip utility is used to discard/remove symbols and debugging info from binaries.
• objcopy utility allows you to modify object files by copying them with alterations, such as stripping sections,

changing formats, and extracting specific parts of the file.
• checksec utility is used to analyze security features of binaries and shows which exploit mitigation features

are enabled/disabled in a binary (NX, PIE, Canary, RELRO, FORTIFY)

Instructor: Muhammad Arif Butt, PhD 21

Inspecting Object Files using readelf
The readelf is a command-line utility used to display detailed information of Executable and Linkable Format
(ELF) files on Linux and other Unix-like operating systems. ELF is the standard file format for executables,
object code, shared libraries, and core dumps in Linux. You can view the man page of readelf to get more
information. $ readelf -[option] hello.o
• The -a option displays all available info about the elf file,

including headers, sections, segments and symbols
• The -S option displays different section headers (.text,

.plt, .got, .data, .rodata, .bss etc) of the ELF file.
• The -s option displays the symbol table (function/variable

names with addresses)
• The -h option displays information about ELF header,

that contains metadata about the ELF file, such as:
o Magic Number starts with 0x7F 45 4C 46 specifying

that it is an ELF file. The 02 after that specifies the
class of binary (64-bit). The 01 after that specifies data
encoding (little-endian). The last 01 specifies the ELF
version.

o File type (Executable, Shared Library, or Object File)
o Target architecture (e.g., x86-64, ARM)
o Entry point address (where execution starts)
o Offset locations for different sections

Instructor: Muhammad Arif Butt, PhD 22

Inspecting Object Files using objdump
The objdump is more general-purpose tool as compared to readelf, that is used for disassembling
and inspecting binary files and works on multiple object formats like ELF, PE, COFF etc. It is
particularly useful for debugging, analyzing binaries, and understanding how code is translated into
machine instructions. By default, it displays the disassembly in AT&T format.

$ objdump -[option] -M intel hello.o

• The -f option displays the file header information (architecture, format, entry point, etc)

• The -h option displays information about the section headers, such as their sizes and offsets.

• The -t option displays the symbol table (function/variable names with addresses).

• The –d [-M intel] option disassembles only the executable sections (e.g., .text)

• The -D [-M intel] option disassembles all sections, including the non-executable ones.

Instructor: Muhammad Arif Butt, PhD 23

Inspecting Dynamically Linked Files using ldd
The ldd is a command-line utility used on Linux and other Unix-like operating systems to display
the shared library dependencies of an executable or shared library. It shows which dynamic libraries
an executable or shared library relies on, helping you understand the runtime requirements and
ensuring that all necessary libraries are available on the system. To show the shared libraries
required by an executable or shared library:

$ ldd ./dynamicexe

• linux-vdso.so.1 is a virtual dynamic shared object.
• libc.so.6 is the C standard library.
• /lib64/ld-linux-x86-64.so.2 is the dynamic linker/loader.

Instructor: Muhammad Arif Butt, PhD

Inspect Binaries

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

readelf, objdump, nm,
strings, file, ldd,
strip, objcopy,
checksec

24

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Creating Your Own
Static Library

25

Instructor: Muhammad Arif Butt, PhD 26

Creating Your Own Static Library
Creating a static library involves combining object files into a single archive using the ar tool in Linux.

Archiver (ar)
$ ar -r libarifmath.a myadd.o mysub.o mymul.o mydiv.o

Pre-process-Compile-Assemble
$ gcc –c driver.c –I.

Linker (ld)
$ gcc driver.o -larifmath –lc -L. -o driver

driver.c mymath.h

libarifmath.a

driver.o
(relocatable object file)

/usr/lib/x86_64-linux-gnu/libc.a
(Standard C static library)

printf.o

driver
(self contained exe file)

By default, gcc links with the standard C library; use -l
to link custom libraries and -L to specify their path if not
in the standard locations

$ ar –q libarifmath.a mymod.o [append]
$ ar –d libarifmath.a abc.o [delete]
$ ar –t libarifmath.a [display]
$ ar –x libarifmath.a [extract]

Command line order matters, so best practice is
to put libraries at the end of the command line.

Instructor: Muhammad Arif Butt, PhD

Static Library

Lec1.3/staticlib/

Demonstration

Video Lecture: https://youtu.be/A67t7X2LUsA?si=8Q_912JSy1bPC3li

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

27

https://youtu.be/A67t7X2LUsA?si=8Q_912JSy1bPC3li
https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Creating Your Own
Dynamic Library

28

Instructor: Muhammad Arif Butt, PhD 29

Creating Your Own Dynamic Library

Linker (ld)
$ gcc driver.o -larifmath -L. -o driver

driver.c mymath.h

libarifmath.so
libc.so

driver.o
(relocatable object file)

driver (partially linked exe file, stored on disk)

$ gcc -c -fPIC myadd.c mysub.c mymul.c mydiv.c
$ gcc -shared *.o -o libarifmath.so

Loader

Dynamic Linker
(ld-linux.so)

$ ldd ./driver
$ export LD_LIBRARY_PATH=…
$./driver

libarifmath.so
libc.so

Compile with -fPIC flag to generate
position-independent code and use -shared
option to link object files into a .so file

Pre-process-Compile-Assemble
$ gcc –c driver.c –I.

At runtime, the loader searches for shared libraries in
standard paths like /usr/lib/x86_64-linux-gnu/. So
we need to set the LD_LIBRARY_PATH as shown:

Dynamic library is a collection of object files, similar to a static library, but behaves differently during linking and loading

Instructor: Muhammad Arif Butt, PhD

Dynamic Library

Lec1.3/dynamiclib/

Demonstration

Video Lecture: https://youtu.be/A67t7X2LUsA?si=8Q_912JSy1bPC3li

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

30

https://youtu.be/A67t7X2LUsA?si=8Q_912JSy1bPC3li
https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

PLT vs GOT

31

Instructor: Muhammad Arif Butt, PhD 32

PLT vs GOT
When a C-program is dynamically linked with libc.so, for functions like print, scanf etc., it doesn’t know the address of
these functions in memory at compile time. So, in the final executable it places stubs for those functions and at load/run time,
it uses two special tables to find and call these functions at runtime:
GOT (Global Offset Table): is a section inside a binary, that holds addresses (offsets) of functions that are dynamically
linked. Initially, when a program gets loaded in the memory, the GOT doesn’t know the addresses of these functions and it
points to an entry in the PLT.
PLT (Procedure Linkage Table): contains stub (a small helper function) that look up the addresses in the .got.plt
section. The first time you call a dynamically linked function, the PLT checks the GOT:
• If GOT has the address, jump there directly.
• If not, the PLT calls the dynamic linker (ld.so) to find the address of the function, update the GOT, and then jump to it.
• After the first call, future calls skip the lookup and go straight to the function (because GOT now has the right address).
GOT.PLT (A Special Part of GOT): This is the GOT for the PLT, containing the target addresses (after the functions have
been looked up), or an address back in the PLT to trigger the lookup.

First call:
main() PLT stub dynamic linker resolve symbol update GOT actual function
Subsequent calls:
main() PLT stub GOT actual function (direct jump)

Instructor: Muhammad Arif Butt, PhD 33

How a Dynamically Linked Function is Called?
a. The dynamically linked binary doesn’t contain the actual address of func(), instead it contains a

call func@plt instruction (which is a stub inside the .plt section).
b. This stub jumps through the GOT at runtime.
• For the first call, GOT points back to the PLT’s resolver that invokes the dynamic linker (ld.so),
which finds address of func() in libc.so, updates the GOT with the real address (shown in the
left image), and then control flow of execution jumps to the actual code of func().

• All future calls to func@plt will go to GOT, which now has the address of func(), and skipping
the lookup process, the control flow of execution jumps to func() directly (shown in right image).

Instructor: Muhammad Arif Butt, PhD 34

Understanding the working of PLT and GOT
• Examine Sections Related to PLT/GOT:

$ gcc lazy.c –o lazy

$ ldd lazy

$ file lazy

$ obdjump –h lazy | grep –E ”(plt|got)”

$ obdjump –d –j .plt lazy

$ objdump –R lazy

$ nm –D lazy | grep puts

$ readelf –s lazy | grep puts

• Static Analysis with GDB:
$ gdb lazy

(gdb) info functions

(gdb) set disassembly-flavor intel

(gdb) disas main

//Lec-1.3/plt-got/lazy.c
#include <stdio.h>
int main(){
puts(“puts called 1st time\n”);
puts(“puts called 2nd time.\n”);
return 0;

}

• Dynamic Analysis with GDB:
(gdb) break main
(gdb) break puts@plt
(gdb) run
(gdb) disas puts@plt
(gdb) x/a 0x<GOT_ADDRESS>
Step through the first puts call and see it will go through the PLT
resolver mechanism. Check GOT after first call to puts
(gdb) next
(gdb) step
(gdb) continue
(gdb) x/a 0x[GOT_ADDRESS]
(gdb) continue
(gdb) stepi [go directly through the GOT without resolver
overhead]

Instructor: Muhammad Arif Butt, PhD 35

Understanding the working of PLT and GOT
• Examine Sections Related to PLT/GOT:

$ gcc lazy.c –o lazy
$ ldd lazy
$ file lazy
$ obdjump –h lazy | grep –E ”(plt|got)”
$ obdjump –d –j .plt lazy
$ objdump –R lazy
$ nm –D lazy | grep puts
$ readelf –s lazy | grep puts

//Lec-1.3/plt-got/lazy.c
#include <stdio.h>
int main(){
puts(“puts called 1st time\n”);
puts(“puts called 2nd time.\n”);
return 0;

}

• Download and Install Cutter: (https://cutter.re/, https://github.com/rizinorg/cutter)
• Cutter is a free, open-source reverse engineering platform that provides a modern Qt-based
graphical interface for the powerful Radare2 framework.

• It enables debugging and analysis of ELF and PE binaries across multiple architectures including
x86, MIPS, and ARM processors.

• With Cutter’s intuitive visual interface, understanding the role of the PLT and GOT in dynamically
linked C binaries becomes much easier compared to the manual, step-by-step inspection required
in gdb.

• So install Cutter on your Linux Virtual machine, load and run the lazy binary to have a crystal
clear understanding of the concept discussed on previous slides.

https://cutter.re/
https://github.com/rizinorg/cutter

Instructor: Muhammad Arif Butt, PhD 36

Understanding the working of PLT and GOT

Instructor: Muhammad Arif Butt, PhD

Dynamic Library

Lec1.3/plt-got/lazy.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

37

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Compiler Explorer

38

Instructor: Muhammad Arif Butt, PhD

Compiler Explorer (https://godbolt.org/)
• An opensource, interactive, real-time compilation tool created by Matt Godbolt, that shows
assembly output for C, C++, Rust, Go, Python, and 70+ other programming languages.

• Invaluable for understanding compiler optimizations, performance implications, and debugging
systems-level code.

39

https://godbolt.org/

Instructor: Muhammad Arif Butt, PhD

Running C Binary with
gdb (GEF)

40

Instructor: Muhammad Arif Butt, PhD

GDB with GEF Plugin (cont…)
• Compile the Program: $ gcc –g –O0 debug.c –o debugme
• Launch GDB with Binary: $ gdb ./debugme
• Configure the panels: gef> gef config context.layout “regs stack code source”
• Show program info: gef> info sources/functions/variables/args/registers/all/break
• Setting breakpoint: gef> break main
• Run: gef> run [arg1 arg2 . . .]
• Set disassembly flavor: gef> set disassembly-flavor intel
• Show disassembly: gef> disassemble <function-name>
• Step through code: gef> continue/next/step/finish
• Print memory content: gef> print /format-char <var-name>
• Examine memory content: gef> x/12cb <addr>
• Change register/variable values: gef> set variable var1=<value> | set $rdi=<value>
• GEF Specific Commands:
o gef> process-status [show process information]
o gef> vmmap [show memory mappings with colors]
o gef> dereference $rsp 10 [show stack with colors]
o gef> process-status
o gef> process-status

41

Instructor: Muhammad Arif Butt, PhD

Running C Binary
inside gdb (GEF)

Lec1.3/gdb-gef/debugme.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes
42

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 43

To Do

Coming to office hours does NOT mean that you are academically weak!

• Install the required tool chain discussed in today’s session on your Linux
system.

• Watch OS video on understanding C Compilation process:
https://youtu.be/2bYGoOTXrUg?si=oblFZJLEMJ2pDVdJ

• Watch SP C-Compilation video:
https://www.youtube.com/watch?v=a7GhFL0Gh6Y&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=2&t=48s

• Watch SP Libraries video:
https://www.youtube.com/watch?v=A67t7X2LUsA&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=3

• Watch GDB video for C:
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=32&t=467s

https://youtu.be/2bYGoOTXrUg?si=oblFZJLEMJ2pDVdJ
https://www.youtube.com/watch?v=a7GhFL0Gh6Y&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=2&t=48s
https://www.youtube.com/watch?v=A67t7X2LUsA&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=3
https://www.youtube.com/watch?v=2x-pkzSmsD8&list=PL7B2bn3G_wfCC2HDSXtMFsskasZ5fdLXz&index=32&t=467s

