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Lecture Agenda 
● Users, Programs and Processes

● Life Cycle of a Process
● Process model in Linux
● Program control block
● Command Line Arguments
● Environment Variables

● Function Calling Convention (FSF)
● Process Heap
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Users, Programs and 
Processes
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Users, Programs and Processes
Users:
• In modern operating systems like Linux, Windows and Mac, the system is designed to support

multiple users simultaneously.
• Each user is assigned a distinct account that grants access to personal storage, permissions, and

execution privileges.
• Users can create, compile, and store a wide variety of programs, ranging from shell scripts to

compiled executables, stored on the system’s disk.
• These stored programs are persistently available and can be executed when needed.
• The operating system provides process isolation and concurrency control, enabling multiple

users to execute the same program independently and simultaneously.
• Additionally, a single user may run multiple instances of the same program in parallel. This

architecture promotes both efficient resource utilization and secure, collaborative computing
within the shared environment of the operating system.
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Users, Programs and Processes (cont…)
Programs:
• A program is a passive entity composed of a set of instructions written to perform a specific task.
• Examples include executable files (a.out), scripts (script.sh), or applications

(calculator.exe, chrome.app).

• These programs are stored on secondary storage in well-defined formats, and they remain static
and inactive until explicitly invoked.

• Programs are stored on disk, and consume no system resources (CPU cycles, memory, or I/O
bandwidth).

• They serve as templates for execution, waiting in a dormant state until a user or another
process initiates them.

• When a program is launched, the operating system takes responsibility for loading it into main
memory and preparing it for execution.
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Users, Programs and Processes (cont…)
Processes:
• A process is an active, runtime instance of a program (a program in execution).
• Unlike a program, which is a passive file on disk, a process is a dynamic entity that occupies

system resources.
• When a user executes a program, the operating system loads its code into RAM, allocates

memory, assigns a unique process identifier (PID), and establishes required structures such as
the process control block (PCB).

• The CPU can then schedule this process for execution.
• During its lifetime, a process utilizes CPU time, accesses system memory, and may perform I/O

operations such as reading from or writing to files, interacting with other devices, or
communicating over the network.

• For example, when the calculator application is launched, the system creates a calculator
process that actively consumes resources to perform calculations as requested.
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Lifecycle of a Process?
1. Program Creation: The life cycle begins when a user writes source code in a programming language such as C or

Python. This source code is then compiled (in the case of compiled languages) or saved directly (for interpreted
languages) to produce an executable file that is stored on system's secondary storage in a specified binary format.

2. Program Storage: The executable file resides on disk as a passive entity, as it does not consume any system
resources (CPU time, memory). The program remains dormant, waiting for a user or another process to initiate its
execution.

3. Process Creation:When a user decides to run the program, (via a command-line instruction, GUI action, or script)
the operating system initiates process creation. This involves several internal OS mechanisms: the program code is
loaded into main memory (RAM), a unique Process ID (PID) is assigned, and a Process Control Block (PCB) is
created to track the process’s state, resources, and metadata. At this point, the program becomes an active entity
called process under OS management.

4. Process Execution: Once created, the process is scheduled by the CPU scheduler for execution. The instructions
within the program are fetched, decoded, and executed by the CPU. During this phase, the process may allocate
memory, perform file I/O, send or receive data over the network, or interact with other system resources. The OS
ensures resource isolation and manages context switching between multiple processes to enable multitasking.

5. Process Termination: Eventually, the process reaches completion, either by successfully finishing its task (normal
termination), encountering an error (abnormal termination), or being forcibly terminated by the user or another
process. Upon termination, the operating system reclaims all resources allocated to the process, including memory,
file handles, and process table entries.
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Process Model in Linux
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A Process Control Block (PCB) is a data structure used by the operating system to manage information about a
process. In Linux, PCB is implemented as the task_struct structure, which resides in kernel space and encapsulates
all critical information required to manage a process. This structure includes the process ID, current state, scheduling
information, memory management details, open file descriptors, and CPU register context for context switching. By
maintaining this centralized data structure for every process, the kernel efficiently supports scheduling, resource
management, inter-process communication, and process lifecycle control.
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Program Control Block

Process Identification
• PID & PPID
• UID & GID
• Saved SUID & SGID
• File System UID & GID
Process state information
• User Visible Registers
• Control and Status Registers (flags)
Process control information
• Scheduling Info
• Privileges Info
• Memory Management Info
• Resource Ownership and Utilization
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64-bit ELF to Process Logical Address Space
Program Loading is a process of copying a program from disk to main memory in order to make it a process

0x00007FFFFFFFFFFF

0x0000000000000000

etext

end

edata

rsp 
(stack pointer)

brk

Loaded 
from 
executable 
file

0xFFFFFFFFFFFFFFFF

0xFFFF800000000000 

On x86-64 Linux systems, memory addresses must follow the canonical
form. If bit 47 is 0, bits 48 through 63 must also be 0, forming valid user-
space addresses. If bit 47 is 1, bits 48 through 63 must also be 1, forming
valid kernel-space addresses. Any violation of this rule results in a
general protection fault, as the address falls into the invalid non-
canonical region.

• User space starts from 0x0000000000000000 to
0x00007FFFFFFFFFFF, providing 128 TiB of addressable memory.
This region is accessible to user-mode processes and is where the code,
data, heap, and stack reside.

• Kernel space starts from 0xFFFF800000000000 to
0xFFFFFFFFFFFFFFFF, spanning 128 TiB. It is exclusively reserved
for the operating system kernel, its subsystems, device drivers, and
essential kernel data structures. Only code running in privileged mode
(ring 0) can access this region. Attempts to access it from user mode
result in a protection fault, ensuring kernel integrity and isolation.

• The non-canonical space, ranging from 0x0000800000000000 to
0xFFFF7FFFFFFFFFFF, lies between the user and kernel address
ranges (16 EiB minus 256 TiB).

Critical System Variables:
• etext: Points to the first address above the code/text section
• edata: Points to the first address above the initialized data section (.data)
• end: Points to the first address above the .bss section
• brk: Points to the current top of the heap (initially a little above end)
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Logical Address 
Space

Lec1.6/logicaladdresses.c

Demonstration
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GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

$ sudo echo 0 | tee /proc/sys/kernel/randomize_va_space

https://github.com/arifpucit/OS-Codes
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Command Line 
Arguments
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Command Line Arguments
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Use of Command Line Arguments

100$ Question: Why program name is passed to the process as argv[0]?
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Command Line 
Arguments

Lec1.6/stack/cmdarg_ex1.c
Lec1.6/stack/cmdarg_ex2.c

Demonstration
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GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes
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Environment Variables

16



Instructor: Muhammad Arif Butt, PhD

What are Environment Variables?

Variable Description
PATH Specifies the directories where the system looks for executable files
HOME Points to the current user's home directory
USER The current logged in user / Contains the username of the current user
PWD The current working directory
SHELL Specifies the default shell for the user
TERM Different hardware terminals can be emulated. It displays the current terminal type (for example, xterm)
HISTSIZE The maximum number of lines of command history allowed to be stored in memory
HISTFILE File where command history is saved when shell exits
HISTFILESIZE the maximum number of lines contained in the history file
PS1, PS2 The default prompt in bash, and Secondary prompt string used for multi-line commands
MANPATH Directories to search for manual pages
LD_LIBRARY_PATH Directories to search for shared libraries
LD_PRELOAD Specify one or more shared libraries that should be loaded before any other libraries
IFS Internal Field Separator used by shell for word splitting
PPID Process ID of parent process
$$ Process ID of current shell

Environment variables are name-value pairs. Each running process has a block of memory that contains a set of the name-
value pairs which usually come from its parent process. When you run a command inside a Linux shell, the shell program
(parent) send its own environment variables along with some new environment variables to the child process. These
environment variables sit in the memory of the child process, and if the child process does not use these variables at all, then
these variables will have no impact on its execution. But if the child process uses these variables, then these variables will of
course have an impact on its behavior.
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• We can use environment variables for personalization and configuration of our system. It is similar to
customizing Windows desktop, screensaver, and default browser.

• UNIX systems store user preferences in environment variables. Each user has unique settings for their
computing environment.

• One can use following shell commands to display environment variables:
$ env - Display only environment variables
$ set - Display environment, shell variables as well as functions
$ echo $PATH     - Display specific variable value

• One can use following shell command create a new or change value of an existing variable:
$ PATH=$PATH:/tmp/abc/

• The above command will make a temporary change to the PATH environment variable that will persist for
the current session only. To make it persistent for a specific user, we need to enter the name-value pair
inside the ~/.bashrc or ~/.bash_profile file. To create a persistent environment variable we need to edit
the /etc/profile file. Once done to make the changes active, we need to source the file as shown:

$ source ~/.bashrc
• Whenever we execute a program or command from the shell, a copy of these environment variables is passed

to that program for proper execution. For details read the manual page of environ.
• Use export to ensure the created variable is inherited by child processes. Assignment w/o export creates a

shell-local. Variable not visible to sub-processes:
$ export myname=“Arif Butt”

Playing with Environment Variables

18



Instructor: Muhammad Arif Butt, PhD

Accessing Environment Variables in C Program

#include <stdio.h>
int main(int argc, char *argv[], char *envp[]) 
{

int i = 0;
printf("Environment variables:\n");
while (envp[i] != NULL) {

printf("%s\n", envp[i]);
i++;

}
return 0;

}

#include <stdio.h>
extern char **environ;
int main() {

int i = 0;
while (environ[i] != NULL) {

printf("%s\n", environ[i]);
i++;

}
return 0;

}

#include <stdio.h>
#include <stdlib.h>
int main() {

char *home = getenv("HOME");
char *user = getenv("USER");
if (home != NULL)

printf("Home dir: %s\n", home);
if (user != NULL)

printf("Username: %s\n", user);
return 0;

}

• Method 1: Use the char *getenv(const char *name) function to
retrieve specific environment variable by name, that returns a pointer to
value string or NULL if not found. Reflects changes made by
setenv()/putenv()

• Method 2: Use the extern char** environ variable to access entire
environment array, and then iterate through all environment variables.
It returns an array of “name=value” NLL terminated strings. Reflects
changes made by setenv()/putenv()

• Method 3: Use the third argument to main(), i.e., char* envp[. It is
quite similar to Method 2, but do not reflect runtime changes to
environment made by setenv()/putenv()

Method 1Method 2Method 3
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• The way we can change environment variables on the shell, we can also change them form within
a C program, as well as can create a new environment variable using library functions shown
below.

• We create new or set existing environment variables to build a suitable environment for a process
to run. Moreover, it is considered a form of Inter Process Communication, as a child gets a copy of
its parent’s environment variables at the time it is created.

Modifying Environment Variables in C Program

char *getenv(const  char *name);

int putenv(char *string);

int setenv(char *name ,char *val, int overwrite);

int unsetenv(const char *name);

int clearenv();

#include <stdio.h>
#include <stdlib.h>
int main() {

setenv("var1", "Hello World", 1);
putenv("var2=Hello Arif");
char *value = getenv("var1");
printf("var1 = %s\n", value);
unsetenv("var1");
return 0;

}
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Command Line 
Arguments

Lec1.6/stack/env_ex1.c
Lec1.6/stack/env_ex2.c
Lec1.6/stack/env_ex3.c

Demonstration
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https://github.com/arifpucit/OS-Codes
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Function Calling Convention
&

Function Stack Frame
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• How the function arguments are passed?
○ Through the stack
○ Using CPU Registers
○ A combination of both (typically registers for the first few arguments, then stack)

• In what order are arguments passed?
○ Right to left (common in many C conventions)
○ Left to right (used in some specific conventions or languages)

• Who is responsible for creating the FSF?
○ The Callee (the function being called)
○ The Caller (the function making the call)

• Who is responsible for unwinding the stack?
○ The Callee (the function being called)
○ The Caller (the function making the call)

Function Calling Convention
The function calling convention is a set of rules that dictate how functions receive parameters, return
values, manage the stack, and how to share the CPU registers between the caller and the callee.
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Function Calling Convention (cont…)
In high level programming languages like C and C++, the values passed by the caller to the callee are called
arguments. When the values are received by the called subroutine, they are called parameters. In
programming, the terms "caller" and "callee" refer to the relationship between functions or procedures in the
context of function calls:
• Caller Function: The function that initiates a call to another function to

perform a task or compute a result.
• Callee Function: This is the function being called by another function. It

is the one that gets executed as a result of the call.

In the 16-bit and 32-bit days, since there were only eight general purpose registers in x-86 architecture,
therefore, all the arguments were passed by the caller to the callee by pushing the arguments on the stack.
On x86-64 processor, Linux, Solaris and Mac Operating Systems use a function call protocol called the
System-V AMD64 ABI. In which first six integer parameters are passed via registers: rdi, rsi, rdx,
rcx, r8, r9, and first eight floating point parameters via xmm0 to xmm7 registers (rest on the runtime
stack). On the contrary MS Windows Operating System use MS X64 Calling Convention, in which first four
integer parameters are passed via registers: rcx, rdx, r8, r9, and first four floating point parameters via
xmm0 to xmm3 registers (rest on the runtime stack). Both Linux and MS Windows use rax register to return integer
values and xmm0 register to return floating point values.
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The figure below, shows a horizontal view of a process stack, which is executed by
the shell ($ ./program hello world), displaying the command line arguments
and environment variables in the FSF of main() function.

Layout of Process Stack (FSF)
The figure on the right, shows an abstract level view of Function Stack Frame (FSF) of a function called by
main(), containing following four items: :
• Function Arguments (>6)
• Return Address
• Base Pointer (rbp) used to access variables at fixed offsets
• Local Variables
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Stack Growing (Function Prologue)
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Stack Shrinking (Function Epilogue)
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Concrete Example
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Understanding Calling 
Convention with 

gdb (GEF)

29



Instructor: Muhammad Arif Butt, PhD

Debugging C Program inside GEF
Let us now debug the following C program. In the source file, the main() function creates two long variables main_var1 and main_var2 and
character pointer *main_str2 and calls a function f1() and passing 8 parameters to that function. The function f1() receives 8 parameters and
further creates two local variables and then calls another function f2() and passes one parameter to it. The f2() function receives a single a
parameter, performs some operations and returns a value to f1() that further returns 1 to parent function which is main() and finally main()
returns 0 to its parent which is the shell program.

//Lec-1.6/func-calling-convention/func-calling.c

#include <stdio.h> 
#include <stdlib.h> 

int f2(int a){ 
int b = a +1; 

return b; 

} 

int f1(long a, long b, long c, long d, long e, long f, long g, long h){ 

unsigned long f1_var1 = 0x123456789; 
unsigned long f1_var2 = 0x0abcdef; 

int rv = f2(5); 
return 1; 

} 

int main(int argc, char *argv[]){ 

unsigned long main_var1 = 0x1122334455667788; 

unsigned long main_var2 = 0x99aabbccddeeff00; 
char *main_str2  = "Arif"; 

int rv_f1 = f1(0x11111111, 0x22222222, 0x33333333, 0x44444444, 0x55555555, 
0x66666666, 0x77777777, 0x88888888); 

return 0; 

} 

When you run gdb with gef you get the following prompt, where you
can give the gef command to view brief description of different gef
commands:

gef> gef

Let us load the binary named debugme, set a breakpoint at main,
and run the program step by step to understand the calling
convention:

gef> file ./func-calling
gef> gef config context.layout “regs stack code”
gef> break main
gef> run

Do observe all the calling conventions concepts discussed in previous
slides to have a crystal clear understanding with a hands on
experience.

30



Instructor: Muhammad Arif Butt, PhD

System V AMD64 ABI
Function Calling Convention

Lec1.6/func-calling-conv/
func-calling.c

Demonstration
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● Stack Buffer Overflow: Writing beyond the allocated boundaries of a stack-based buffer, typically through
unsafe functions like strcpy(), gets(), or sprintf(). This corrupts adjacent stack data including local
variables, saved frame pointers, and return addresses, potentially allowing arbitrary code execution.

● Off-by-One Errors: A subtle form of buffer overflow where loops or bounds checks are off by exactly one
position (e.g., for(i=0; i<=size; i++)), overwriting stack metadata like canaries or frame pointers.

● Stack Underflow: Accessing memory below a buffer's base address through negative array indices or
incorrect pointer arithmetic.

● Use of Uninitialized Variables: Reading stack variables before assignment, leading to unpredictable
behavior since stack memory contains residual data from previous function calls. This creates information
disclosure risks and logic errors.

● Return Address Overwrites: Deliberately corrupting the saved return address on the stack to redirect
program execution. Modern variants involve Return-Oriented Programming (ROP) or Jump-Oriented
Programming (JOP) to bypass security mitigations.

● Stack Exhaustion/Overflow: Depleting available stack space through unbounded recursion, excessively
large local arrays, or variable-length arrays (VLAs) with untrusted size parameters. This triggers
segmentation faults or stack guard page violations.

● Format String Vulnerabilities: Using untrusted input as format strings in printf() family functions,
allowing attackers to read from or write to arbitrary stack locations using format specifiers like %n.

These vulnerabilities are mitigated through compiler protections (stack canaries, ASLR, DEP/NX bit), safe 
coding practices, and static analysis tools.

Typical Stack Misuses and Errors
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Compiler Explorer
https://godbolt.org/
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Concrete Example
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Process Heap
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Overview of Process Heap Memory

0x00007FFFFFFFFFFF

0x0000000000000000

etext

end

edata

rsp 
(stack pointer)

brk

Loaded 
from 
executable 
file

0xFFFFFFFFFFFFFFFF

0xFFFF800000000000 

Critical System Variables:
• etext: Points to the first address above the code/text section
• edata: Points to the first address above the initialized data section (.data)
• end: Points to the first address above the .bss section
• brk: Points to the current top of the heap

36

• Heap is a memory segment for runtime allocation when
memory requirements are unknown at compile time.

• Heap is process-wide accessible memory region, unlike
stack memory which is function-scoped.

• Unlike the stack, which operates in a strict Last-In-
First-Out (LIFO) manner with fixed size and automatic
memory management, the heap provides complete
flexibility in allocation patterns but requires explicit
memory management through malloc/free or
new/delete operations.

• At a low level, dynamic memory functions are backed by
system calls such as brk() and its deprecated wrapper
sbrk() to expand or contract the process's heap
segment. Modern allocators may also use mmap() to
request memory directly from the operating system for
large or page-aligned allocations.

• The heap allocator (e.g., glibc's ptmalloc) typically
requests memory in page-sized chunks (often 4 KB or
more), which are then subdivided and managed
internally.
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Dynamic memory allocation in the heap is facilitated by memory allocators, which are software components
responsible for managing, allocation and deallocation of memory blocks. Allocators generally fall into two
primary categories, based on how memory is reclaimed:
Explicit Allocators
• In explicit allocation, the application code is responsible for both allocating and freeing memory.
• The allocator provides APIs to allocate memory (e.g., malloc in C or new in C++) and to deallocate it (e.g., free in C or

delete in C++). Other languages that support explicit allocators are Fortran, Pascal, Ada, Rust, and assembly language.
• This model offers fine-grained control and predictable performance, but it places the burden of memory management on

the programmer.
• Common problems associated with explicit allocators include:

o Memory leaks (forgetting to free)
o Dangling pointers (accessing memory after it has been freed)
o Double frees (freeing the same block multiple times)

Implicit Allocators (Garbage Collectors)
• Implicit allocation still requires the application to explicitly request memory, but the allocator automatically detects and

reclaims unused memory.
• This detection and cleanup process is known as garbage collection.
• Garbage collectors track object references at runtime and reclaim memory that is no longer reachable by the application.
• This model improves programmer productivity and memory safety, at the cost of runtime overhead and less predictable

performance.
• Languages such as Java, JavaScript, Python, and Lisp rely on garbage collection to free allocated blocks.

Heap Allocators

void *p = malloc(100); 
/*...*/ 
free(p);

int *arr = new int[10]; 
/*...*/ 
delete[] arr;
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● malloc() allocates size bytes from the heap and returns a pointer to the start of the newly allocated
block of memory. On failure returns NULL and sets errno to indicate error.

● calloc() allocates space for specific number of objects, each of specified size. Returns a pointer to the
start of the newly allocated block of memory. Unlike malloc(), calloc() initializes the allocated
memory to zero. On failure returns NULL and sets errno to indicate error.

● realloc() is used to resize a block of memory previously allocated by one of the functions in malloc()
package. ptr argument is the pointer to the block of memory that is to be resized. On success realloc()
returns a pointer to the location of the resized block, which may be different from its location before the
call. On failure, returns NULL and leaves the previous block pointed to by pointer untouched.

Allocating and freeing memory on heap
void *malloc (size_t size);

void *calloc(size_t noOfObjects, size_t size);

void *realloc (void* ptr, size_t newsize);

void free ( void* ptr );

● free() deallocates the block of memory pointed to by its pointer argument, which should be an address 
previously returned by functions of malloc package.
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Allocating 1D Array on Heap
High address

Low address

rbp

rsp

Environment var

Command line args

.text

.data

.bss

&etext

&end

&edata

char *str

brk

brk

char *str = (char*)malloc(sizeof(char)*10);

…
…
…
free(str);
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Allocating 2D Array on Heap

names

0

1

2

3

int i, int ﻿rows = 4, cols = 12;
char ** names = (char**)malloc(sizeof(char*) * rows);

for(i = 0; i < rows; i++)
names[i] = (char*)malloc(sizeof(char) * cols);

for(i = 0; i < rows; i++)
free(names[i]);

free(names);
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Heap Filler

Lec1.6/heap/heap_filler.c

Demonstration

If a process continuously calls malloc(),
without calling free(), what happens and
why?

$100 QUESTION
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https://github.com/arifpucit/OS-Codes


Instructor: Muhammad Arif Butt, PhD

Heap: Behind the curtain
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● Resizing the heap is actually telling the kernel to adjust the process's program break, which lies
initially just above the end of the uninitialized data segment (i.e end variable).

● The brk() is a system call that sets the program break to location specified by
end_data_segment. Since virtual memory is allocated in pages, this request is rounded up to
the page boundary. Any attempt to lower the program break than end results in segmentation
fault.

● The upper limit to which the program break can be set depends on range of factors like:

o Process resource limit for size of data segment.

o Location of memory mappings, shared memory segment and shared libraries.

System call: brk()
int brk(void* end_data_segment);
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● sbrk() is a C library wrapper implemented on top of brk(). It increments the program break
by increment bytes.

● On success, sbrk() returns a pointer to the end of the heap before sbrk() was called, i.e., a
pointer to the start of new area.

● So calling sbrk(0) returns the current setting of the program break without changing it.

● On failure -1 is returned with errno set to ENOMEM.

Library call: sbrk()
void *sbrk (intptr_t increment);
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Program Break

Lec1.6/heap/brk.c

Demonstration

After a process calls malloc(), which in
turn calls brk(), what is the new location of
program break? Does it change with every
call to malloc()?

$100 QUESTION
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A basic heap allocator
brk
end Heap grows

end brk Heap grows

Length of Block
(L) Memory for use

Address 
Returned

Structure of allocated block on heap

Length of 
Block

(L)

Pointer to 
previous free 

block (P)

Pointer to next 
free block 

(N)
Remaining Bytes of 
free block

Structure of Free Block on Heap:
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● When a program calls malloc, the allocator scans the link list of free
memory blocks as per one of the contiguous memory allocation algorithm's
(first fit, best fit, next fit), assigns the block and update the data structures

● If no block on the free list is large enough, then malloc() calls sbrk() to
allocate more memory.

● To reduce the number of calls to sbrk(), malloc() do not allocate exact
number of bytes required rather increase the program break in large units
(some multiples of virtual memory page size) and putting the excess memory
onto the free list.

Library call: sbrk()

When a process calls free(), how does 
it know as to how much memory it 

needs to free? Does it has any effect on 
program break?

$100 QUESTION
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● When you call free(), you put a chunk of memory back on the free list.
● There may be times when the chunk immediately before it in memory, and/or the chunk

immediately after it in memory are also free.
● If so, it make sense to try to merge the free chunks into one free chunk, rather than having three

contiguous free chunks on the free list.
● This is called “coalescing” free chunks.

Coalescing Freed Memory
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C program use malloc family of functions to allocate & deallocate memory on the heap instead of
brk() & sbrk(), because:
Ø malloc functions are standardized as part of C language
Ø malloc functions are easier to use in threaded programs
Ø malloc functions provide a simple interface that allows memory to be allocated in small units
Ø malloc functions allow us to deallocate blocks of memory

Why free() doesn't lower the program break? rather adds the block of memory to a lists of free
blocks to be used by future calls to malloc(). This is done for following reasons:
Ø Block  of memory being freed is somewhere in the middle of the heap, rather than at the end, so 

lowering the program break is not possible
Ø It minimizes the numbers of sbrk() calls that the program must perform

Why not use brk() and sbrk()
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Heap Filler

Lec1.6/heap/allocated_block.c

Demonstration

When a process requests 1-24 B on heap, why the memory allocated is 32 B?
When a process requests 25-40 B on heap, why the memory allocated is 48 B?
When a process requests 41-56 B on heap, why the memory allocated is 64 B?
When a process requests 57-72 B on heap, why the memory allocated is 80 B?

$100 QUESTION
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GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Request Range    →    Actual Chunk Size  →    User Data Available
1-24 bytes               →    32 bytes                       →    24 bytes
25-40 bytes             →    48 bytes                       →    40 bytes  
41-56 bytes             →    64 bytes                       →    56 bytes
57-72 bytes             →    80 bytes                       →    72 bytes

Minimum user data allocation is 24 Bytes with 8-byte header (on 64-bit) containing metadata like size and flags, so a total chunk of 32 bytes.
All requests greater than 24 bytes are aligned to 16-bytes boundaries for optimal CPU performance

https://github.com/arifpucit/OS-Codes
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● Memory Leaks: Failing to call free() for dynamically allocated memory, causing gradual memory
exhaustion.

● Use-After-Free: Accessing memory through pointers after the memory has been freed via free().
The freed memory may be reallocated for different purposes, leading to data corruption, information
disclosure, or arbitrary code execution when exploited through heap spraying (an exploitation
technique that involves manipulating heap layout through controlled allocations to position malicious
data at predictable addresses).

● Double Free: Calling free() multiple times on the same memory address. This corrupts heap
metadata structures, potentially causing heap corruption, crashes, or exploitable conditions where
attackers can manipulate heap layout for arbitrary write primitives.

● Heap Buffer Over/Underflow: Writing beyond the boundaries of a heap-allocated buffer, corrupting
adjacent heap chunks, their metadata, or other allocated objects. Unlike stack overflows, these often
target heap management structures like chunk headers, free lists, or bin pointers, allowing
exploitation techniques like tcache poisoning.

● Invalid Free Operations: Attempting to free memory using pointers that weren't returned by
malloc(), calloc(), or realloc().

● Uninitialized Heap Memory Use: Reading from newly allocated memory before initialization.
Unlike stack memory, heap memory may contain sensitive data from previous allocations, creating
information disclosure vulnerabilities.

These vulnerabilities are mitigated through modern heap implementations (ASLR, heap 
canaries, safe unlinking), memory-safe alternatives, static analysis tools, and runtime 

Typical Heap Misuses and Errors
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Tools and Libraries for 
malloc debugging
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● C lacks built-in memory safety, making programs vulnerable to crashes, security exploits, and
unpredictable behavior from memory-related bugs. An early detection prevents costly production
issues and security vulnerabilities.

● Use the following tools during during development/testing for comprehensive error detection, and
disable in production builds to eliminate runtime overhead and maintain optimal performance.
○ Valgrind: Dynamic analysis tool that detects memory leaks, buffer overflows, use-after-free,

and uninitialized memory access by running programs in a virtual machine environment.
○ Electric Fence: Memory debugging library that detects buffer overflows by placing

inaccessible guard pages immediately before and after each heap allocation. (gcc -g -o

program program.c -lefence)
○ AddressSanitizer (ASan): Fast memory error detector built into GCC that instruments code

at compile-time to catch buffer overflows, use-after-free, and memory leaks with minimal
runtime overhead. (gcc -fsanitize=address -g -o program program.c)

○ Use gcc Static Analysis option: Compile-time static analysis examines source code without
execution to identify potential bugs, memory leaks, and security vulnerabilities. (gcc -

fanalyzer -Wall -Wextra -o program program.c)

Enhancing Heap Debugging with Specialized Libraries
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Valgrind is a modular instrumentation framework, providing dynamic analysis tools for memory, threading,
cache and heap issues:
● Memcheck: Default memory-error detector (detects invalid access, uninitialized memory, leaks, double-free)
● Cachegrind: Simulates CPU caches to analyze cache misses and memory references per line/function.
● Callgrind: Call Graph profiler.
● Helgrind: Detects threading errors like data races in POSIX threads.

While using valgrind, it is recommended to compile your program with options like -g (debug symbols) and
preferably avoid high optimization levels like -O2 to avoid false positives (-O0 is recommended for Memcheck).
The general usage syntax is:
$ valgrind [--tool=toolname] [tool-specific options] yourprogram [program options]

$ gcc -O0 -g faultyprog.c –o faultyprogram

$ valgrind --tool=memcheck ./faultyprogram

$ valgrind --tool=memcheck --leak-check=full --show-leak-kinds=all ./faultyprogram

Valgrind Debugging Framework
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Example: faultyprogram.c
void f1();
void f2();

void f3();

void f4();

void f5();
void f6();

void f7();

int main(){

f1();

f2();
f3();

f4();

f5();

f6();

f7();
return 0;

}

void f1(){

int number = 54;

if (number = 3)

printf("variable contains 3\n");

else
printf("variable do not contain 3\n");

}

void f2(){

char * ptr = (char*) malloc(sizeof(char)*10);

ptr[13] = 'a';
free(ptr);

printf("Bye Bye from f2()...\n");

}

void f3(){

char * ptr = (char*) malloc(sizeof(char)*10);
free(ptr);

ptr[5] = 'a’;

printf("Bye Bye from f3()...\n");

}

• The f1() function uses assignment (=)

instead of comparison (==) in the if

statement. → Valgrind won’t catch
assignment-vs-comparison logic errors.

• The f2() function writes beyond
allocated memory → The Memcheck will
report Invalid write in f2() and points to
the exact line, so you can fix the allocation
size or remove invalid access.

• The f3() has use-after-free vulnerability,
as it tries to write to memory after it has
been freed → Memcheck will detect access
to freed memory specifying "Invalid
read/write after free"), prompting removal
of such operations.
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Example: faultyprogram.c (cont…)
void f1();
void f2();

void f3();

void f4();

void f5();
void f6();

void f7();

int main(){

f1();

f2();
f3();

f4();

f5();

f6();

f7();
f8()

return 0;

}

void f4(){

char * ptr = (char*) malloc(sizeof(char)*10);

free(ptr);

free(ptr);

}
void f5(){

char * ptr = (char*) malloc(sizeof(char)*10);

ptr[1] = 'a’;

printf("Bye Bye from f5()...\n");

}
void f6() {

char buffer[5];

int secret = 12345; // should remain unchanged

printf("secret = %d\n", secret);

for (int i = 0; i <= 8; i++) 
buffer[i] = 'A' + i;

printf("secret = %d\n", secret); //134770388

}

• The f4() function has double free
vulnerability, as it calls free twice on
the same pointer. → The Memcheck will
report "Invalid free()", so you can ensure
pointers are set to NULL after freeing.

• The f5() function suffers with memory
leak vulnerability as the allocated
memory is never freed. → The Memcheck
will report "definitely lost" blocks with
size and location, guiding you to add
proper free() calls.

• The f6() function suffers with BoF
vulnerability as it writes 9 chars into a
5-sized array and overwrites the 4-byte
secret number. → The Memcheck will
report "Invalid write of size 1".
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Example: faultyprogram.c (cont…)
void f1();
void f2();

void f3();

void f4();

void f5();
void f6();

void f7();

int main(){

f1();

f2();
f3();

f4();

f5();

f6();

f7();
return 0;

}

char* getString1(){

char msg[100] = "Finding bugs is fun with Arif";

char *ret = msg;

return ret;

}
void f7(){

char * abc = getString1();

printf("String: %s\n",abc);

}

char* getString2(){
char * ret = (char*) malloc(100);

strcpy(ret, "Finding bugs is fun with Arif");

return ret;

}

void f8(){
char * abc = getString2();

printf("String: %s\n",abc);

free(abc);

}

• The f7() function calls getString1()

function which returns a pointer to a
local stack variable named msg,
causing undefined behaviour when
accessed. → Although not strictly a heap
issue, Valgrind can indirectly expose this,
when it reports invalid reads from freed
stack frames.

• The f8() function calls getString2()

function, which returns a pointer to an
unnamed heap memory (good practice).
However, it appears that the
getString2(), function relies on the
caller to free memory, which is of course a
good practice.
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Electric Fence

Lec1.6/heap/faultyprogram.c

Demonstration
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GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes
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To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video on Process stack:
https://youtu.be/1XbTmmWxHzo?si=PkqxEbnWP2LIPqYZ

● Watch SP video on Process heap:
https://youtu.be/zpcPS27ZQr0?si=OWJyNUJV_Lo-sLYj

● Watch Basic Programming C video dynamic programming:
https://www.youtube.com/watch?v=EK1L2wYz_iE

https://youtu.be/1XbTmmWxHzo?si=PkqxEbnWP2LIPqYZ
https://youtu.be/zpcPS27ZQr0?si=OWJyNUJV_Lo-sLYj
https://www.youtube.com/watch?v=EK1L2wYz_iE

