
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 2.1
UNIX File Types and Permissions

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● Concept of Files and Directories

● Types of Files in UNIX based systems
● Regular File
● Directory
● Soft/Symbolic Link

● A Deep Dive into File Permissions

● Changing File Permission using chmod
● Changing File Ownership using chown
● Where & How Linux Store passwords?
● Special Permissions in Linux

Instructor: Muhammad Arif Butt, PhD

Concept of Files and
Directories

3

Instructor: Muhammad Arif Butt, PhD

The Concept of Files in Linux
● In the Linux ecosystem, a fundamental
principle is that everything is treated as a file.

● This abstraction simplifies how the operating
system and users interact with hardware and
system resources.

● Whether you are writing to a document,
reading from a keyboard, sending data to a
printer, or accessing a hard drive, you are
interacting with a file interface.

● This design philosophy provides a unified and
consistent way to handle system resources. All
these "files" reside within a hierarchical
directory structure, starting from the root
directory (/).

4

Instructor: Muhammad Arif Butt, PhD

File Naming
● When a process creates a file it gives the file a name. When the processes terminates

the file continues to exist and can be accessed by other processes using its name.
● The naming rules vary from system to system. Most OS allow strings of one to eight

characters as legal file name allowing digits and some special characters. Some File
Systems distinguish between upper and lowercase letters while others do not.

● WINDOWS
○ File names up to 255 characters.
○ Not case sensitive. File1, file1 and FILE1 all refer to same file.
○ Aware of file extensions, when a user double clicks on a file name, the program

assigned to this file extension is launched with the file as parameter.
● UNIX

○ File names up to 255 characters, all acceptable except ‘/’.
○ Case sensitive. File1, file1 and FILE1 refer to three different files.
○ File extensions are just conventions and are not enforced by the OS.

5

Instructor: Muhammad Arif Butt, PhD

File Attributes
● Every file has a name and its data.
● In addition, all OS associate certain other information with each file, we call these extra items

the file’s attributes. List of attributes varies from system to system.
● Basic Information

○ File Name
○ File Type
○ File Organization

● Address Information
○ Starting address
○ Size used

● Access Information
○ Owner
○ Access List
○ Permitted Actions

● Time Stamps
○ Access Time (ls –lu <filename>)
○ Modification Time (ls –l <filename>)
○ Status Change (ls –lc <filename>)

$ stat /etc/passwd
File: /etc/passwd
Size: 3564 Blocks: 8 IO Block: 4096 regular file
Device: 252,1 Inode: 14288662 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/root) Gid: (0/root)
Access: 2025-07-12 21:17:37.928071696 +0500
Modify: 2025-05-20 00:33:11.510675303 +0500
Change: 2025-05-20 00:33:11.510675303 +0500
Birth: 2025-05-20 00:33:11.510675303 +0500

6

Instructor: Muhammad Arif Butt, PhD

Types of Files in UNIX

7

Instructor: Muhammad Arif Butt, PhD

● Regular file (-) Files that contain information entered in them by a
user, an application program or a system utility program (ASCII text,
binary, image, compressed etc).

● Directory (d) Contains a list of file names plus pointers to associated i-
nodes. Directories are actually ordinary files with special write protection
privileges so only the file system can write into them, while read access
is available to user programs.

● Symbolic Link (l) Links let you give a file more than one name.

Types of Files in UNIX

● Block Special File (b) A block special file consists of as sequence of numbered blocks. The key property
of the block special file is that each block can be individually addressed and accessed, i.e. we can directly
access block 154 without first having to read blocks 0 to 153. Block special files are typically used for
disks. e.g. /dev/hda1, /dev/lp.

● Character Special File (c) Used to communicate with h/w that input or output one character at a
time. Keyboard, printers, mice, plotters, networks are examples of character special files.

● Named Pipe (p) A file that passes data between processes. It stores no data itself, but passes data
between process writing data into pipe and process reading from pipe. (ls –l /dev | less)

● Socket (s) A stylized mechanism for inter-process communications (UNIX domain sockets)
8

Instructor: Muhammad Arif Butt, PhD

Types of Files in UNIX (cont…)

9

Instructor: Muhammad Arif Butt, PhD

What are Regular Files?
● A regular file is the most common file type in Linux
that contains user data or program instructions
stored as a sequence of bytes. It appears with a
hyphen (-) as the first character in the file type
field when viewed with ls -l.

● Regular files can contain any type of data including
text, binary executables, images, documents, or
any other form of information that applications can
read and write.

● UNIX allows you to add extensions like .txt or
.jpg to filenames, but the OS doesn't use them to
determine how to handle the file. They're just
helpful hints for users to know what type of
content is inside the file.

● Instead of relying on file extensions, UNIX checks
the first few bytes of a file (called "magic number")
to determine if it's a program that can be run. This
prevents users from accidentally trying to execute
a text file or image as if it were a program.

Regular File Types Extension

Executable files exe, com, bin

Machine language, but not linked obj, o

Source code c, java, py, asm

Batch files specific to cmd interpreter bat, sh

Text files txt, doc

Word processor files docx, doc, rtf, tex

Library files lib, a, so, dll

Print or view ps, pdf, jpg

Archive files arc, zip, tar

Multimedia files mpeg, mov, mp3, avi

10

Instructor: Muhammad Arif Butt, PhD

What are Directories?
● In Linux, directories are special files that contain mappings between

human-readable filenames and their corresponding inode numbers.
● In Linux, an inode number uniquely identifies a data structure (inode

block) that contains the metadata/attributes as well as pointers to the data
blocks of a specific file.

● It appears with a hyphen (d) as the first character in the file type field
when viewed with ls -l.

● The opposite figure shows a pictorial view of a directory, having files and
sub-directories. We will scuba dive to this in our next session J

● WHY Do We Need Directories?
o Directories provide hierarchical organization, allowing logical grouping of
related files

o Enable multiple files with the same name to coexist in different directories
o Directories inherit and enforce permissions for contained files

● In contrast to Linux, Windows stores file attributes directly in directory
entries

54

6

47

49

34

.

..
f1.txt

f2.txt

dir1

35 dir2

FilenameInode#

/home/user/
├── Documents/
│ ├── work/
│ └── personal/
├── Pictures/
└── Downloads/

11

Instructor: Muhammad Arif Butt, PhD

What are Hard Links?

● A hard link is created using the ln original_file link_name command, which creates a
new directory entry pointing to the same inode (no new data block or inode is allocated).

● The hard link appears as a regular file (-) with identical permissions, ownership, size, and
timestamps, and shares the same inode number as the original file.

● When you create a file, it has one hard link, and creating additional hard links makes the file accessible via
different paths and names. It is efficient way to have multiple names for the same file without duplicating
data.

● With each hard link creation, the link count (shown in the third column of ls -l) is incremented; deleting
any hard link only decrements this count, and data remains accessible until the link count reaches zero.

● Modifying any hard link updates the timestamps and content of all links since they reference the same inode.
● Regular users cannot create hard links to directories because it would create loops in the filesystem
hierarchy, which is prohibited by the filesystem.

● Hard links cannot span across different filesystems/partitions because inode numbers are only unique within
a single filesystem.

12

Instructor: Muhammad Arif Butt, PhD

What are Soft Links?

● A soft link is created using the ln -s original_file link_name command, which creates
a new file containing the pathname to the target file (allocates a new inode and data block).

● The soft link appears as a symbolic link (l) with its own permissions and inode number,
showing the target path when viewed with ls -l, and is distinct from the original file.

● Creating or deleting soft links does not affect the target file's link count; if the original file is deleted, the soft
link becomes "broken" or "dangling" but continues to exist.

● Modifying the target file updates its timestamps, but the soft link's own timestamps remain unchanged
unless the link itself is modified.

● Soft links can point to directories without filesystem restrictions, making them useful for creating shortcuts
to folders anywhere in the system.

● Soft links can span across different filesystems and partitions because they store the target path as text
rather than referencing inode numbers.

13

Instructor: Muhammad Arif Butt, PhD

File Permissions in
UNIX

14

Instructor: Muhammad Arif Butt, PhD

File Protection & Security
● When information is kept in a computer system, we want to keep it safe from
physical damage (reliability) and improper access (protection)

● File owner/creator should be able to control:
○ What can be done to the file / directory
○ By whom it can be done

● Different OS support different types of access to files and directories:
○ Read
○ Write
○ Execute
○ Append
○ Delete
○ List

15

Instructor: Muhammad Arif Butt, PhD

File Protection in Linux

File Security

By whom it can be done?
(Users & Groups)

What can be done to a File?
(Permissions)

● Read(r)
● Write (w)
● Execute (x)

● User(u)
● Group (g)
● Others (o)

16

Instructor: Muhammad Arif Butt, PhD

Users and Groups
• Users - Every user of a system is assigned a unique UID. User’s names and UIDs
are stored in /etc/passwd file. Users cannot read, write or execute each others
files without permissions

• Groups - Users are assigned to groups with unique GID. GIDs are stored in
/etc/group file. Each user is given his own primary group by default. He/she can
belong to other secondary groups to gain additional access. All users in a group can
share files that belong to that group.

• In context to UNIX Files, users are divided into three classes:
o User/owner: The user who created the file. Any file you create, you own.
o Group: The owner of a file can grant access of a file to the members of a specific group
o Others: All users who are neither owner, nor group falls in others category

17

Instructor: Muhammad Arif Butt, PhDInstructor: Muhammad Arif Butt, PhD

Shell Commands (Users & Groups)
User Management Commands Description
adduser <username> Interactive command to create a new user (/etc/passwd)
useradd –m –d /home/user2 user2 Low-level command to add user

passwd [username]
Used to change the password of currently logged in user or the user specified.
The hash of the password is stored inside /etc/shadow file

deluser <username> User we want to delete should be logged out. It don't deletes user HOME Dir
userdel –r <username> Low level command that also deletes HOME directory with –r option

usermod
To modify user: (personal info (-c), default user shell (-s), user name (-l), lock
user (-L), unlock user (-U), primary group (-g), secondary group (-G)

groupadd <group-name> Create a new group. (/etc/group)
groupdel <group-name> To delete group
groupmod To modify group: change group name (-n)
chage Used to change password expiry info of a user in /etc/shadow file
chsh Used to change default user shell in /etc/passwd file
chfn Used to change user personal info in /etc/passwd file
finger shows user info in detail
id Displays UID, primary GID and secondary GIDs you belong to

su
Switch user: To login using any username if we know its password (e.g: su -root).
Using '-’ option will also give you the target user environment. You will find
yourself in the target user HOME Directory and his default login shell

18

Instructor: Muhammad Arif Butt, PhD

AAA Architecture
• Authentication is the process of verifying the identity of a

user or system trying to access a resource. In a Linux based
machine every user must have an entry in the local user
database files /etc/passwd along with /etc/shadow,
/etc/group and /etc/gshadow
• Something you know (password, passphrase, PIN)
• Something you have (NIC, ATM, Passport)
• Something you are (Biometrics)
• Somewhere you are (Geographic location, IP, MAC address)
• Something you do (signatures, pattern unlock)

• Authorization determines what an authenticated user or
process is allowed to do, specifying access levels or permissions
based on the user role or identity. (DAC, MAC, RBAC)

• Accountability, also known as auditing, involves tracking and
recording user activities and resource usage. This information is
used for monitoring, analysis, and compliance purposes.

19

Instructor: Muhammad Arif Butt, PhD

Access Control Models
• Discretionary Access Control (DAC): In DAC, owner of the object decides
who all have what all kinds of access (rwx) on his object. This is the default for
most Operating Systems.

• Mandatory Access Control (MAC): In MAC, system decides who all have
what all kinds of access (rwx) on the objects. Every object has a security
classification associated with it (e.g, top secret, secret, confidential, restricted,
unclassified). Every user has a security clearance to access a specific class of
object.

• Role-Based Access Control (RBAC): Users are assigned roles, and roles have
specific permissions, simplifying management and enhancing security.

20

Instructor: Muhammad Arif Butt, PhD

Discretionary Access Control
Every file stored on the file system of a computer must be secured. No unauthorize person should be
able to access it. The default Authorization scheme in all UNIX based systems is Discretionary Access
Control (DAC), in which the owner of the file. traditional privilege scheme defines what actions a user
or process can perform on files, directories, and other system resources. The following screenshot shows
the long listing of a directory contents having seven different file types in Linux.

Inode Number: Cannot be changed
Type of file: Cannot be changed
Permissions: Can be changed using chmod
Link Count: Can be changed using ln or rm
Owner: Can be changed using chown
Group: Can be changed using chgrp
Size: Can be changed by writing to file
Date/Time: Can be changed using touch
Name: Can be changed using mv

21

Instructor: Muhammad Arif Butt, PhD

What do you mean by rwx Permissions
For Files:
• READ: Enables users to open files and read its contents using less, more, head, tail,

cat, grep, sort, view commands
• WRITE: Enables users to open a file and change its contents using editors like vi, vim, peco
• EXECUTE: Enables users to execute files as a program or script (a.out, script.py)

For Directories:
• READ: Allows users to list directory contents using ls command

• WRITE: Allows users to create new files and directories, as well as delete files they own within a
directory using mkdir, touch, cp, mv commands

• EXECUTE: Allows users to search in the directory and change to it using the cd command.
Moreover, without execute permissions on a directory, read/write permissions are meaningless

22

Instructor: Muhammad Arif Butt, PhD

How Permissions are Checked?
• Whenever a user access a file/directory, the permissions are applied in following
fashion:
○ If you are the user/owner, the user/owner permissions apply.
○ If you are in the group, the group permissions apply.
○ If you are neither owner nor group member, then others permissions apply

• To maintain the file type and permissions, all UNIX based systems use a 16 bit
architecture as shown:

File Type (4)
1000

Special Permissions (3)
000

User (3)
110

Group (3)
100

Others (3)
000

23

Instructor: Muhammad Arif Butt, PhD

Changing File Permissions

24

Instructor: Muhammad Arif Butt, PhD

Default Permissions
● Whenever a user create a file or directory, the new permissions on the file are set by the creator

program (vim, touch, mkdir, mknod) having the mode specified by the programmer in the
open() system call along with the system’s umask setting.

● The programs that create files typically have a mode of 0666, while the programs that create
directories typically have a mode of 0777

● To check or change the current umask setting of your system, use the following command:
$ umask

022

$ umask 077

● For both files and directories the final permissions can be calculated by mode & ~umask

● Examples:
Ø File created with mode 0666, umask 0022:

0666 & ~0022 = 0666 & 7755 = 0644

Ø Directory created with mode 0777, umask 0022:
0777 & ~0022 = 0777 & 7755 = 0755

25

Instructor: Muhammad Arif Butt, PhD

Changing File Permissions
● The access rights for any given file can be modified by using the change mode
(chmod) command

● chmod takes two lists as its arguments: permission changes and filenames.

chmod <mode> <filename/dirname>

● We can use two different modes
○ Symbolic
○ Octal

26

Instructor: Muhammad Arif Butt, PhD

Symbolic Method
● Symbols for Level

Ø u - Owner of a file
Ø g - Group to which the user belongs
Ø o - All other users
Ø a - All Can replace u, g, or o

● Symbols for Permissions
Ø + Add the following permissions
Ø - Remove the following permissions
Ø = Assigns entire set of permissions

● Examples
Ø chmod u=rwx filename
Ø chmod g=rx filename
Ø chmod g+x filename
Ø chmod o-w filename
Ø chmod a+r filename
Ø chmod a+r-x filename
Ø chmod g=rw,o-w filename

27

Instructor: Muhammad Arif Butt, PhD

Octal Method
● With the chmod command, we can specify a three digit octal number

as mode, which will completely reset the permissions. You can’t
add/remove individual settings, as we can do in symbolic method of
changing permissions.

● Each octal digit represent the permission that applies to owner, group
and other respectively.

● When translated into a binary number, each octal digit becomes three
binary digits, representing rwx permissions. r w x Octal Permissions

0 0 0 0 No Permissions

0 0 1 1 Execute Only

0 1 0 2 Write Only

0 1 1 3 Write and Execute

1 0 0 4 Read Only

1 0 1 5 Read and Execute

1 1 0 6 Read and Write

1 1 1 7 Read, Write and Execute

● Examples
Ø chmod 440 filename
Ø chmod 750 filename
Ø chmod 660 filename

28

Instructor: Muhammad Arif Butt, PhD

Changing File
Ownership

29

Instructor: Muhammad Arif Butt, PhD

Changing file ownership with chown
● The chown ("change owner") command changes the owner and optionally the group of a

file or directory.
● Requires sudo if you are not the current owner.
● To change only the owner of a file:

chown <new_owner> <file/directory>

● To change both the user and the group owner at the same time:
chown <new_owner>:<new_group> <file/directory>

● To change ownership of a directory and all files/subdirectories inside it (recursive):
chown -R <new_owner>:<new_group> <directory>

30

Instructor: Muhammad Arif Butt, PhD

Changing file ownership with chgrp
● The chgrp ("change group") command changes only the group owner of a file or

directory. The user owner is not affected.
● Managing permissions for collaboration. It allows you to share files with a team (group)

without changing the file's primary owner.

● To change the group of a file or directory:
chgrp <new_group> <file/directory>

● To change the group recursively for a directory:
chgrp -R <new_group> <directory>

31

Instructor: Muhammad Arif Butt, PhD

Special Permissions

32

Instructor: Muhammad Arif Butt, PhD

Special Permissions
In Linux, special permissions extend standard file access controls and include SUID, SGID,
and the Sticky Bit:
• SUID Bit: Set User ID bit allows a file to be executed with the file owner's privileges, commonly used for
programs needing elevated access (e.g., /usr/bin/passwd).

• SGID Bit: Set Group ID bit causes executed files to run with the file group’s privileges, and for directories,
newly created files inherit the directory's group.

• Sticky Bit: When a directory has this bit set, it ensures that only the file owner or root can delete or rename
files within it (e.g., /tmp).

Types of Special
Permissions

Set Group-ID
(SGID)

Set User-ID
(SUID) Sticky Bit

33

Instructor: Muhammad Arif Butt, PhD

Set-User-ID Bit
● The SUID bit is typically set on executable files, and has no meanings on a directory.
● When an executable has the SUID bit set, it runs with the privileges of the file's owner,

rather than the user who launched it.
● This is commonly used for programs requiring elevated privileges, such as the passwd

command. Although normal users cannot write to /etc/shadow file, the passwd binary
is owned by root and has the SUID bit set, allowing it to update the file securely on the
user’s behalf.

● It is represented by an s in the execute portion of owner permissions, or a capital S in
case if the owner execute permission is off.

● To check the executable files in our system having their SUID bit set:
$ find / -type f -perm -4000 2>/dev/null

● To set the SUID bit of a program:
$ chmod u+s <myexe>

34

Instructor: Muhammad Arif Butt, PhD

Set-Group-ID Bit
● The SGID bit is typically set on executable files or directories.
● When an executable file has the SGID bit set, it runs with the privileges of the file’s

group, rather than the group of the user who runs it (locate, wall). This is useful
when a program needs consistent access to resources owned by a specific group.

● When the SGID bit is set on a directory (/var/mail/), all new files or subdirectories
created within it inherit the group ownership of the directory, instead of the user’s
default group. This is commonly used in shared directories to maintain consistent group
collaboration.

● It is represented by an s in the execute portion of group permissions, or a capital S in
case if the group execute permission is off.

● To check the executable files and directories in our system having their SGID bit set:
$ find / -type f -perm -2000 2>/dev/null
$ find / -type d -perm -2000 2>/dev/null

● To set the SGID bit of a program:
$ chmod g+s <myexe or dir>

35

Instructor: Muhammad Arif Butt, PhD

Sticky Bit
● The sticky bit is typically set on directories, having no meaningful effect on regular files

in modern Linux systems (historically used for keeping executables in memory).
● When the sticky bit is set on a directory (/tmp/, /var/tmp/), only the file owner,

directory owner, or root can delete or rename files within that directory, even if other
users have write permissions to the directory. This prevents users from deleting each
other's files in shared writable directories.

● It is represented by a t in the execute portion of other permissions, or a capital T if the
other execute permission is off.

● To check the all the directories in our system having their sticky bit set, run the following
command
$ find / -type d -perm -1000 2>/dev/null

● To set the sticky bit of a directory
$ chmod o+t mydir

36

Instructor: Muhammad Arif Butt, PhD

Where & How
Linux Stores Passwords?

37

Instructor: Muhammad Arif Butt, PhD

The /etc/passwd and /etc/shadow File
• To ensure password data is securely hashed and protected from compromise, modern operating

systems use different approaches:
Ø Linux typically uses salted algorithms like SHA-512-crypt, yescrypt, or Argon2;
Ø macOS uses Password Based Key Derivation Function PBKDF2 with SHA-512; and
Ø Windows stores passwords as NT hashes (MD4-based) in the Security Account Manager (SAM) database

• The early version of UNIX in 1971, used to store the hashed value of passwords in the second field
of the world readable /etc/passwd file. This was because this file contains user related
information other than passwords and many applications require that information to function
properly. In the later versions of UNIX, and in today’s Linux distros, the hashed password is saved
in the /etc/shadow file, which is readable only by super users.

loginname:en_passwd:UID:GID:GECOS:homedir:shell

38

Instructor: Muhammad Arif Butt, PhD

The /etc/passwd and /etc/shadow File
The screenshot of the contents of the /etc/shadow file on my Kali Linux machine, with its nine fields
is also shown below. Every row contains one record having nine colon separated fields:

user:ysalt$hash:lastchanged:min:max:warn:inactive:expire:

For details read the man page of shadow(5)
39

Instructor: Muhammad Arif Butt, PhD 40

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch OS video on User Management:
https://www.youtube.com/watch?v=eA3YOhtWHQk&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=16

• Watch OS video on Hard and Soft Links:
https://www.youtube.com/watch?v=g8xZgtuYiWI&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=22

• Watch OS video on File Permissions:
https://www.youtube.com/watch?v=tEYYasCVxRc&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=23

• Watch OS video on Special File Permissions:
https://www.youtube.com/watch?v=6CJtdvL9P-Y&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=24

https://www.youtube.com/watch?v=eA3YOhtWHQk&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=16
https://www.youtube.com/watch?v=g8xZgtuYiWI&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=22
https://www.youtube.com/watch?v=tEYYasCVxRc&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=23
https://www.youtube.com/watch?v=6CJtdvL9P-Y&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=24

