
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 2.2
UNIX File System Architecture (Part-I)

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● Overview of UNIX File system Architecture
● What is Linux Virtual File System?
● How VFS work?
● VFS Data Structure and Operations
● Schematic View of Linux File System
● Understanding Superblock Inode, Dentry

and File structure
● File System in Practice
● PPFDT and connection of Open Files
● IO redirection on the Shell
● The open-read-write-close paradigm

Instructor: Muhammad Arif Butt, PhD

Linux Virtual File System
&

File System Architecture

3

Instructor: Muhammad Arif Butt, PhD

What is a File System?
A file system is a software layer within the operating system that provides an abstraction for storing,
organizing, and accessing data on storage devices. It allows users and programs to work with files
and directories without needing to understand the underlying physical details of storage hardware,
such as disk platters, heads, tracks, sectors, or cylinders.

• Native Linux File Systems:
o ext2 - Second Extended File System (legacy)
o ext3 - Third Extended File System (with journaling)
o ext4 - Fourth Extended File System (current standard)
o Btrfs - B-tree File System (advanced features, snapshots)
o JFS - IBM's Journaled File System
o ReiserFS - Journaling file system (legacy)
o F2FS - Flash-Friendly File System (for SSDs)

Network File Systems:
o NFS - Network File System
o AFS - Andrew File System
o SMB/CIFS - Server Message Block/Common Internet File System

• Windows File Systems:
o NTFS - New Technology File System
o FAT12/FAT16/FAT32
o exFAT - Extended File Allocation Table

• Virtual/Special File Systems:
o procfs (/proc) - Process information
o sysfs (/sys) - System information
o devfs (/dev) - Device files
o tmpfs - Temporary file system in RAM
o ramfs - RAM-based file system
o debugfs - Kernel debugging
o configfs - Kernel configuration

4

Instructor: Muhammad Arif Butt, PhD 5

What is Linux Virtual File System

● In the early days of Unix-like systems, the kernel could only support one filesystem type
at a time (e.g., ext).

● As networking, removable media, and virtual file systems emerged, there was a growing
need for supporting multiple filesystem types. However, different filesystems (e.g., ext,
NFS, FAT, procfs) had different internal implementations, making kernel code complex
and unscalable.

● The Linux kernel introduced the Virtual File System (VFS) in the early 1990s as a
unifying abstraction layer that allows the kernel to interact with all filesystems through
a common interface, regardless of their on-disk format or purpose. VFS enables seamless
data operations: e.g., copy data from ext4 via read() and write it to NFS via write().

● This design made it easier to:
○ Add new filesystems (e.g., ext4, Btrfs)
○ Support remote/network filesystems (e.g., NFS, SMB)
○ Enable virtual filesystems like /proc and /sys with no physical storage

Virtual filesystem is the magic abstraction that makes the "everything is a file" philosophy of Linux possible

Instructor: Muhammad Arif Butt, PhD

How VFS Works?
● VFS defines a common interface of file operations

(e.g., open, read, write, mkdir) through
file_operations.

● Each filesystem implements these operations through
its own file_operations structure.

● When a system call is made (e.g., open()), VFS:
○ Resolves the file path using dentries
○ Finds the file metadata using the inode
○ Creates a file object to represent the open file
○ Returns a file descriptor to the user-space process

● VFS acts as a dispatcher, routing operations to the
correct filesystem implementation.

● Uses internal caching (dentry, inode, page) to
boost performance and reduce disk I/O.

Application

VFS

open(), read(),write()

ext4
open()
read()
write()

fat32
open()
read()
write()

ntfs
open()
read()
write()

6

Instructor: Muhammad Arif Butt, PhD

....

write(test.c,);

create(file.c,);

....

....

generic_file_read,

generic_file_write,

ext2_truncate,

ext2_readdir,

ext2_create,

....

Disk

file.c test.c
user
level

kernel
level

user

....

generic_file_read,

fat_file_write,

fat_truncate,

generic_read_dir,

....

ext2 msdos

/dev/sda1 /dev/sda2

....

fat_file_write(test.c,);

ext2_create(file.c,);

....

....

generic_file_read,

generic_file_write,

ext2_truncate,

ext2_readdir,

ext2_create,

....

Disk

user
level

kernel
level

user

....

generic_file_read,

fat_file_write,

fat_truncate,

generic_read_dir,

....

ext2 msdos

/dev/sda1 /dev/sda2

With VFS Without VFS

file.c test.c

7

Instructor: Muhammad Arif Butt, PhD 8

VFS Data Structures and Operations
VFS uses four main in-kernel object types:
○ Superblock
○ Inode
○ Dentry
○ File

Elixir Cross Referencer is a web-based tool for browsing and cross-referencing large
C codebases like the Linux kernel. It helps developers quickly find definitions,
usages, and relationships between functions, structs, and macros. Developed by
Bootlin, it offers a fast, searchable, and intuitive interface to explore complex code
like vfs, drivers, and syscalls. Let us explort the fs/ directory that implements all
supported file systems and the VFS (Virtual File System) layer.

https://elixir.bootlin.com/linux/v6.16/source

https://elixir.bootlin.com/linux/v6.16/source

Instructor: Muhammad Arif Butt, PhD

Schematic View of Linux Filesystem

Owner TimeGroup Type Permission Address

Linear View of Hard disk

Enlarged view of a Primary partition

Size Free
block

Bad
block

$ sudo dd if=/dev/sda bs=512 count=1 | hexdump -C [To view the contents of boot block]
$ sudo tune2fs -l /dev/sda1 | less [To view and modify ext filesystems]
$ sudo dumpe2fs -h /dev/sda1 [To view superblock details]
$ sudo file -s /dev/sda1 [To view superblock details]

Super block is a structure that
represents an instance of a
filesystem, i.e., a mounted
filesystem. It is defined in
include/linux/fs.h. It contains
metdata for filesystem, like total
and free block/inode count, block
size and other filesystem features

Boot Block contains
information needed
by the system to boot
an OS from that
partition

List of Inode blocks

Boot Block Super Block Data blocks

MBR Partition1 Partition 2 Partition 3 Partition 4

Inode is a Kernel
data structure
containing a
file’s metadata

A hard disk is divided into partitions, and each partition can have an independent file system. Master Boot Record (MBR) supports 2TiB disk
size and four primary partitions. It resides in sector 0 (512 bytes) containing ~446 bytes of boot code, 64 bytes of partition table (four entries of
16 bytes each defining up to 4 primary partitions and boot signature (0x55AA) that mark its validity. Globally Unique Identifier Partition Table
(GPT) has superseded MBR that support 9.4 ZiB disk size and 128 partitions. MBR uses BIOS while GPT uses Unified Extensible Firmware
Interface (UEFI).

9

Instructor: Muhammad Arif Butt, PhD 10

Superblock
• Superblock is a structure that represents a mounted instance of a filesystem and exists
both on disk and in memory.

• It contains essential filesystem metadata such as block size, total/free block counts, max
file size, and a pointer to the root inode.

• In Linux, superblock is defined in include/linux/fs.h as struct super_block
and includes a pointer to a table of superblock operations (struct
super_operations)

• The struct super_operations define filesystem-wide methods such as inode
allocation, syncing and unmounting e.g., alloc_inode(), destroy_inode(),
write_inode() etc. These are invoked on the superblock and provide hooks for per-
filesystem resource management.

Instructor: Muhammad Arif Butt, PhD 11

Inode
• Inode is a is a structure that uniquely identifies a file or directory within a filesystem

and exists both on disk and in memory.
• It contains metadata about the file, such as its size, permissions, ownership,

timestamps, the type of file, and pointers to data blocks.
• The inode does not store the filename or directory path, which are managed by dentries.
• In Linux, it is defined in include/linux/fs.h as struct inode, and each inode also

includes a pointer to table of inode operations (struct inode_operations), allowing
filesystem-specific handling of operations like create, lookup, or unlink.

• The struct inode_operations defines operations related to file and directory
metadata such as create(), mkdir(), link(), unlink(), lookup() etc. These
are invoked on inodes and control how the filesystem handles structural changes.

struct inode: https://elixir.bootlin.com/linux/v6.0/source/include/linux/fs.h#L593

https://elixir.bootlin.com/linux/v6.0/source/include/linux/fs.h

Instructor: Muhammad Arif Butt, PhD

Structure of an Inode block in Linux ext Filesystem
Permissions

Timestamps

Owner and Groups

File size

…

Single Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block

Data Block

Data Block

Single In-Direct Block

Data Block

Data Block

Double Indirect Block

Data Block

Data Block

Tripple Indirect Block Data Block

Data Block

12
 d

ir
ec

t b
lo

ck
 p

oi
nt

er
s

Every file has a unique inode number and an
associated inode block, that uniquely identifies the
file within the filesystem. Think of inode as a file's
ID, similar to PID of a process. Inodes store
metadata as well as pointers to file data blocks.

12

Instructor: Muhammad Arif Butt, PhD 13

Dentry
• Dentry (short for directory entry) is a structure used to map file names to their
corresponding inodes and exists only in memory.

• It plays a critical role in pathname resolution by breaking full paths (e.g.,
/home/user/file.txt) into individual components, each represented by a dentry.

• The dentry structure caches name-to-inode mappings to speed up repeated lookups and
reduce disk I/O. It does not contain file metadata itself, but rather acts as the glue between a
file name and its inode.

struct dentry_operations: https://elixir.bootlin.com/linux/v6.0/source/include/linux/dcache.h#L127

54

6

47

49

34

.

..
f1.txt

f2.txt

dir1

35 dir2

FilenameInode#• In Linux, it is defined in include/linux/dcache.h as struct
dentry, and it may include a pointer to a table of dentry_operations
table for filesystem-specific behaviors like name comparison and
validation.

• The struct dentry_operations, defines operations related to path
lookup and name validation such as d_hash(), d_compare(),
d_delete() etc, used during pathname resolution and dentry cache
management.

https://elixir.bootlin.com/linux/v6.0/source/include/linux/dcache.h

Instructor: Muhammad Arif Butt, PhD 14

File
• File is a structure that represents an open file instance in the kernel and exists only in
memory for the duration of the file access.

• It contains runtime information such as the current file offset, access mode (read/write),
and flags set during opening (e.g., O_APPEND).

• Each process has a file descriptor table that points to these file structures, allowing
multiple processes or threads to share open file instances.

• In Linux, it is defined in include/linux/fs.h as struct file, and it also contains a
pointer to a table of struct file_operations, enabling filesystem-specific
implementations of operations like read(), write(), and llseek().

• The struct file_operations defines file-specific operations performed on open files
like read(), write(), lseek(), ioctl() etc. These operations are tied to the file
structure and govern runtime file I/O behavior.

struct file: https://elixir.bootlin.com/linux/v6.0/source/include/linux/fs.h#L940

https://elixir.bootlin.com/linux/v6.0/source/include/linux/fs.h

Instructor: Muhammad Arif Butt, PhD

File System in Practice

15

Instructor: Muhammad Arif Butt, PhD

File system in action: File creation
$ echo “Learning is fun with Arif Butt” 1> /home/arif/f1.txt

A B C D

47

54

6

47

49

34

.

..
f1.txt

f2.txt

dir1

35 dir2

Directory entries for /home/arif

Permissions

Timestamps

Owner and Groups

File size

…

Single Indirect Block

Double Indirect Block

Triple Indirect Block

Inode block #47

FilenameInode#

150 600 700

150
151

151

152

Data blocks #
Inode #

Data
block1

Data
block2

Data
block3

SBBB

Use stat, du and
filefrag commands
to display the data
blocks info of a file

When a user creates a new file, the kernel
performs the following steps:

1. Allocates a free inode to store the file’s metadata
(permissions, ownership, timestamps, etc.).

2. Allocates free data blocks to store the actual
contents of the file.

3. Updates the inode to record the pointers of the
allocated data blocks.

4. Adds an entry to the directory to link the
filename to its corresponding inode number.

16

Instructor: Muhammad Arif Butt, PhD

File system in action: Understanding directories
$ ls -iaR

demodir/:
2621457 . 2629351 .. 2627038 a 2627039 c 2627033 y

demodir/a:
2627038 . 2621457 .. 2627040 x

demodir/c:
2627039 . 2621457 .. 2627041 d1 2627042 d2

demodir/c/d1:
2627041 . 2627039 .. 2627040 hltox

demodir/c/d2:
2627042 . 2627039 .. 2627043 copytox

x

a

hltox

d1

copytox

d2

c

d1 d2

y

demodir

a c

User View of Directory Structure

17

Instructor: Muhammad Arif Butt, PhD

System View of Directory Structure

457 .

351 ..

038 a

039 c

033 y

039 .

457 ..

041 d1

042 d2

038 .

457 ..

040 x

041 .

039 ..

040 hltox

042 .

039 ..

043 cryptox

demodir

a

c

d1

d2

File system in action: Understanding directories

18

Instructor: Muhammad Arif Butt, PhD

File system in action: Accessing a file
$ cat /home/arif/f1.txt

A B C D

615 9150 9600 97009151

Data blocks #
Inode #

SBBB

2

2

561

34

.

..
home/

bin

etc

35 var

Inode # 2
/

561

2

533

534

.

..
arif/

rauf

Inode # 561
home/

533

561

615

619

.

..
f1.txt

file2.txt

Inode # 533

arif/

Learning is
fun with Arif

Butt

<EOF>

Inode # 615

f1.txt

When a user tries to access a file (f1.txt), the
kernel performs the following steps:

1. Searches the directory structure to find the
given filename.

2. Retrieves the associated inode, e.g., inode 615.
3. Performs a permission check by comparing the

process's user ID with the file's owner, group,
and others.

4. Accesses the file’s data blocks. First 12 data
block addresses are stored directly in the inode.
Additional data blocks are accessed via Single
indirect block, Double indirect block, and Triple
indirect block

19

Instructor: Muhammad Arif Butt, PhD

Connection between fd
and Open Files

20

Instructor: Muhammad Arif Butt, PhD

Relation between fd and opened files - PPFDT
Per Process File Descriptor Table:
• The kernel maintains a dedicated file descriptor table

for each process to track all files that the process has
opened.

• By default three files are opened at descriptor 0, 1,
and 2 called stdin, stdout and stderr.

• Total number of entries in this table is kernel
variable OPEN_MAX, that specifies the max number of
files that a process can open at a time. Traditional
limit is 1024 file descriptors per process (configurable
via ulimit command)

• Each entry stores a set of flags controlling file
descriptor operations, and a reference pointer to the
global system file table

• In order to view all files opened by a specific process,
you can use the lsof –p <pid> command.

• In order to identify which processes have opened a
particular file, you can use the fuser <filename>
command.

21

Instructor: Muhammad Arif Butt, PhD

Relation between fd and opened files - SWFT
System Wide File Table:
• The kernel maintains a global file table that tracks

all files currently opened by any process in the
system.

• Each entry in SWFT include following information:
o Current file offset used by read/write operations to

track the position within the file.
o Status flags that were specified when opening the

file, categorized into three types:
ü Access mode flags: O_RDONLY, O_WRONLY, O_RDWR
ü Open time flags: O_TRUNC, O_CREAT, O_EXCL
ü Operating mode flags: O_APPEND, O_SYNC, O_NONBLOCK

• Maximum number of entries in SWFT represents the maximum number of files that can be opened system-
wide at any instant of time.

• Each entry maintains a reference pointer to the corresponding inode object in the inode table.
• When multiple processes open the same file, separate entries are created in the SWFT, but they may point

to the same inode in the inode table.
22

Instructor: Muhammad Arif Butt, PhD

Relation between fd and opened files – inode Table
Inode Table and Inode Block:
Each file system maintains a table of inodes for all the
files residing in that filesystem, serving as the central
repository of file metadata. Each inode acts as the unique
identifier for files on disk, much like a PID for processes,
and holds essential information about the file. Each entry
in the inode table stores comprehensive file information
including:
o File type: Seven different types (-, d, l, p, c, b, s)

representing regular files, directories, links, pipes,
character devices, block devices, and sockets.

o File lock: Information on file locks applied to the file.
o File size: Stored in both bytes and blocks for efficient storage management
o Ownership and Access permissions: Read, write and execute permissions for owner, group and others
o Time stamps: Modification time (ls -l), Access time (ls -lu), Status change time (ls -lc)
o Link Management: Number of hard links pointing to this inode
o Data Block Pointers: Contains a total of 15 pointers. Twelve direct pointers that directly point to data

blocks, one single indirect pointer, one double indirect pointer, and one triple indirect pointer.
23

Instructor: Muhammad Arif Butt, PhD

File Descriptor to File Contents

Fd flags File
pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT
Process A

File
offset

Status
flags

Inode pointer

System wide file table

Type Perm Owner Locks …

Inode Table

0

12

56

93

102

13

233

0

If a process call open() twice on a file, there will be two entries in PPFDT, two entries in SWFT and one entry in inode table.

Process A

24

Instructor: Muhammad Arif Butt, PhD

File Descriptor to File Contents

Fd flags File
pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT
Process A

File
offset

Status
flags

Inode pointer

System wide file table

Type Perm Owner Locks …

Inode Table

0

12

56

93

102

13

233

0

If a process call open() on a file and then dup(), there will be two entries in PPFDT, one entry in SWFT and one entry in inode table.

Process A

25

Instructor: Muhammad Arif Butt, PhD

File Descriptor to File Contents
Fd flags File

pointer

0

1

2

3

PPFDT
Process A

File
offset

Status
flags

Inode pointer

System wide file table
Type Perm Owner Locks …

Inode Table

0

12

56

93

13

233

0

PPFDT
Process B

Fd flags File
pointer

0

1

2

3

If two different processes opens the same file by calling open(), there will be two different entries in SWFT

26

Instructor: Muhammad Arif Butt, PhD

File Descriptor to File Contents

Fd flags File pointer

0

1

2

3

PPFDT
Process A

File
offset

Status
flags

Inode pointer

System wide file table
Type Perm Owner Locks …

Inode Table

0

12

56

93

102

13

233

0

PPFDT
Child of A

Fd flags File pointer

0

1

2

3

If a process opens a file with open() and then calls fork() the parent and child processes will share the same
SWFT entry, and both refer to the same inode table entry.

27

Instructor: Muhammad Arif Butt, PhD

I/O Redirection
on the Shell

28

Instructor: Muhammad Arif Butt, PhD

Standard file descriptors
● All system calls for performing I/O refer to open files using a file descriptor, a (usually small) nonnegative

integer. File descriptors are used to refer to all types of open files, including regular files, directories,
terminals, devices, pipes, and sockets. Symbolic links, however, are not normally “opened” for
reading/writing in the same sense. They’re followed (resolved) by the kernel to another file, unless you
explicitly open them with O_NOFOLLOW flag . In most cases, you don’t get a file descriptor that directly
refers to the symlink’s contents. Each process has its own set of file descriptors.

● By convention, most programs expect to be able to use the three standard file descriptors listed below.
These three descriptors are opened on the program’s behalf by the shell, before the program is started. Or,
more precisely, the program inherits copies of the shell’s file descriptors, and the shell normally operates
with three file descriptors always open as mentioned in the table below:

File
descriptors

Purpose POSIX Name stdio stream

0 Standard Input STDIN_FILENO stdin

1 Standard Output STDOUT_FILENO stdout

2 Standard Error STDERR_FILENO stderr
29

Instructor: Muhammad Arif Butt, PhD

stdin and stdout for Shell Commands

$ cat

This is Great
This is Great
<Ctrl + D>

Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

stdin

stdout

stderr

$ sort rauf arif kamal

rauf
aif
kamal
<Ctrl + D>

30

Instructor: Muhammad Arif Butt, PhD

Redirecting Input (0<)
• By default, cat and sort commands takes their input form the standard input, i.e. keyboard. We can

detach the keyboard from stdin and attach some file to it.

• After input of a process is redirected, it will read from this file and not from the keyboard

$ cat 0< f1.txt

$ sort 0< f1.txt

Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

f1.txt

stdout

stderr

31

Instructor: Muhammad Arif Butt, PhD

Redirecting Output (1>)
Similarly, by default cat and sort commands sends their outputs to user terminal. We can detach the display
screen from stdout and attach a file to it; i.e. cat command will now write its output to this file and not to
the display screen.

$ cat 1> f1.txt
Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

stdin

f1.txt

stderr

32

Instructor: Muhammad Arif Butt, PhD

Redirecting Error (2>)
Similarly, by default cat and sort commands sends their outputs to user terminal. We can detach the
stderr and attach a file to it; i.e. cat command will now write its errors to this file and not to the display
screen

$ cat nofile.txt 2> errors.txt
Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

stdin

stdout

errors.txt

nofile.txt

33

Instructor: Muhammad Arif Butt, PhD

Redirecting Input, Output and Error

$ cat 0< f1.txt 1> f2.txt 2> f3.txt

Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

f1.txt

f2.txt

f3.ttx

We can also redirect the input, output and error in a single shell command as shown below:

34

Instructor: Muhammad Arif Butt, PhD

Duplicating a File Descriptor

$ cat 0< f1.txt 1> f2.txt 2>&1

Fd flags File pointer

0

1

2

3

4

OPEN_MAX - 1

PPFDT

f1.txt

f2.txt

We can use the syntax 2>&1 that informs the shell (make 2 a copy of 1), i.e., the standard error is redirected to
the same place to which stdout is pointing at that moment.

35

Instructor: Muhammad Arif Butt, PhD

Redirection happens from Left to Right

Command f2.txt created? Error goes to? Why?

cat 0< f1.txt 1> f2.txt 2>&1 No Terminal 0< f1.txt fails first, so command & other redirections are
never processed

cat 2>&1 1> f2.txt 0< f1.txt Yes Terminal 2>&1 processed first (points to terminal), then 1> f2.txt
(creates file), then 0< f1.txt fails

cat 1> f2.txt 2>&1 0< f1.txt Yes f2.txt 1> and 2>&1 redirect both output and error to f2.txt,
then 0< f1.txt fails, so error goes to f2.txt

Consider the following commands, and understand their execution, if the input file don't exist.

How many command line arguments are passed to the cat program and why?

$100 QUESTION

36

Instructor: Muhammad Arif Butt, PhD

Redirection happens from Left to Right
Consider the following commands, where f1.txt is passed as a command line argument and understand their
execution:
• The shell does not open the file itself, rather the cat process does.
• So, all redirections are processed first, regardless of whether f1.txt exist or not.
• Then cat is executed and it fails inside the process if the file does not exist.

Command f2.txt created? Error goes to? Why?

cat f1.txt 1> f2.txt 2>&1 Yes f2.txt Redirections processed before cat runs; both stdout and
stderr go to f2.txt

cat f1.txt 2>&1 1> f2.txt Yes Terminal 2>&1 points stderr to terminal, then 1> f2.txt
changes stdout to f2.txt. Error goes to terminal

cat f1.txt 1> f2.txt 2>&1 Yes f2.txt Both stdout and stderr points to f2.txt, and error goes to
f2.txt

37

Instructor: Muhammad Arif Butt, PhD

Universal I/O model

38

Instructor: Muhammad Arif Butt, PhD

open() System Call

● The file to be opened is identified by the pathname argument. If pathname is a symbolic link, it is
dereferenced

● On success, open() returns a file descriptor that is used to refer to the file in subsequent system calls

● On error, open() returns –1 and errno is set accordingly

● The file status flags argument is a bit mask that:

a. Must include one of the three file access modes (O_RDONLY, O_WRONLY, O_RDWR)

b. Zero or more file open time flags, (O_CREAT, O_TRUNC, O_EXCL)

c. Zero or more file operating mode flags (O_APPEND, O_SYNC, O_NONBLOCK)

int open(char *pathname, int flags);

int open(char *pathname, int flags, mode_t mode);

39

Instructor: Muhammad Arif Butt, PhD

Flags argument of open() System call
Flags Description
O_RDONLY Open file in read only mode

O_WRONLY Open file in write only mode

O_RDWR Open file in read write mode

O_CREAT If file does not already exist , it makes a new file. If we specify O_CREAT, then we must supply a mode argument in
the open() call; otherwise, the permissions of the new file will be set to some random value from the stack

O_APPEND Writes are always appended to the end of the file

O_TRUNC If the file already exists and is a regular file, then truncate it to zero length, destroying any existing data

O_EXCL This flag is used in conjunction with O_CREAT to indicate that if the file already exists, it should not be opened;
instead, open() should fail, with errno set to EEXIST

O_CLOEXEC Enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. By default, the file descriptor will remain
open across an execve(). Normally used in multithreaded programs to avoid the race conditions

40

Instructor: Muhammad Arif Butt, PhD

Mode argument of open() System call
● When open() is used to create a new file, the mode bit-mask argument specifies the permissions to

be placed on the file. If the open() call doesn’t specify O_CREAT, mode can be omitted.
● Mode argument can be specified as a number (typically in octal) or, preferably, by ORing (|)

together zero or more of the bitmask constants. These constants are:

• Permissions actually placed on a new file depend not just on the mode argument, but also on the
process umask and can be computed as:

mode & ~umask

• This mode only applies to future accesses of the newly created file.

S_IRWXU 0700 S_IRWXG 0070 S_IRWXO 0007

S_IRUSR 0400 S_IRGRP 0040 S_IROTH 0004

S_IWUSR 0200 S_IWGRP 0020 S_IWOTH 0002

S_IXUSR 0100 S_IXGRP 0010 S_IXOTH 0001

41

Instructor: Muhammad Arif Butt, PhD

File Descriptor returned by open()
● SUSv3 specifies that if open() succeeds, it is guaranteed to use the lowest-numbered unused

file descriptor for the process. We can use this feature to ensure that a file is opened using a
particular file descriptor.

● For example, the following sequence ensures that a file is opened using standard input (file
descriptor 0)

close(0);
fd = open(pathname, O_RDONLY);

● Since file descriptor 0 is unused, open() is guaranteed to open the file using that descriptor.

42

Instructor: Muhammad Arif Butt, PhD

read() System Call

● Attempts to read up to count number of bytes from the file descriptor fd into the buffer
starting at memory address buf.

● If count is 0 then read() return 0. If count is greater than SSIZE_MAX then the result is
unspecified. SSIZE_MAX is the largest positive value that can fit in ssize_t (e.g., typically
9223372036854775807 on 64-bit systems).

● On success, returns number of bytes read, which can be less than count if EOF is encountered.
Before a successful return the current file offset is incremented by the number of bytes actually
read.

● In case of regular file having more than count bytes, it is guaranteed that read will read
count bytes and then will return. However, in case of FIFO or socket this is not guaranteed.

● On failure, returns -1 and set errno
● A return of zero indicates end-of-file.

ssize_t read(int fd, void *buf, size_t count);

43

Instructor: Muhammad Arif Butt, PhD

pread() System Call

● This function read count number of bytes from the file descriptor fd at offset offset into the
buffer starting at memory address buf.

● On success; Number of bytes read is returned and current file offset is not advanced to
new location.

● On failure; Return -1 and errno is set to indicate the error.

● A return value of 0 means nothing is read.

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

44

Instructor: Muhammad Arif Butt, PhD

write() System Call

● Attempts to write up to count number of bytes to the file referenced by file descriptor fd from
the buffer starting at memory address buf. The data is written starting with the current
location of current file offset.

● On success; Number of bytes written is returned which may be less than count. Current file
offset is advanced to new location.

● In case of regular file, the call guarantees writing count bytes, if the disk is not full or the file
size has not exceeded the maximum file size supported by system. However, in case of FIFO or
socket this is not guaranteed.

● On failure; Return -1 and errno is set appropriately.

● Return 0 indicates nothing is written.

ssize_t write(int fd,void *buf,size_t count);

45

Instructor: Muhammad Arif Butt, PhD

pwrite() System Call

● This function write count number of bytes from memory address pointed to by buf to the file
referenced by file descriptor fd at offset offset.

● On success; Number of bytes written is returned and current file offset is not advanced to
new location.

● On failure; Return -1 and errno is set to indicate the error.

● A return value of 0 indicates nothing is written.

ssize_t pwrite(int fd, void *buf,size_t count, off_t offset);

46

Instructor: Muhammad Arif Butt, PhD

creat() System Call

● In early UNIX implementations, open() had only two arguments and could not be used to create
a new file. Instead, the creat() system call was used to create and open a new file.

● The creat() system call creates and opens a new file with the given pathname, or if the file
already exists, opens the file and truncates it to zero length.

● On success, creat() returns a file descriptor that can be used in subsequent system calls. Calling
creat() is equivalent to the following open() call:

fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

● Because the open() flags argument provides greater control over how the file is opened (e.g., we
can specify O_RDWR instead of O_WRONLY), creat() is now obsolete.

● So, using creat(), a file is opened only for writing. If we were creating a temporary file that we
wanted to write and then read back, we had to call creat(), close() and then open()

int creat(char *pathname, mode_t mode);

47

Instructor: Muhammad Arif Butt, PhD

close() System Call

● Close a file descriptor fd so that it is no longer referenced in the PPFDT and may be reused to a
later call of open(), or dup().

● Closing a file also releases any record locks that a process may have on file.

● When a process terminates, all open files are automatically closed by kernel.

● On Success; Return 0

● On failure; Return -1 and errno is set appropriately.

int close(int fd);

48

Instructor: Muhammad Arif Butt, PhD

File I/O
Lec2.2/file_io1.c
Lec2.2/file_io2.c
Lec2.2/file_io3.c
Lec2.2/file_io4.c
Lec2.2/file_io5.c
Lec2.2/file_io6.c
Lec2.2/file_io7.c
Lec2.2/file_io8.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

49

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 50

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch OS video on I/O Redirection on the Shell:
https://www.youtube.com/watch?v=ik6TvPquVk8&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=9

• Watch OS video on File system architecture:
https://www.youtube.com/watch?v=58WJZbcNj2E&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=21

• Watch SP video on File system architecture:
https://www.youtube.com/watch?v=x_bu6De71KY&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=12

• Watch SP video on File related system calls:
https://www.youtube.com/watch?v=DZQkyoXgkMs&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=13

https://www.youtube.com/watch?v=ik6TvPquVk8&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=9
https://www.youtube.com/watch?v=58WJZbcNj2E&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=21
https://www.youtube.com/watch?v=x_bu6De71KY&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=12
https://www.youtube.com/watch?v=DZQkyoXgkMs&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=13

