
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 1.4
Linux make utility

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Intro to UNIX make utility

● Structure & Components of a makefile
● How make utility work
● Multiple Targets in makefile
● Multiple makefiles in a Project
● Use of macros in a makefile

● Binary vs open source software
● Installing open source software

2

Instructor: Muhammad Arif Butt, PhD

Understanding the make
Utility

3

Instructor: Muhammad Arif Butt, PhD

What is make utility in Linux?

The UNIX “make” utility is designed to automate the task of compiling large
complex programs with multiple components efficiently

4

Instructor: Muhammad Arif Butt, PhD

• In C or C++ software development, projects are typically composed of multiple source files
(.c) and header files (.h).

• The Linux kernel 6.12 source code contains 87,235 total files with 39,816,411 lines of code
and text, surpassing 40 million lines as of January 2025. The estimated distribution is
shown below:
o .c files : ~35,000-40,000 files
o .h files: ~15,000-20,000 files
o Other files: ~30,000-35,000 files (Makefiles, Kconfig, documentation, scripts, etc.)

• If even a small change is made in one source or header file, we need to manually recompile
every file and then relink them to create the final executable (vmlinuz).

• This becomes extremely inefficient because:
o Recompiling all files every time is a time-consuming process.
o Developers must manually recompile dependent files.
o Forgetting to recompile a changed dependency might cause runtime bugs or incorrect results.

5

Why make utility?

Instructor: Muhammad Arif Butt, PhD 6

Why make utility? (cont…)
Consider the development of a custom Unix shell. A shell is a complex program made up of many
interdependent components. For instance, you divide the shell project into different parts for
handling different components. Each source file has its own purpose, and multiple of them may
include the same headers. To build this project, we need to compile each .c file into an object file and
then all object files are linked into a final executable.
• main.c: Entry point of the shell
• parser.c: For handling user input parsing and
command tokenization

• executor.c: For executing the parsed commands
• builtins.c: For implementing built-in commands
(like cd, exit, export)

• env.c:For managing environment variables (get/set)
• jobs.c:For managing background and foreground job
control

• signals.c: For Handling signal-related functionality
(e.g., Ctrl+C, Ctrl+Z)

Suppose you make a small change in the input.c file:
• Option A: Recompile all .c files and then re-link everything (very slow)
• Option B: Recompile only input.c and then re-link everything (fast and efficient)
What if you want to make changes in input.h file:
• You must recompile every .c file that includes input.h. and then re-link everything

Instructor: Muhammad Arif Butt, PhD

Solution is make utility: The UNIX make utility is a powerful tool that
automates compilation and linking by analyzing dependencies and modification
times, ensuring only the changed or affected files are compiled.
• The make utility reads a specification file named makefile or Makefile,

that is a configuration file for make utility describing how the modules of a
software system depend on each other.

• The make utility uses this dependency specification in the makefile, and
the time when various components were modified, to minimize the amount of
recompilation.

Advantage of make utility:
● Makes management of large s/w projects with multiple source files easy.
● No need to recompile a source file that has not been modified, only those files

that have been changed are recompiled, others are simply relinked.
7

Why make utility? (cont…)

Instructor: Muhammad Arif Butt, PhD

Structure of Makefile

8

Instructor: Muhammad Arif Butt, PhD

A makefile consists of a set of dependency rules having following format:

9

Structure of makefile

File: makefile

hello: hello.o

gcc hello.o -o hello

echo “Build hello”

hello.o: hello.c

gcc -c hello.c

target: dependency1 dependency2 … dependencyN

<tab> command

• The target is the name of the executable to be build.
• The dependency list are the name of the files on

which the target depends. These are the files that are
needed to make the target. These files need to exist
before the command(s) for the target are run. If any
dependency is newer than the target, the target will be
rebuilt.

• The command is the shell command to create the
target from dependencies. Each line must begin with
the tab character, not spaces.

Instructor: Muhammad Arif Butt, PhD

UNIX make utility

Lec1.4/ex0/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

10

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 11

Example
Let’s consider a basic C program that prints a greeting message. The file main.c is the entry point of the
program, while greet.c and greet.h contain the greet function definition and function declaration
respectively.

The makefile to build the final executable for
this project is shown. When you run make, by
default it starts with the first target and checks if
greetings needs to be rebuilt. It does this by
checking the timestamp of its dependencies
(main.o, greet.o). If any one of the object files
needs to be rebuilt (because its .c or .h file
changed), make runs the associated rule. Finally,
it links the updated .o files into the final program.

Instructor: Muhammad Arif Butt, PhD

● The make utility reads a file named makefile in the
current directory.

● It looks for the first target to build (unless a specific
target is passed).

● The make utility checks file timestamps:
o If the target doesn’t exist, or if any dependency is

newer than the target, then
o The command is executed to rebuild the target.

● The make utility does this recursively, resolving
dependencies in order.

● Only changed files (and those depending on them) are
rebuilt.

● Once all updated object files are compiled, it links
them into the final executable.

12

How make works
Makefile

(Rules + dependencies)

“make” read the
first target

Check file stamps

Dependencies are newer than the target

file ?

Skip command
(Target Up-to-date)

Run command
(build it)

Update timestamp
of target Continue to next rule

Yes No

Instructor: Muhammad Arif Butt, PhD

There are multiple ways to run make:
• When run w/o any arguments, make looks for a file named makefile or Makefile in the

current directory and builds the first target defined.
$ make

• If the filename is other than the default, you can specify that filename using –f option
$ make -f <filename>

• You can tell make to builds only the specified target. If the target’s prerequisites have changed
since the last build, make will recompile them.

$ make <target>

13

Running make on the Command Line

File: hello_makefile

hello: hello.o

gcc hello.o -o hello

hello.o: hello.c

gcc -c hello.c

$ make -f hello_makefile
gcc –c hello.c
gcc hello.o -o hello

Instructor: Muhammad Arif Butt, PhD

UNIX make utility

Lec1.4/ex1/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

14

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Multiple Targets of
Makefile

15

Instructor: Muhammad Arif Butt, PhD 16

A Multi-File C Program
//Lec1.4/ex2/prog1.c
#include <stdio.h>
#include <mymath.h>
int main(){

double x, y;
printf("Enter first number: ");
scanf("%lf",&x);
printf("Enter second number: ");
scanf("%lf",&y);
double ans1 = myadd(x,y);
double ans2 = mysub(x,y);
double ans3 = mymul(x,y);
double ans4 = mydiv(x,y);
printf("a + b = %7.2lf\n",ans1);
printf("a - b = %7.2lf\n",ans2);
printf("a * b = %7.2lf\n",ans3);
printf("a/b = %7.2lf\n",ans4);
return 0;

}

//Lec1.4/ex2/mysub.c
double mysub(double a, double b){

return a - b;
}

//Lec1.4/ex2/mymul.c
double mymul(double a, double b){

return a * b;
}

//Lec1.4/ex2/mydiv.c
double mydiv(double a, double b){

if (b != 0)
return a / b;

return 0;
}

//Lec1.4/ex2/mymath.c
double myadd(double, double);
double mysub(double, double);
double mymul(double, double);
double mydiv(double, double);

//Lec1.4/ex2/myadd.c
double mysub(double a, double b){

return a - b;
}

Instructor: Muhammad Arif Butt, PhD

• A makefile can have multiple targets, with each target representing a specific goal, like building an
executable, running the program, cleaning up temporary files, or installing software. By default, make
builds only the first target it finds.

• all: Many programmers specify all as the first target in their makefile and then list the other targets
as being dependencies for the all target. When you run make all, it will build all the targets in the
makefile and is useful for building the complete software in one go.

all: myexe
@echo "Build complete."

• install: Copies built programs to system directories (usually /usr/local/bin). When you run make
install, it will first build all the mentioned targets (here it is myexe), and then will copy the files at
required locations.

install: myexe
@echo "Installing myexe..."
@cp myprogram /usr/local/bin/
@chmod 755 /usr/local/bin/myexe
@echo "Installation complete.”

Note: The @ symbol in Makefiles prevents make from printing (echoing) the command before executing it.
17

Multiple Targets in makefile

Instructor: Muhammad Arif Butt, PhD

• uninstall: The uninstall target is used to remove
installed programs from system directories.

• clean: The clean target is used to remove temporary or
intermediate files like object files and executables to build
the target from scratch. You can run it with command:
make clean, and it executes the rm command. This helps
maintain a tidy workspace or prepare the project for a
fresh build. If there is no .o file in the current working
directory, make will return an error, so to avoid it we use –
f option.

• distclean: The distclean target is more thorough
than clean, as it removes configuration files, backups,
documentation, and distribution archives.

18

Multiple Targets in makefile
uninstall:

@echo "Uninstalling myexe..."
@rm -f /usr/local/bin/myexe
@echo "Uninstall complete.”

clean:
@echo "Cleaning..."
@rm -f *.o myexe

distclean: clean
echo "Deep cleaning..."
rm -f *~
rm -f *.bak
rm -f tags
echo "Deep clean complete."

Instructor: Muhammad Arif Butt, PhD

Phony Targets:
Ø The Problem: The make utility assumes every target represents a file. If you have a target named clean
and there's also a file named "clean" in your directory, The make utility checks the file's timestamp. Since
the file exists and has no dependencies to compare against, so make considers the target up-to-date and
skips executing the cleaning commands.

Ø The Solution: Phony targets solve this by explicitly telling make that certain targets don't represent files
but rather represent actions or commands you want to execute, declared using the .PHONY directive as
shown:

.PHONY: all clean install uninstall distclean

Ø How It Works: When a target is declared as phony, make treats it as a command rather than a file. This
ensures the associated commands always execute, regardless of whether files with matching names exist
in the directory.

Ø Common Use Cases: Phony targets are typically used for:
o Build operations (all, install)
o Clean-up tasks (clean, distclean)
o Testing and validation (test, check)
o Maintenance actions (uninstall, backup)

19

Multiple Targets in makefile (cont…)

Instructor: Muhammad Arif Butt, PhD 20

A makefile with Multiple Targets
//Lec1.4/ex2/prog1.c
all: myexe install

myexe: mysub.o prog1.o myadd.o mydiv.o mymul.o
gcc mysub.o prog1.o myadd.o mydiv.o mymul.o -o myexe

myadd.o: myadd.c mymath.h
gcc -c -I. myadd.c

mysub.o: mysub.c mymath.h
gcc -c -I. mysub.c

mydiv.o: mydiv.c mymath.h
gcc -c -I. mydiv.c

mymul.o: mymul.c mymath.h
gcc -c -I. mymul.c

prog1.o: prog1.c mymath.h
gcc -c -I. prog1.c

Utility targets
clean:

rm -f *.o myexe
install: myexe

@cp myexe /usr/bin
@chmod a+x /usr/bin/myexe
@chmod og-w /usr/bin/myexe
@echo "myexe successfully installed in /usr/bin"

uninstall:
@rm -f /usr/bin/myexe
@echo "myexe successfully un-installed"

.PHONY: all clean install uninstall

Instructor: Muhammad Arif Butt, PhD

Multiple Targets

Lec1.4/ex2/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

21

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 22

Multiple Makefiles in a Project
ex3/
├── myadd.c
├── mysub.c
├── mydiv.c
├── mymul.c
├── prog1.c
├── mymath.
└── d1/

├── mymod.c
└── mymod.h

• Large software projects organize source code into multiple directories
(src/, include/, lib/, tests/, modules/) to maintain logical
separation of concerns and improve code maintainability.

• For large projects, a single monolithic Makefile becomes error-prone,
and difficult to maintain.

• Multiple makefiles allow each directory to define its own build rules,
compilation flags, and dependencies.

• There are two approaches to implement multiple makefiles:

• 2 files: makefile + d1/makefile
• Uses make -C d1 mymod.o to build subdir
• d1/makefile uses ../mymath.h to
reference parent header

• Separate clean targets for each directory
• Each directory manages its own object files

Recursive Make Approach
• 2 files: makefile + d1/Rules.mk
• Uses include d1/Rules.mk to include rules
• Main makefile uses d1/mymod.c and -Id1 for
subdirectory includes

• One clean target for everything
• Single makefile manages all object files from all
directories

Include Directive Approach

Instructor: Muhammad Arif Butt, PhD

Multiple makefiles

Lec1.4/ex3/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

23

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

● Macros in makefile let you define reusable values (like compiler names, flags,
or file names) once and reference them wherever needed. We can define
macros/variables in a makefile as:

MACRONAME=value
● We can access the macros as :

$(MACRONAME)

24

Macros in Makefile

Define CC and CFLAG variable

CC = gcc

CFLAGS = -std=c11 -O0 -ggdb -Wall

hello: hello.o

$(CC) $(CFLAGS) hello.o -o hello

hello.o: hello.c

$(CC) $(CFLAGS) -c hello.c

● In the opposite makefile, you can see two
macros, one specify the compiler and the
other specify the compilation flags. Closely
observe the definition of macros and their
usage

● This approach makes your makefile easier
to modify, reuse, and understand.

Instructor: Muhammad Arif Butt, PhD

MACROS

Lec1.4/ex4/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

25

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

• Make provides several special internal automatic variables that are automatically set and apply only
within the rule where they are used.

• These variables represent different parts of the target and its dependencies, making a makefile more
flexible and maintainable.

26

Automatic Variables in makefile

Variable Description

$@ Name of the target of the rule

$* Target name without extension

$< Name of the first dependency/prerequisite
of the rule

$^ A space separated list of all dependencies,
with duplicates removed

$? List of all dependencies that are newer
than the target

$$ A literal dollar sign, used for escaping in
shell commands

myexe: main.o utils.o

echo "Target: $@" # myexe

echo "All prerequisites: $^" # main.o utils.o

echo "Updated prerequisites: $?" #shows only changed .o

main.o: main.c

echo "Compiling source: $<" # main.c

echo "Target object: $@" # main.o

echo "Stem name: $*" # main

Instructor: Muhammad Arif Butt, PhD

Auto Variables

Lec1.4/ex5/*

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

27

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Binary software
vs

Open-source software

28

Instructor: Muhammad Arif Butt, PhD

● A binary package is a collection of files bundled into a single file containing
○ executable files (compiled for a specific platform),
○ man/info pages,
○ copyright information,
○ configuration and installation scripts.

● It is easy to install a software from its binary package built for your machine and OS,
as the dependencies are already resolved.

● For the Debian based distributions (Ubuntu, Kali, Mint, ArchLinux) they come in .deb
format and the package managers available are apt, dpkg, aptitude, and synaptic.

● For RedHat based distributions (Fedora, CentOS, OpenSuse) the packages come in
.rpm format and the available package managers are rpm and yum.

● For Mac OS the packages come in .dmg format and the available package managers
are brew and fink.

29

Binary Software Packages

Instructor: Muhammad Arif Butt, PhD

● An Open-source software is a software with its source code made available with a
license in which the copyright holder provides the rights to study, change, and
distribute the software to anyone and for any purpose (GNU GPL). Normally
distributed as a tarball containing:
○ Source code files
○ README and INSTALL
○ AUTHORS
○ Configure script
○ Makefile.am and Makefile.in

● A source package is eventually converted into a binary package for a platform on which
it is configured, build and installed. We normally use source packages to install
software for following reasons:
○ We cannot find a corresponding binary package.
○ We want to enhance functionalities of a software.
○ We want to fix a bug in a software.

30

Open-Source Software Packages

Instructor: Muhammad Arif Butt, PhD

● Download a basic hello-world C project from following GitHub repository:
$ git clone https://github.com/irvanherz/hello-world-autotools-template
$ cd hello-world-autotools-template

● To convert this source package into a binary package and install it on our Linux machine, we
need to recite the following magic spell:
$ autoreconf --install
$./configure && make && sudo make install

● Once installed you can run it using following command:
$ hello
Hello world!

31

Example: Installing Open-Source Software

hello-world/
├── configure.ac
├── Makefile.am
├── README.md
└── src/

├── main.c
└── Makefile.am

● The autoreconf runs the configure.ac and generate the
configure script, Makefile.in and macros in m4 directory.

● The configure script checks your system for required
tools/libraries and generates a system-specific Makefile from
Makefile.in

● Finally the make install copies the compiled program and its files
to system directories (e.g., /usr/local/bin) so it can be run
globally.

https://github.com/irvanherz/hello-world-autotools-template

Instructor: Muhammad Arif Butt, PhD

Installing Open
Source Softwares

Lec1.4/opensource/
hello-world-autotools-template

Demonstration

cmake is a cross platform Makefile generator. It is an effort to develop a better way to configure,
build and deploy complex softwares written in various languages, across many different platforms

32

Instructor: Muhammad Arif Butt, PhD 33

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video lecture on make utility:
https://youtu.be/8hG0MTyyxMI?si=_9vtEEKQyJHk_bob

● Watch SP video lecture on autotools and cmake
https://youtu.be/Ncb_xzjGAwM?si=fXBuGkPWJfHDsl7y

https://youtu.be/8hG0MTyyxMI?si=_9vtEEKQyJHk_bob
https://youtu.be/Ncb_xzjGAwM?si=fXBuGkPWJfHDsl7y

