
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 1.5
Workflow of git, GitHub and CI/CD Pipeline

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Types of Version Control Systems
● Downloading, Installing and Configuring git
● Basic Workflow of git on your local repo
● Working with branches in git
● Web Portals and Cloud Hosting Services for git
● Basic Workflow of GitHub
● Creating a new GitHub repo and pushing your local

repo on GitHub
● Adding a new Feature in your local repo and push it

to GitHub (Adding tags and releases)
● Fork, Clone and Contribute to a Friend’s repo using

Pull Request
● Overview of CI/CD Pipeline
● CI/CD workflow with GitHub Actions

2

Instructor: Muhammad Arif Butt, PhD

What are Version
Control Systems?

3

Instructor: Muhammad Arif Butt, PhD

Version Control System
A Version Control System is a software tool that records changes to a file or a set of

files over time, so that you can recall specific versions later.

File

File.version1

File.version3

File.version2

VCS allows to maintain history of
different versions of a file

To move back and forth between
these versions

Compare different versions

Merge multiple versions of same
file

Lock other users when one user is
altering a file

4

Instructor: Muhammad Arif Butt, PhD

Local Data Model
A local VCSs maintains a version database on your local system that keep track of all the changes made to file(s). By

applying the change sets you can move from one file version to the other

Source Code Control System (SCCS-1972)
• It was written in C, developed by AT&T and

was for UNIX only
• It just save the snapshot of the changes, If you

want ver.3 of a file, you take ver.1 of the file
and apply two set of changes to it to get to ver.3

File.version1

File.version3

File.version2
File

Version Database
Local Computer

Revision Control System (RCS-1982)
• It was written in C, developed at Purdue

University, and other than UNIX works on PCs
as well

• RCS keeps the most recent version of a file in its
whole form and if you want a previous version,
you make changes to the latest version to re-
create the older versionLimitations of Local VCSs:

• You can track changes in a single file
• Only one user can work with a file at a single time, team members cannot collaborate and work on the same project

5

Instructor: Muhammad Arif Butt, PhD

Centralized Data Model

Concurrent Version System (CVS-1990)
• Written in C, is open source, and

available for UNIX and MS OSs
• Introduced the idea of branching
• CVS lack atomic operations
• File renaming not possible as CVS

cannot track directories

Apache Subversion System (SVN-2000)
• Written in C, is open source, is cross

platform and is faster than CVS
• Supports atomic commits
• Can track directories, so you can

rename files within directories
• It can also track non-text files like

images

In central VCSs, there is a server machine that contains the version database (repository) which keeps
track of number of clients working on those file(s)

File

Central CVS Server
Computer A Checkout

Checkin/Commit

File

Computer B Checkout
Checkin/Commit

Database

File.version1

File.version3

File.version2

• Single point of failure as the server containing the version database may crash
• Developers do not have history of project on their local machines
• No collaboration if server is down
• No file renaming as cannot track directories

Limitations of Centralized VCSs:

6

Instructor: Muhammad Arif Butt, PhD

Distributed Data Model

Server Computer

Computer BComputer A

• In a DVCS, clients don’t just check out the latest snapshot of the files; they fully mirror the entire repository (version
database).

• Each developer works with his own local repository and changes are finally pushed or committed on the remote
repository as a separate step.

Database

File.version1

File.version3

File.version2

Database

File.version1

File.version3

File.version2

Database

File.version1

File.version3

File.version2

7

Instructor: Muhammad Arif Butt, PhD 8

Distributed Data Model (cont…)
Bitkeeper -2000

It was written in C, and is
proprietary and closed source

Bitkeeper with limited
functionalities was free and used

to manage Linux Kernel

git -2005
Developed by Linus Torvald in
2005, is free and open source

It is compatible with all UNIX-like
systems & MS Windows, written in

C, TCL, Perl & python

In 2005, the “community
version of bitkeeper” stopped

being free and
it was then git was born

Cons:
• More space occupied on local disk of user
• More load on network while checking out project in local

repository and committing project in remote repository

Pros:
• Faster speed
• No risk of loosing history, as every user has

complete mirror of repository

Instructor: Muhammad Arif Butt, PhD

Downloading, Installing
& Configuring git

9

Instructor: Muhammad Arif Butt, PhD

Downloading and Installation

https://git-scm.com

sudo apt-get install git

which git

git version

git help <git/tutorial/everyday>

On Linux
You can Download git from official website
Or Download & install git using this command

Confirm the installation

To get help about any command or any concept

https://gitforwindows.org/

git --version

git help

You can Download git GUI, CMD & bash interfaces
Confirm the installation

To get help about any command or any concept

On Windows

10

https://git-scm.com/
https://git-for-windows.github.io/

Instructor: Muhammad Arif Butt, PhD

GIT: GUI-Clients
Platforms: Mac, Windows
Price: Free
License: Proprietary

Platforms: Mac, Windows
Price: Free
License: MIT

Platforms: Mac, Windows, Linux
Price: Free/Paid
License: Proprietary

Platforms: Windows
Price: Free
License: GNU GPL

Platforms: Mac, Windows, Linux
Price: Free
License: GNU GPL

11

Instructor: Muhammad Arif Butt, PhD

Git Configuration

System Configuration
/etc/gitconfig

User Configuration

https://git-scm.com

$ git config –-global user.name “Arif Butt”

$ git config –-global user.email “arif@pucit.edu.pk”

$ git config --global core.editor “vim”

$ git config --global --list

$ cat ~/.gitconfig

You can check values of
these configurations
using these commands

User Configuration
Attributes

~/.gitconfig

Project Configuration
<proj>/.git/config

12

https://git-scm.com/

Instructor: Muhammad Arif Butt, PhD

Basic Workflow of git

13

Instructor: Muhammad Arif Butt, PhD

Basic Workflow of git

Working
Directory

Staging
Index

Local
Repository

git add <file>

git commit –m <msg>

git init

Working directory is any
directory on your file

system that has a a
subdirectory named .git

inside it

Staging Index is an intermediate
area, changes doesn’t commit

directly from the working tree to
repository. Instead changes are
first made in the staging index

Repository or object store
holds the changes in your
source code over time as
you perform commit ops

• File creation
• Modification
• Deletion/Rename
• Ignore files

14

Instructor: Muhammad Arif Butt, PhD

Initialization and Life Cycle of file in git
Initializing git

$ git init

After configuration, next step is to initialize repository. It will
make a hidden folder named .git in this directory. This is your
local versioning database that track all the files/ inside the root
directory of your project folder

Tracked files: All the
files which have been
added at least once, or
the files that were there
in the last snapshot
• Unmodified
• Modified
• Staged

Add file(s) or every change inside the staging area, where you
put changes you want in the next commit

$ git status

$ git add <filename>

Untracked files: All the files in the
working directory that have never been
part of repository and are not even in
the staging area

Initialize
Repository

Create some files and add one to
Staging Index

15

Instructor: Muhammad Arif Butt, PhD

Life cycle of a file in git

Untracked

Unmodified

Modified

Staged

Tracked All the files which have been added at least once, or the files that were there
in the last snapshot

All the files which have been added at least once, or the files that were there
in the last snapshot

If a file is unmodified, that means the copy of the file in the working directory,
staging area and repo are same

If a file is unmodified, that means the copy of the file in the working directory is
different than the copy of the file in staging area and repo

If a file is staged, that means the copy of the file in the working directory and
staging area are same, but it is yet to be committed

16

Instructor: Muhammad Arif Butt, PhD

Commit File and View Commit Log
$ git commit –m “message” After adding all files to staging area now

they are ready to commit

$ git log [--oneline][--author=“name”]
commit <sha of commit o/p as 40 hex digits>
Author: username <email>
Date: <date and time>
<commit message>

You can check log of commits and by
whom it is committed

It will show you list of all commits in
a specific format:

Check log

17

Instructor: Muhammad Arif Butt, PhD

Commit Objects and Head Pointer in git

231a5…

Parent: nil
Author: arif
Msg: initial
commit
Timestamps:...

5ac27…

Parent:231a5..
Author: arif
Msg: 2nd
commit
Timestamps:...

1e3f5…

Parent:5ac27..
Author: arif
Msg: 3rd
commit
Timestamps:...

Change set A Change set B Change set C

Checksum generated
through Secure Hash algo

231a5…

5ac27…

1e3f5…

231a5…

5ac27…231a5…

HEAD

HEAD

HEAD

git maintains a reference variable called HEAD,
which points to a specific commit in repo

As we make a new commit the HEAD
moves to point the next commit
$ cat .git/HEAD
refs/heads/master
$ cat .git/refs/heads/master
5ac27..

● Suppose you have made three commits in your project, that means there are three change sets.
● Each commit object refers to a change set.
● Note that the parent of each refers to a previous commit.
● We can see who has committed, when, why and with what change

18

Instructor: Muhammad Arif Butt, PhD

Edit and Delete a File
We have already created a file README, added in
staging index and then committed it to the repo. Make
changes in the file and check status.

You again need to add and commit the file

Ø Edit File

Ø Delete File
Option 1: Move the file out from the working dir
into trash and then tell git about it

$ rm f1.txt

$ git add f1.txt

$ git commit –m “deleted”

$ git rm f1.txt

$ git commit –m “deleted”

Option 2: Tell git to remove the file and add it
to staging index in a single command

Check status

19

Instructor: Muhammad Arif Butt, PhD

Rename a File
Ø Rename file

Then come back and tell git about those
changes

$ mv f1.txt newf1.txt

$ git add newf1.txt

$ git rm f1.txt

$ git commit –m “rename”

$ git mv f1.txt newf1.tx

$ git commit –m “renamed”

Option 2: Move/rename file from git
command line.

Option 1: Move or rename files using the
GUI file browser or file system commands.

20

Instructor: Muhammad Arif Butt, PhD

Ignoring Files
• Write files/directories names to be ignored in a text file.
• Git normally checks gitignore patterns from multiple sources, with the following order of

precedence:
o The patterns read from a file named .gitignore in the same directory or in any parent directory

up to the top level of the working tree.
o The patterns read from .git/info/exclude file in the project directory.
o The patterns read from file specified by the configuration variable core.excludesFile

*.o
*.tar.gz
*.log
*.[oa]
*.exe
myexe
logs/**
dir1/

21

Instructor: Muhammad Arif Butt, PhD

Moving to a Previous Commit

• Head is moved to specific commit ID
• Keeps staging area and working directory unchanged

Ø Soft Reset

$ git reset --soft <Commit ID>

• Head is moved to specific commit ID
• Staging area is also changed to match the local repository
• No changes are made in the working directory

Ø Mixed Reset

$ git reset --mixed <Commit ID>

• Head is moved to specific commit ID
• Staging area and working directory both match the local repo

Ø Hard Reset

$ git reset --hard <Commit ID>

22

At its core, the git reset command moves the current branch pointer (HEAD) to a different commit.

You can use the git reset command to un-stage a file, but keep the changes (not mess with commits)

$ git reset <file-name>

Instructor: Muhammad Arif Butt, PhD

git
Branches

23

Instructor: Muhammad Arif Butt, PhD

Overview of git Branches
● A git branch represents an independent line of development.
● Every git repository has at least one branch called the master/main branch.
● An illustration of master branch is shown below:

25a76 36a2c f1d43 7ba12

HEAD

25a76 36a2c f1d43

HEAD

HEAD

25a76 36a2c

25a76

HEAD

24

Instructor: Muhammad Arif Butt, PhD

● Suppose you are working on a project and have done some commits on the master branch which
is the main line of your project development as shown above. You think of adding a new feature
to your project but you are not sure whether it will work or not

○ OPTION 1: You continue working on the same branch. If the new feature is a success, its
GR8 and the development continues as shown below:

25a76 36a2c

HEAD

25a76 36a2c f1d43 7ba12 7ba12

HEAD

master

master

Overview of git Branches (Cont.)

● However, if the new feature is a failure you roll back to commit with SHA 36a2c using a git
reset, and your master branch again becomes similar to the one shown at the top

25

Instructor: Muhammad Arif Butt, PhD

25a76 36a2c

HEAD
master

25a76 36a2c f1d43 7ba12

HEAD

234d12 348cd ac12f

HEAD

master

new-branch

Overview of git Branches (Cont.)

If the new-branch is a
success, then you need to
merge your new-branch with
the master branch, otherwise,
you can delete the new-
branch and the master
branch continue growing

OPTION 2: Create a new branch and try your new ideas there and if those ideas do not work you
just throw away that branch and your master branch continues moving ahead without any issues

26

Instructor: Muhammad Arif Butt, PhD

Why & How to use Branches?
Why?
● Work on a new feature, so new work does not mess up the tested and runnable “master” code. Code on one

branch won’t affect other branches (until you merge).
● Several people can work on features at the same time, without conflicts. Each person works on his own

“feature branch”.
● When a bug is reported, create a new bugfix branch to work on a fix. Once the fix is thoroughly tested

you merge it into the main/master branch. An extra benefit is the “bugfix” branch will contain a history of
what you changed to fix the bug.

● Try new PoC code that may or may not be added to your project using a separate branch.

How?

27

● Create a new branch named foo:
$ git branch foo

● Show all branches (* shows current branch):
$ git branch -a

● To rename a branch:
$ git branch –m <old> new>

● To delete a merged/unmerged branch:
$ git branch –d/-D <branch>

• To switch to another branch , after this any
commits will be added to the foo branch:

$ git checkout foo
● Compare two branches:

$ git dif master foo

Your working directory should almost be clean in order
to switch, otherwise, git will not let you switch to
another branch

Instructor: Muhammad Arif Butt, PhD

git
Merging the Branches

28

Instructor: Muhammad Arif Butt, PhD

Merging Branches in git
● Now we know how to create a new branch and how to perform development on that branch.

After we are done developing and testing the new feature, it is time to bring those changes back
to the master branch. For this we need to do a merge.

● A merge takes the changes (commits) from one branch and integrates them into another
branch.

● Usually, you merge a feature branch into the main branch when the feature is finished.
● There can be two types of merges

○ Fast Forward Merge
○ Real Merge

29

A merge in git is the process of bringing
together changes from one branch into
another. If branches are diverged, git
creates a merge commit; if not, it fast-
forwards.

A git repository is a graph, with commits as nodes on the graph. Each git branch is a branch on the graph.
The branch name is a label that always points to the head of the branch (usually the most recent commit).

Instructor: Muhammad Arif Butt, PhD

Fast Forward Merge
25a76 36a2c

HEAD
234d12 348cd

HEAD

master

new-branch

25a76 36a2c 234d12 348cd

HEAD
master

After fast forward merge:

$ git checkout master

$ git merge new-branch

Before you give git merge command, your current branch should be the receiving branch

30

Instructor: Muhammad Arif Butt, PhD

Real Merge

You can always force git not to do a fast forward merge, rather do an additional commit merge

25a76 36a2c

HEAD
234d12 348cd

HEAD

master

new-branch

25a76 36a2c

234d12 348cd HEAD

master

new-branch

abc124

Suppose you made a new branch and no further commits have been done on the master branch after the
creation of new-branch as shown:

31

$ git checkout master

$ git merge –-no-ff new-branch

Instructor: Muhammad Arif Butt, PhD

Real Merge (Cont...)

25a76 36a2c

HEAD
234d12 348cd ac12f

HEAD

master

new-branch

236d1

25a76 36a2c

HEAD
234d12 348cd ac12f

master

new-branch

236d1 21afd7

In the following scenario a fast forward merge is not possible. So once you do a merge, git will perform a
real merge.

32

$ git checkout master

$ git merge new-branch

Instructor: Muhammad Arif Butt, PhD

git
Handling Merge Conflicts

33

Instructor: Muhammad Arif Butt, PhD

What is a Merge Conflict?
Suppose there are two branchesmaster and branch1, as shown:

25a76 36a2c
master branch1

Both have a file suppose file1.txt, which is of course similar in both. A developer on master
branch edit line#25 of file1.txt and do a commit. Another developer on branch1 edit line#50 of
file1.txt and do a commit

25a76 36a2c
master

branch1

21de3

3ad2b

25a76 36a2c
master

21de3

3ad2b

abc490

Now if you merge, it will be a success, because both have made changes to same file, but
to different lines

34

Instructor: Muhammad Arif Butt, PhD

Handling Merge Conflicts
However, if both the developers have made changes to same line or set of lines a conflict will occur,
which git cannot handle and it will give a message that auto-merging failed. In case of a merge
conflict we have three choices to resolve the conflict:

● Abort merge:
$ git merge –abort

● Resolve manually: Open the file in some editor and perform the changes manually, add,
commit, and finally perform merge

$ git merge <branchname>

● Use merge tools: You can use different tools to automate this process like araxis, diffuse,
kdiff3, xxdiff, diffmerge

$ git mergetool --tool=diffuse

35

Instructor: Muhammad Arif Butt, PhD

Semantic Conflicts
Scenario:
• Two developers edit the same file. Both add the same method to a class, but in different locations.

The git will see:
o Person 1’s change: new lines at top.
o Person 2’s change: new lines at bottom.

• Since line ranges don’t overlap, git concludes “no conflict” → merge succeeds.
• Result = duplicate method (logically incorrect, but syntactically fine).

Why does this happen?
• Git’s merge algorithm is line-based, not syntax/semantics-aware.
• It only checks if two changes touched the same lines.
• If changes are in different places, git assumes they can coexist.
• Git has no understanding of code semantics (e.g., "duplicate method in a class is wrong").

Why does this happen?
• Humans must perform code review, to catch logical errors like duplicated methods.
• Use automated tools like linters, static analyzers, or compiler errors to catch duplicates.
• Use CI/CD Pipeline checks (run tests automatically after merges).

36

Instructor: Muhammad Arif Butt, PhD

Web Portals and Cloud
Hosting Services for

git

37

Instructor: Muhammad Arif Butt, PhD

Hosting Services for git Repositories
The way there are different web hosting services available on the Internet cloud, similarly
there are hosting services available for repositories of distributed versioning systems as well

GitHub is a web-based
hosting service for git

repositories. It offers all
of Git’s DVCS SCM and

has some additional
features

GitHub includes
collaboration

functionality like project
management, support

ticket management, and
bug tracking.

With GitHub,
developers can share

their repositories,
access other developers’
repositories, and store

remote copies of
repositories to serve as

backups.

https://bitbucket.org https://gitlab.com

https://github.com

38

https://bitbucket.org
https://gitlab.com/
https://gitlab.com/

Instructor: Muhammad Arif Butt, PhD

Creating a Personal Account on GitHub
To create your repositories on GitHub or contribute to other open source projects, you will need to create a
personal account GitHub

39

Instructor: Muhammad Arif Butt, PhD

Login into your GitHub Account

40

Instructor: Muhammad Arif Butt, PhD

Hosting Services for git Repositories

41

Since there are different users,
who will be accessing the remote
repo on GitHub, therefore, there
has to be a way to authenticate
these users. GitHub provides
following ways:
• Password based authentication
• Personal Access Tokens (PATs)
• SSH Keys

More on this in upcoming slides J

Instructor: Muhammad Arif Butt, PhD

Creating a Remote Repo on
GitHub

42

Instructor: Muhammad Arif Butt, PhD

Creating a Personal Account on GitHub
To create your repositories on GitHub or contribute to other open source projects, you will need to create a
personal account GitHub

43

Instructor: Muhammad Arif Butt, PhD

Login into your GitHub Account

44

Instructor: Muhammad Arif Butt, PhD

Creating a Remote Repository on GitHub
Once you are logged in and are on the homepage, you will notice a button, that will let you to create your own
Repository

Once you click on the ‘New’ button, GitHub will
redirect you to a different page where you will have to
provide a name for the repository. Additionally, you
can add a description of your repository.

45

Instructor: Muhammad Arif Butt, PhD

Public and Private Repositories
Besides providing a name/description, you need to choose whether you want your repository to be public or private.
Public repository is accessible to anyone. Anyone is able to see the codebase
and clone this repository to their local machine for use.

Private repository, on the other hand, is only visible to people who you have
chosen. No other person is able to view it.

Another decision you will have to make while creating a new repository is
whether or not you’ll create a README file.

Finally, you will be able to choose whether or not you want a .gitignore
file. The purpose of the .gitignore is to filter out files and subdirectories
in your repository that you do not want git to keep track of.

46

Instructor: Muhammad Arif Butt, PhD

Basic Workflow of
GitHub

47

https://www.atlassian.com/git/tutorials/syncing/git-fetch

https://www.atlassian.com/git/tutorials/syncing/git-push

https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-clone

https://www.atlassian.com/git/tutorials/syncing/git-pull

https://www.atlassian.com/git/tutorials/syncing/git-fetch
https://www.atlassian.com/git/tutorials/syncing/git-push
https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-clone
https://www.atlassian.com/git/tutorials/syncing/git-pull

Instructor: Muhammad Arif Butt, PhD

Workflow of Working with GitHub

Working
Directory

Staging
Index

Local
Repository

Local

git add
git commit

git init

Remote
Repository

Remote

Internet

git clone <URL>

git push origin main

git remote add origin <URL>

48

The git remote command lets you create,
view, and delete connections to other
repositories.
git remote –v
git remote add <name> <url>

git fetch origin

git pull origin main

Instructor: Muhammad Arif Butt, PhD

Invite Collaborators
You can decide and manage, who can access your private repository and make collaboration.

1. After creating a private repo, click the settings tab

2- Go to the Manage access

3- Invite Collaborator(s) via email or username

49

The collaborator will get an
email, and he can accept it.
After this the collaborator has
push access to your repo.

Instructor: Muhammad Arif Butt, PhD

What a Collaborator can do?

More on this in upcoming slides J

50

Action Public Repo
(Non-collaborator)

Public Repo
(Collaborator)

Private Repo
(Collaborator)

View repository Yes Yes Yes Browse repo contents

Clone repository Yes Yes Yes Download local copy

Fork repository Yes Yes Yes (if owner permits) Make personal copy

Create issues Yes Yes Yes Report or suggest changes

Submit pull requests Yes (via fork) Yes Yes Propose code updates

Push directly ❌ No Yes (Write+) Yes (Write access only) Upload commits directly

Merge PRs ❌ No Yes (Write+) Yes (Write+) Integrate pull requests

Manage settings ❌ No Yes (Maintain+) Yes (Maintain+) Change repo settings

Note: A non-collaborator cannot do anything on a private repo unless invited.

Instructor: Muhammad Arif Butt, PhD

Push your Local Repo on
GitHub

51

Instructor: Muhammad Arif Butt, PhD

Pushing a Local Repo to GitHub

Working
Directory

Staging
Index

Local
Repository

Local

Remote
RepositoryInternet

Remote

1. Create a new repository on
GitHub, give it a name, but
keep it empty. Copy URL of
remote repo

2. Connect local repo with
GitHub using git remote
command and mention the
GitHub username

3. Authentication (next slide)
4. Use git push command to

push your code from local
repo to remote repo

5. Verify by visiting GitHub

git remote add origin URL

git add

git commit

git init

git push –u origin main

52

The git remote command lets you create, view,
and delete connections to other repositories.
git remote –v
git remote add <name> <url>

Suppose you have
created a project using
git and all the files are
there on your local
machine. In order to
share your project repo
with your colleagues you
need to follow following
steps:

Instructor: Muhammad Arif Butt, PhD

GitHub Authentication and Integrity Methods

53

• For logging into your GitHub account using
a browser, you just need to use your GitHub
Password with may be 2FA or Passkeys.

• If you want to push/clone repos via HTTPS,
you need to generate Personal Access
Tokens (PATs) from the Developer Settings
of your profile page of GitHub.

• I personally, prefer using SSH keys, that
provide a secure, password-less
authentication method to avoid re-entrying
the credentials with every push/pull:

Ø You need to generate a private-public key
pair locally and save them inside ~/.ssh/
directory. Copy the public key and paste it
inside the SSH & GPG keys section in your
profile settings.

$ ssh-keygen –t ed25519 –C “arifpucit@gmail.com”

$ eval “$(ssh-agent –s)”

$ ssh-add ~/.ssh/id_ed25519

Generate ~/.ssh/id_ed25519 and ~/.ssh/id_ed25519.pub

The ssh agent will keep the private key loaded, so you don’t have to type
passphrase every time

$ cat ~/.ssh/id_ed25519.pub

Copy the public key and paste it to your GitHub account
Settings → SSH and GPG Keys → New SSH key

$ ssh –T git@github.com

$git remote add origin git@github.com:arifpucit/<repo.git>

$ git push –u origin main

This will verify that the above process is a success

mailto:git@github.com:arifpucit/%3crepo.git

Instructor: Muhammad Arif Butt, PhD

Adding a Feature in your
Local Repo and push it to

GitHub

54

Instructor: Muhammad Arif Butt, PhD

Step 1: Adding a new Feature

55

Scenario: Suppose I have a local repo, which has been pushed on my own GitHub repo and I want to
• Add a new feature.
• Tag a version.
• Push the tag to GitHub.
• Publish a release on GitHub.
Adding a new feature in your local repo:
• Create a new feature branch.
• Make your changes and commit.
• Merge feature branch into main branch
• Push changes to your own repo at GitHub.

Instructor: Muhammad Arif Butt, PhD

Step 2: Create a Tag and push it to GitHub

56

What are Tags in Git? A tag is like a bookmark in Git history. It points to a specific commit.
Commonly used to mark versions (e.g., v1.0, v2.0). There are two types:
• Lightweight Tag → just a pointer to a commit.
• Annotated Tag → includes metadata (author, date, message).

● Create a lightweight Tag or annotated tag (as per your need):
$ git tag v1.0.0
$ git tag -a v1.0.0 -m "Release version 1.0.0"

● Push tag to GitHub:
$ git push origin v1.0.0

● To delete a tag:
$ git delete –d <tag-name>

● To see all tags:
$ git tag

● To view details about a specific tag:
$ git show <tag-name>

Instructor: Muhammad Arif Butt, PhD 57

C1 C2

C2 C3 C4 C5

C5main

feature-1

1

6

5

2

Step 2: Create a Tag and push it to GitHub (…)

$ git checkout –b feature-1

Add feature code and do commits
and your final commit is C5

$ git tag –a v1.0.0 –m “first release”

$ git push origin v1.0.1

3 $ git checkout main

4 $ git merge feature1

Instructor: Muhammad Arif Butt, PhD

Step 3: Create a new Release on GitHub

58

• Now inside a browser, go to your GitHub repo, where you will see the tags as shown in the
following screenshot.

• Click the Tags tab, which will display the tags available for this repository.

• On the Tags page, click Create a new release.
• This option appears if no release exists yet, as shown in the screenshot below.

Instructor: Muhammad Arif Butt, PhD

Step 4: Publish the Release on GitHub

59

• The opposite screenshot displays the “Create a new
release” form.

• Select the tag, you just pushed (v1.0.0).
• Add release notes/description.
• Click Publish release.
• You will now see your release in the Releases section,

which is linked to the tag you created.

• The opposite screenshot displays
your release in the Releases section,
which is linked to the tag you
created.

Instructor: Muhammad Arif Butt, PhD

Fork, Clone and Contribute
to a Friends Repository

using Pull Request

60

Instructor: Muhammad Arif Butt, PhD

Fork a Repository from GitHub
• Forking means creating a copy of complete repo from some one else’s GitHub account on your GitHub

account. You can do this to collaborate on a open source project, or use the existing state of the project as a
starting point for your own project
ü On GitHub navigate to someone’s repository that you want to fork, and click the Fork button, then

check the repository availability on your GitHub account.
ü Clone this repo on your local machine, make a new branch, fix a bug, add/enhance a functionality, and

then push it back to your own remote repo
ü Finally click pull request to open a new pull request to the actual project owner Click the fork button

61

Instructor: Muhammad Arif Butt, PhD

Clone Your Remote Repo to Local Repo

Working
Directory

Staging
Index

Local
Repository

Local

Remote
RepositoryInternet

git clone https://github.com/user-name/repo.git
git clone git@github.com:user-name/repo.git

RemoteFrom your GitHub web interface
fork your friend’s public repo on
which you want to collaborate.
Copy the URL (https or ssh) of your
friend’s repo as well as your own
forked repo (both on GitHub).

62

When you clone a repository with git clone, it automatically creates a remote connection called
origin pointing back to the cloned repository. You have to add your friend’s repo as upstream

git push origin new-branch

1. From your local machine use the git
clone command to copy the entire
codebase of your friend’s project that
you have forked on your own GitHub
account.

2. Use git remote mentioning your
friends-repo-url to add a remote
reference “upstream” that points to
friends original repo.

3. Create new feature branch, make
changes, commits and finally create a
tag on your local repo.

4. Push changes to your own forked repo.
5. Create a pull request via your GitHub

web interface (next slide)

git remote add upstream <friend-URL>

git add

git commit

https://github.com/user-name/repo.git
https://github.com/arifpucit/OS-Codes.git

Instructor: Muhammad Arif Butt, PhD

Forking Workflow with a Pull Request?
● Pull Request (PR) is a GitHub/GitLab/Bitbucket feature that is a request to merge

code from one branch into another. It's not a git command but rather a collaboration
tool provided by Git hosting platforms. A pull request allows you to:
○ Propose changes from your feature branch to be merged into another branch
○ Enable code review and discussion before merging
○ Run automated tests and checks
○ Document what changes you're making and why
○ Get approval from team members before the merge happens

63

Developer’s
GitHub Repo
Developer’s

GitHub Repo
Friend’s

GitHub Repo

Instructor: Muhammad Arif Butt, PhD

What happens after a Pull Request?
• After the collaborator has pushed the changes to his own forked repo, he needs to get to

his GitHub, where he will find two branches. He will then go to “Pull requests” tab and
click “New pull request”. Fill out PR details by writing a clear, descriptive title and
description. Add labels, assignees and reviewers if needed.

• Wait for a response from your friend, (the maintainer of the original repo), who will
receive an email to review the pull request. He will go to his GitHub and review the
changes you have made. If he is satisfied with this feature he will approve, otherwise he
will send his feedback for improvement.

• Once approved, the PR can be merged by you or by your friend (maintainer).
• The maintainer or you yourself, will got to the GitHub original repo, and click the

“Merge Pull Request” button.
• Finally do the Clean up: Deleting the feature branch after merging (on GitHub), switch

back to main branch locally, pull the updated main, and delete your local feature branch.

64
https://www.atlassian.com/git/tutorials/making-a-pull-request

https://www.atlassian.com/git/tutorials/making-a-pull-request

Instructor: Muhammad Arif Butt, PhD

CI/CD Pipeline

65

https://www.spec-india.com/blog/ci-cd-pipeline

https://www.spec-india.com/blog/ci-cd-pipeline

Instructor: Muhammad Arif Butt, PhD

Overview of CI / CD pipeline?

66

CI/CD stands for Continuous Integration and Continuous Delivery/Deployment. It is a
modern software development practice that automates the process of:
• Integrating code changes.
• Testing them for quality.
• Delivering or deploying them to users.

The aim is to release software faster, more reliably, with fewer errors, and with seamless team
collaboration.

• Continuous Integration (CI): Automatically builds, tests, and validates code changes as soon
as they are committed to the repository to catch integration issues early.

• Continuous Delivery (CD): Extends CI by automating the delivery process up to a staging or
pre-production environment, where code is ready for production deployment but requires
manual approval.

• Continuous Deployment: Goes a step further than continuous delivery by automatically
deploying code changes directly to production without manual intervention after passing all
automated tests.

Instructor: Muhammad Arif Butt, PhD

What is CI / CD pipeline?

67

Continuous Integration (CI)
A software development practice where developers
merge code changes into a shared repository.
Process:
• Developer commits code.
• The system automatically builds the application.
• Automated tests run to verify functionality.
• Process ends here with feedback (Pass/Fail).
Purpose: Detect integration issues early, improve code
quality, & enable faster development cycles.

Continuous Deployment (CD)
Extends continuous delivery by automatically
deploying every change that passes tests directly to
production.
Process:
• Commit code → Build → Automated checks.
• No human approval needed.
• Code is deployed straight to production.
Purpose: Speed up releases, eliminate manual
deploy steps, & ensure customers get instant updates

CI/CD works through an automated pipeline a series of steps code passes through from development to production.

Instructor: Muhammad Arif Butt, PhD

Lifecycle and Tools for CI / CD pipeline

68

CI CD

Instructor: Muhammad Arif Butt, PhD

CI / CD Workflow with GitHub Actions

69

Code was changed
(e.g, new feature added)

New Git
Commit

Pushed to GitHub
Repository

App is built App is tested
(e.g., unit tests)

App is published
(e.g., on AWS EC2)

CI / CD Workflow

Can be configured & executed
via GitHub Actions

App is built

GitHub Actions is a GitHub’s built-in CI/CD platform integrated directly within GitHub repositories,
enabling the automation of software development workflows. It allows users to define and execute
automated processes, called workflows, in response to various events within their repositories like
commits, pull requests or releases.

Instructor: Muhammad Arif Butt, PhD

Workflow of GitHub Actions

70

Instructor: Muhammad Arif Butt, PhD

How GitHub Actions Work?

71

Following four steps describes at an abstract level as to
how GitHub Actions work:
• Create a YAML workflow file (.yml or .yaml) in the

.github/workflows/ directory of your repository.
• Define trigger events that initiate GitHub events (such as

on: [push], on: [pull_request], on: [schedule])
• Specify jobs with steps containing either shell commands

(run:) or reusable, pre-built automation components from
the GitHub Actions marketplace (uses:)

• Monitor GitHub's automatic execution of the workflow with
real-time logs and status reporting in the Actions tab

.github/workflows/simple-ci.yml
name: Simple CI Pipeline

on:
push:

branches: [main]
pull_request:

branches: [main]

jobs:
test:

runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v4
- run: npm install

This minimal example of a yml file shows a simple a GitHub Actions workflow having:
• Two triggers: push and pull_request events on the main branch
• One pre-built action: actions/checkout@v4 (most commonly used action for getting repository code)
• One shell command: npm install for installing dependencies

Instructor: Muhammad Arif Butt, PhD

GitHub Actions in Action

72

Instructor: Muhammad Arif Butt, PhD 73

To Do

Coming to office hours does NOT mean that you are academically weak!

• Install git on your machine and practice working on a local repository by
performing lots of commits, create branches and merge them.

• Create your GitHub account using your RollNo and official email ID
• Create a private and a public repository and share it with your friends and

TAs.
• Try to fork your friend’s repo, add a feature or fix a bug or just improve

documentation and submit a pull request to the repository owner. This
will equip to do the lab tasks as well as the upcoming Programming
assignments.

• Watch DS video on git:
https://www.youtube.com/watch?v=WTjxs3em8SM&list=PL7B2bn3G_wfAs3C49i12i_rblzvuU1dFN&index=3&t=3368s

https://www.youtube.com/watch?v=WTjxs3em8SM&list=PL7B2bn3G_wfAs3C49i12i_rblzvuU1dFN&index=3&t=3368s

