
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 2.3
UNIX File System Architecture (Part-II)

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● I/O Redirection in C Programs

● Playing with file offset (lseek)
● Misc File Related System Calls
● Accessing File Attributes

o Determining File Type (stat)
o Determining File Permissions (stat)

o Determining File Owner (getpwuid)
o Determining File Group (getgrgid)
o Determining File Time Stamps (ctime)

● Directory Management Calls

Instructor: Muhammad Arif Butt, PhD

I/O Redirection
in C Programs

3

Instructor: Muhammad Arif Butt, PhD

dup() System Call
int dup(int oldfd);

● The dup() call takes oldfd, an open file descriptor, and returns a new descriptor that refers to
the same open file description.

● The old and the new descriptor both point to the same entry in the SWFT. After a successful
return from these function , old and new fd's can be used interchangeably.

● The new descriptor is guaranteed to be the lowest unused file descriptor
Fd flags File pointer

0

1

2

3

4

stdin

stdout

stderr

f1.txt

● If we run the following LOCs, the open() call will return 3, the
dup() call will return the lowest unused descriptor which will be
zero. Finally descriptor zero points to the opened file instead of
stdin.

fd = open(...);

close(0);

newfd = dup(fd);

● To make the above code simpler, and to ensure we always get the
file descriptor we want, we can use dup2().

4

Instructor: Muhammad Arif Butt, PhD

dup2() System Call
int dup2(int oldfd, int newfd);

● The dup2() system call makes a duplicate of the file descriptor given in oldfd using the
descriptor number supplied in newfd.

● If the file descriptor specified in newfd is already open, dup2() closes it first.

● We can simplify the preceding calls to close(0) and dup(fd) on previous slide to the
following:

dup2(fd, 0);

● A successful dup2() call returns the number of the duplicate descriptor i.e., the value passed in
newfd

● If oldfd is a valid file descriptor, and oldfd and newfd have the same value, then dup2() does
nothing. In this case, newfd is not closed, and dup2() returns the newfd

5

Instructor: Muhammad Arif Butt, PhD

Input Redirection

fd = open("/etc/passwd", O_RDONLY);
close(0);
newfd = dup(fd);
close(fd);

close(0);
fd = open("/etc/passwd", O_RDONLY);

fd = open("/etc/passwd", O_RDONLY);
newfd = dup2(fd, 0);
close(fd);

Method 1: close-open

Method 2: open-close-dup-close

Method 3: open-dup2-close

Use Method 3 in all scenarios. It's the standard, safe, and atomic way to perform input redirection. Methods 1
and 2 should be avoided in production code due to race conditions, though Method 1 might be acceptable in
simple single-threaded educational examples where error handling isn't critical.

6

Instructor: Muhammad Arif Butt, PhD

Output Redirection

fd = open(”output.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
close(1);
newfd = dup(fd);
close(fd);

close(1);
fd = open(”output.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd = open(”output.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
newfd = dup2(fd, 1);
close(fd);

Method 1: close-open

Method 2: open-close-dup-close

Method 3: open-dup2-close

Note: For error redirection, simply replace the file descriptor (1 with 2) in all above code snippets

7

Instructor: Muhammad Arif Butt, PhD

IO Redirection
Lec2.3/io_redirection/
listargs.c
dup.c
stdin_redir1.c
stdin_redir2.c
stdin_redir3.c
redirect_grep.c

Demonstration

8

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Playing with File offset

9

Instructor: Muhammad Arif Butt, PhD

lseek() System Call

● For each open file, the kernel records a file offset, also called current file offset (cfo), which is
there in the SWFT. This is the location in the file at which the next read() or write() will
commence. The file offset is expressed as an ordinal byte position relative to the start of the file.
The first byte of the file is at offset 0.

● The file offset is set to point to the start of the file when the file is opened (unless the O_APPEND
option is specified) and is automatically adjusted by each subsequent call to read() or write()
so that it points to the next byte of the file after the byte(s) just read or written. Thus, successive
read() and write() calls progress sequentially through a file.

● The lseek() system call adjusts the file offset of the open file referred to by the file descriptor
fd, according to the values specified in offset and whence. On success, returns the resulting
offset location and -1 on failure.

off_t lseek(int fd,off_t offset,int whence);

10

Instructor: Muhammad Arif Butt, PhD

lseek() System Call

WHENCE Description

SEEK_SET 0 The CFO is set offset bytes from the beginning of the file

SEEK_CUR 1 The CFO is set offset bytes from current value of CFO

SEEK_END 2 The CFO is set offset bytes from the end of the file

SEEK_HOLE 3 The CFO is set to start of the next hole greater than or equal to offset

SEEK_DATA 4 The CFO is set to start of the next non-hole (i.e., data region) greater than or equal to offset

The whence directive can take following values:

off_t position;
position = lseek(fd, 0, SEEK_CUR); //return current file offset
position = lseek(fd, 0, SEEK_END); //next byte after the end of the file
position = lseek(fd, -10, SEEK_CUR); //ten bytes prior to current location
position = lseek(fd, -1, SEEK_END); //last byte of file
position = lseek(fd, 100, SEEK_END); //101 bytes past last byte of file

Example

11

Instructor: Muhammad Arif Butt, PhD

Interpreting whence argument of lseek() system call

0 1 … … n-2 n-1 n n+1 …

SEEK_SET
(Start of file)

SEEK_END
(End of file)

SEEK_CUR
(Current file offset)

File containing n bytes of data Hole past EOF

lseek() System Call

12

Instructor: Muhammad Arif Butt, PhD

File Offset

Lec2.3/seeking/lseek1.c
Lec2.3/seeking/lseek2.c
Lec2.3/seeking/lseek3.c

Demonstration

13

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Misc File Related
System Calls

14

Instructor: Muhammad Arif Butt, PhD

Truncating a File

● Truncating a file means chopping off contents from the tail of the file. The use of the O_TRUNC flag in
open() call is special case of truncation where the file size is reduced to zero and the cfo and EOF are set
to location 0

● The truncate() and ftruncate() system calls truncate an existing file to length bytes.

● If length is smaller than the existing length of the file, the contents of the file beyond length bytes are not
accessible anymore.

● If length is greater than the current file size, the file size is increased to length and the space between the
previous EOF and new EOF is filled with zeros and becomes a hole.

● The difference between the two system calls lies in how the file is specified. With truncate(), the file,
which must be accessible and writable, is specified as a pathname string. If pathname is a symbolic link,
it is dereferenced. The ftruncate() system call takes a descriptor for a file that has been opened for
writing. It doesn’t change the file offset for the file

int truncate(const char* path, off_t length);

int ftruncate(int fd, off_t length);

15

Instructor: Muhammad Arif Butt, PhD

rename() Function

● A programmer can rename a file or a directory with the rename() library function

● A sample code snippet that renames a file named file1 to file2 in the present working
directory is shown below:

int rename(const char*oldpath, const char* newpath);

if(rename(“file1”,”file2”) == -1)

perror(“rename(1)”);

16

Instructor: Muhammad Arif Butt, PhD

remove() and unlink()

● Remove is a library call that deletes a name from file system. It calls unlink() for files and
rmdir() for directories

● However, if any process has this file open currently, the file won't be actually erased until the
last process holding it open closes it. Until then it will be removed from the directory (i.e., ls
won't show it), but not from disk.

● When a file is deleted, the OS Kernel performs following tasks:
i. Frees the inode number associated with that file.
ii. Frees all the data blocks associated with that file and add them to the list of free blocks.
iii. Delete the entry from the directory containing that file.

Note: The metadata of the file is still there in the inode block and the data of the file in its data
blocks. You just need to know how to access those blocks :)

int remove(const char *pathname);

int unlink(const char* pathname);

17

Instructor: Muhammad Arif Butt, PhD

chown, fchown and lchown Function Instr

● chown() changes the owner and group of the file specified by path

● fchown() is identical to chown() except that file is specified by file descriptor “fd”

● lchown() is similar to chown(), except if path is a symbolic link, then the link itself is
changed , not the file it refers to.

● If owner or group is specified as -1, then that ID is not changed.

● Only a process with super user privileges can use these functions to change any file user ID
and group ID.

int chown(const char *pathname, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *linkname, uid_t owner,gid_t group);

18

Instructor: Muhammad Arif Butt, PhD

chmod() and fchmod() System Call

● These two functions allow us to change the file access permissions for an existing file.

● The chmod() function operates on the specified file, whereas the fchmod() function operates
on a file that has already been opened using its file descriptor.

● The mode is the same as discussed in the flags argument of open()

● Following code snippet will give the owner read and write permissions to the file and deny
access to all other users.

int chmod(const char *pathname, mode_t mode);

int fchmod(int fd, mode_t mode);

if (chmod(filename, 0644) == -1)

perror("chmod failed");

mode_t new_mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

if (chmod(filename, new_mode) == -1)

perror("chmod failed");

19

Instructor: Muhammad Arif Butt, PhD

umask() Function

● The umask() is essential for controlling default file permissions in Unix/Linux systems. The file mode
creation mask is used whenever the process creates a new file or a new directory.

● The umask() function sets the file mode creation “mask” for the process and returns the previous value.

● Remember the mask value of a process is the same as that of its creating shell, i.e. its parent. (mask value
is inherited after fork)

mode_t umask(mode_t mask);

umask(0077);

int fd = open("myfile.txt", O_CREAT | O_RDWR, 0633);

After the above code executes, the resulting permissions on myfile.txt are rw- --- --- (mode &~umask)

20

Instructor: Muhammad Arif Butt, PhD

access() System Call

● The access() system call determines whether the calling process has access permission to a file or not
and it can also check for file existence as well.

● The mode argument is a bit mask consisting of one or more of the permission constants.

● If a process has all the specified permissions the return value is 0, otherwise the return value is -1 & sets
errno to EACCES

● The open() system call performs its access tests based on the EUID and EGID, while the access()
system call bases its tests on the real UID & GID

int access(const char *pathname, int mode);

Mode Description

R_OK Test for read permission

W_OK Test for write permission

X_OK Test for execute permission

F_OK Test for existence of file
21

Instructor: Muhammad Arif Butt, PhD

Symlink and link Function

● The link() and symlink() functions are used to create a hard link and a soft link to a file respectively.

● Following sample code snippets show the usage of these library functions:

int symlink(const char* oldpath, const char* newpath);

int link(const char* oldpath, const char* newpath);

if(symlink(“/tmp/file1”, ”/home/arif/slinktofile1”) == -1){

perror(“symlink”); exit(1);}

if(link(“/tmp/file1”, ”/home/arif/hlinktofile1”) == -1) {

perror(“link”); exit(1); }

22

Instructor: Muhammad Arif Butt, PhD

Misc File Handling

Lec2.3/misc/access.c
Lec2.3/misc/truncate.c
Lec2.3/misc/umask1.c
Lec2.3/misc/umask2.c

Demonstration

23

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Accessing File
Attributes

24

Instructor: Muhammad Arif Butt, PhD

Accessing File Attributes

● Above functions can be used to access the file attributes stored in its inode. No permissions are required
on the file itself, however, execute (search) permission is required on all of the directories in pathname
that lead to the file.

● stat() stats the file pointed by “path” and fills in “buff”

● fstat() is identical to stat() except that file to be stated is specified by file descriptor “fd”

● lstat() is similar to stat(), except if path is a symbolic link, then the link itself is stated , not the file it
refers to.

● On success returns 0 and on error returns -1 and set errno.

● On success, populate the stat structure as mentioned on next slide

int stat(const *char pathname, struct stat *buff);
int fstat(int fd, struct stat *buff);

int lstat(const *char linkname, struct stat *buff);

25

Instructor: Muhammad Arif Butt, PhD

File Attributes
struct stat{

dev_t st_dev; //ID of device containing file
ino_t st_ino; //inode number
mode_t st_mode; //file type & permission
nlink_t st_nlink; //number of hard links
uid_t st_uid; //user ID of owner
gid_t st_gid; //group ID of owner
off_t st_size; //total size in bytes
time_t st_atime; //time of last access
time_t st_mtime; //time of last data modification
time_t st_ctime; //time of last status change
struct timespec st_birthtim; //file creation time
blksize_t st_blksize; //block size for I/O
blkcnt_t st_blocks; //numb of 512B blocks allocated
};

26

Instructor: Muhammad Arif Butt, PhD

Understanding the st_mode of struct stat

The lower 16 bits of st_mode member of struct stat is shown above that contains information about file
type and permissions
Example: If it contains a value of 1006408 = 81A016 = 10000001101000002
• Bit 2-0 specifies permissions for others (000): ---

• Bit 5-3 specifies permissions for group members ((100): r--

• Bit 8-6 specifies permissions for owner (110): rw-

• Bit11-9 specifies special permissions (000): ---

• Bit15-12 specifies file type (1000): Regular File

File Type
(4 bits)

Special Permissions
(3 bits)

User
(3 bits)

Group
(3 bits)

Others
(3 bits)

File Type Symbol Binary (bits 15-12) Constant
Regular File - 1000 S_IFREG
Directory d 0100 S_IFDIR
Character Device c 0010 S_IFCHR
Block Device b 0110 S_IFBLK
FIFO/Named Pipe p 0001 S_IFIFO
Symbolic Link l 1010 S_IFLNK
Socket s 1100 S_IFSOCK

27

Instructor: Muhammad Arif Butt, PhD

Using Macros to Determine File Type

● The file /usr/include/linux/stat.h contains some related macros. So to decipher the file
type, instead of creating your own mask, one can use these macros:

﻿#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

﻿#define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)

● A sample code snippet that uses these macros to determine file type is shown below:

if (S_ISREG(buf.st_mode))
printf("Regular File\n");

else if (S_ISDIR(buf.st_mode))
printf("Directory\n");

File Type
(4 bits)

Special Permissions
(3 bits)

User
(3 bits)

Group
(3 bits)

Others
(3 bits)

28

Instructor: Muhammad Arif Butt, PhD

Determining File Permissions

● The way we have determined the file type, similarly we can identify the different permission
sets a file has.

● We can create a mask to determine the permissions a file has by setting the specific permission
bit ON. Then we can perform a bitwise & operation of the st_mode value with the specific mask,
and check if the specific bit for that permission is set or not. If it is set that means the
permission is ON otherwise it is OFF.

● Following code snippet determine whether the file owner has read, write and execute
permissions on the file:

if((buf.st_mode & 0000400) == 0000400)
printf("Owner has read permission\n");

if((buf.st_mode & 0000200) == 0000200)
printf("Owner has write permission\n");

if((buf.st_mode & 0000100) == 0000100)
printf("Owner has execute permission\n");

File Type
(4 bits)

Special Permissions
(3 bits)

User
(3 bits)

Group
(3 bits)

Others
(3 bits)

29

Instructor: Muhammad Arif Butt, PhD

File Type & Permissions

Lec2.3/file-attributes/
fileinfo.c
filetype.c
filepermissions.c

Demonstration

30

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Accessing Information about File Owner

● The getpwuid() function is passed a user ID (UID) and it searches that user account information from
the system's password database (/etc/passwd).

● Returns a pointer to a struct passwd on success and NULL on failure

#include <pwd.h>
struct passwd *getpwuid(uid_t uid);

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password (usually 'x') */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information/comment */
char *pw_dir; /* home directory */
char *pw_shell; /* login shell */

};

31

Instructor: Muhammad Arif Butt, PhD

Accessing Information about File Group
#include <grp.h>
struct group *getgrgid(gid_t gid);

● The getprgid() function is passed a group ID (GID) and it searches that group information from the
system’s group database (/etc/group).

● Returns a pointer to a struct group on success and NULL on failure

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password (usually unused) */
gid_t gr_gid; /* group ID */
char **gr_mem; /* null-terminated array of strings containing usernames */

};

32

Instructor: Muhammad Arif Butt, PhD

Accessing File Time Stamps
#include <time.h>
time_t time(time_t *tloc);
char *ctime(const time_t *timep);
• The time() function returns the current time as the number of seconds, since UNIX epoch (January 1,

1970, 00:00:00 UTC). The optional parameter is a pointer which gets populated with the result, however, it
is normally set to NULL and we use the return value instead.

• The ctime() function is converts a time value represented as seconds passed since UNIX epoch into a
human readable string format.

• On success, returns pointer to a static string having 26 characters including newline and null terminator:

"Wed Jul 21 12:34:56 2025\n"

33

Instructor: Muhammad Arif Butt, PhD

UID, GID & Timestamp

Lec2.3/file-attributes/
uidtouname.c
gidtogname.c
transformtime.c

Demonstration

34

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Directory Management
Calls

35

Instructor: Muhammad Arif Butt, PhD

Creating and Deleting directories

● The mkdir() function creates a new, empty directory with two entries . & .., and new directory will be
owned by the effective UserID of the process. Permissions on the created directory can be calculated by:
mode & ~umask. An empty directory has a link count of 2. As you add subdirectories to this directory, the
link count will increase by 1 for each subdirectory (because each subdirectory's .. entry creates an
additional hard link back to the parent directory).

● The rmdir() function deletes an empty directory by removing the . and .. entries and the link count
reaches zero.

● When link count reaches 0, and no other processes have it open, kernel frees:
○ The directory’s inode.
○ The data blocks containing the directory entries.
○ Any associated metadata.

int mkdir(const char *pathname, mode_t mode);

int rmdir(const char *pathname);

umask(0022);
mkdir("mydir", 0755);

umask(0077);
mkdir("mydir", 0755);

umask(0022);
mkdir("mydir", 0777);

To delete a directory with contents, you must manually traverse the directory tree and delete each file/subdirectory individually,
then finally delete the empty parent directory using rmdir().

36

Instructor: Muhammad Arif Butt, PhD

Opening directories

● The opendir() function opens the directory specified by dirpath and returns a pointer to a
structure of type DIR that can be used to refer to the directory in later calls.

● Upon return from opendir(), the directory stream (DIR) is positioned at the first entry in the
directory list.

● Directories can be read by anyone who has access permission to read the directory. But only the
kernel can write to a directory, so the write permission bits and execute permission bits for a
directory determine if we can create new files in the directory and remove files from the
directory

#include <sys/types.h>
#include <dirent.h>
DIR *opendir(const char* dirpath);

int closedir(DIR *dirp);

● Closes the directory stream associated with “dirp”. The directory stream descriptor “dirp” is not
available after this call.

37

Instructor: Muhammad Arif Butt, PhD

Changing directory

● Every process has a current working directory (cwd), where the search for all relative
“pathnames” starts. You can access it using the getcwd() function. The buf is a pointer to
buffer where the current working directory path will be stored and size is the size of the buffer
in bytes. It returns pointer to buf on success and returns NULL in case of error and sets errno

● We can change the current working directory of the calling process by calling the chdir()
function. The pathname is a pointer to string containing the directory path to change. It
returns 0 on success and returns -1 in case of error and sets errno.

char *getcwd(char *buf, size_t size);
int chdir(const char *pathname);

char cwd[PATH_MAX];
getcwd(cwd, sizeof(cwd))
printf("Current working directory: %s\n", cwd);
printf("\nChanging directory to /tmp...\n");
chdir("/tmp")

38

Instructor: Muhammad Arif Butt, PhD

Reading Directories

● The readdir() function reads successive entries from a directory stream. Each call to readdir() reads
the next directory entry from the directory stream referred to by dirp and returns a pointer to a statically
allocated structure of type dirent, containing the following information about the entry (it may vary from
OS to OS):

struct dirent {
ino_t d_ino; /* File i-node number */
char d_name[]; /* Null-terminated name of file */

};

● This structure is overwritten on each call to readdir()
● The filenames returned by readdir() are not in sorted order, but rather in the order in which they

happen to occur in the directory, this depends on the order in which the file system adds files to the
directory and how it fills gaps in the directory list after files are removed. (The command ls –f lists files
in the same unsorted order that they would be retrieved by readdir())

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

39

Instructor: Muhammad Arif Butt, PhD

Reading Directory
On end-of-directory or error, readdir() returns NULL, in the latter case setting errno to indicate
the error. To distinguish these two cases, we can write the following:

errno = 0;
struct dirent *entry = readdir(dp);
if (entry == NULL && errno != 0) {

/* Handle error */
} else if (entry == NULL) {

/* We reached end-of-directory */
}

If the contents of a directory change while a program is scanning it with readdir(), the
program might not see the changes. SUSv3 explicitly notes that it is unspecified whether
readdir() will return a filename that has been added to or removed from the directory since
the last call to opendir(). All filenames that have been neither added nor removed since the
last such call are guaranteed to be returned

40

Instructor: Muhammad Arif Butt, PhD

Directory Stream Functions

● The telldir() function returns the current location associated with the directory stream
dirp. On error, -1 is returned, and errno is set appropriately.

#include <dirent.h>

off_t telldir(DIR *dirp);

#include <dirent.h>

void seekdir(DIR *dirp, off_t offset);

● The seekdir() function sets the location in the directory stream from which the next
readdir() call will start. The seekdir() should be used with an offset returned by
telldir(). The seekdir() function returns no value

41

Instructor: Muhammad Arif Butt, PhD

Command Line Arg

Lec2.3/myreaddir.c

Demonstration

42

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

To Do:
Consider the following shell command:
$ grep kakamanna < /etc/passwd > out.txt
● The grep command gets string kakamanna as command line argument
● The input of the grep command is attached to /etc/passwd
● The output of the grep command is attached to out.txt

How can we write a C program that can do this?
$./a.out kakamanna < /etc/passwd > out.txt
● Receives argv[1] as a search string
● Open argv[2] file in read mode and argv[3] file in write mode
● Use dup2() to duplicate descriptor 0 with fd of input file
● Use dup2() to duplicate descriptor 1 with fd of output file
● Use close() to close the descriptors achieved in step 2
● Finally exec your program with grep program by passing it the only command line argument,

i.e., the search string

43

Instructor: Muhammad Arif Butt, PhD 44

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch SP video on File related system calls:
https://www.youtube.com/watch?v=DZQkyoXgkMs&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=13

• Watch SP video on ls Utility:
https://www.youtube.com/watch?v=24WNjxn4asY&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=14

https://www.youtube.com/watch?v=DZQkyoXgkMs&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=13

