
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 2.4
Linux Special Files and Terminal Drivers

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● Overview of Linux Special Files
● Device Files vs Regular files
● Character and Block Special Files
● Creating your own Special Files
● Overview of Terminal Devices
● Writing to someone else Terminal
● Reading from someone else Terminal
● What are Terminal Attributes
● Categories of TTY Driver Processing
● Canonical vs Non-Canonical Input Modes
● Accessing and Modifying Terminal Attributes
● Programmatically Setting Terminal Attributes

Instructor: Muhammad Arif Butt, PhD

Linux Special Files

3

Instructor: Muhammad Arif Butt, PhD

What are Special Files in Linux?
● Special files are a fundamental concept in Unix/Linux systems that provide interfaces to hardware devices
and kernel services. They are located inside /dev/ directory.

crw-rw-rw- 1 root root 1, 3 date /dev/null

brw-rw---- 1 root disk 8, 0 date /dev/sda

o Character Special Files represents hardware devices that reads or writes a serial stream of data bytes
connected via serial/parallel port. Examples of such devices are terminal devices, sound cards, and tape
drives

o Block Special Files represents hardware devices that reads or writes data in fixed size blocks (buffered
devices), and unlike serial devices they provide random access to data stored on the device. Examples of
such devices are HDD, SSD, USB and cdrom

Character Special Files:
Ø Sequential access (one character at a time)
Ø Stream oriented (Data flows as a continuous
stream rather than discrete blocks)

Ø Used for devices like keyboard, mouse, serial
ports, sound cards

Ø No buffering by the kernel

Block Special Files:
Ø Random access (one block 512B or 4 KiB at a time)
Ø Block oriented (Data transfer occur in block-sized
chunks rather than individual bytes)

Ø Used for storage devices like hard drives, USB
drives, SSDs

Ø Kernel provides buffering and caching
Block devices are ideal for storage systems (SSDs, USB drives), while character devices are suited for communication and streaming interfaces

4

Instructor: Muhammad Arif Butt, PhD

Overview of Device Files

P1 Terminal

For a process, a terminal (kb/vdo)is a source/destination of data

P1 Microphone

Speaker

Sound Card

For a process, a sound card is a source/destination of data

read(), getchar(), scanf()
write(), putchar(), printf()Terminal driver

inside kernel

Sound card driver
inside kernel

int main(){
int ch;
while ((ch = getchar()) != EOF)

putchar(ch);
}

5

Instructor: Muhammad Arif Butt, PhD

Overview of Devices Files (cont…)

P1

Operating System KernelMicrophone

Speaker Terminal

User

6

Instructor: Muhammad Arif Butt, PhD

Device Files vs Regular Files
Regular File
-rw-r--r-- 1 user user 1048576 Aug 14 10:20 /home/user/document.txt
│ │ │
│ │ └─ Timestamp
│ └─ File size (1MB)
└─ File type and permissions (- = regular file)

Character Special File
crw-rw-rw- 1 root root 1,3 Aug 14 10:20 /dev/null
│ │ │
│ │ └─ Minor number (3)
│ └─ Major number (1)
└─ File type (c = character device)

Block Special File
brw-rw---- 1 root disk 8,0 Jul 28 19:40 /dev/sda
│ │ │
│ │ └─ Minor number (0)
│ └─ Major number (8)
└─ File type (b = block device)

7

Instructor: Muhammad Arif Butt, PhD

Device Files vs Regular Files (cont…)
• A regular file is a container, while a device file is a connection.
• The inode block of a regular file contains pointer that points to its data blocks,

while the inode block of a device file contains pointer that points to a function
inside the kernel called the device driver.

• When you see the long listing, a regular file shows its size while a device file
displays the major and minor number of the device driver at the place of size
when you see its long listing.

The Linux kernel maintains separate tables for character and block devices, indexed by major numbers. Each table entry points to a device
structure (like struct cdev for character devices) which contains a file operations table with function pointers to the actual device driver functions.
The minor number is passed to these driver functions to identify the specific device instance.
Device files can be copied, moved, and removed like regular files since they are just filesystem entries containing major:minor numbers. Copying
creates a new entry with identical device numbers. Removing a device file only removes the filesystem entry and does not affect the device driver
or the actual hardware device."

8

Instructor: Muhammad Arif Butt, PhD

Device Numbers
Every special file has two important numbers (instead of file size) associated with it.
o The major number (8 bits) identifies the device driver

Ø 1 = Memory devices (/dev/null, /dev/zero, /dev/random)
Ø 3 = IDE hard disk (first controller)
Ø 4 = TTY devices (/dev/tty0, /dev/ttyS0)
Ø 8 = SCSI disk devices

o The minor number (8 bits) identifies the specific device instance withing a driver
Ø /dev/sda = (8,0) - First SCSI disk
Ø /dev/sda1 = (8,1) - First partition of first SCSI disk
Ø /dev/sda2 = (8,2) - Second partition of first SCSI disk
Ø /dev/sdb = (8,16) - Second SCSI disk
Ø /dev/sdb1 = (8,17) - First partition of second SCSI disk

9

Instructor: Muhammad Arif Butt, PhD

Character Special vs Block Special Files
1. Data Access Method:
o Character Files: Data is accessed sequentially, one character (byte) at a time
o Block Files: Data is accessed in fixed-size blocks (typically 512 bytes, 1KB)

2. Buffering Strategy:
o Character Files: Unbuffered or minimally buffered
o Block Files: Heavily buffered through the kernel's buffer cache for performance
optimization

3. Random Access Capability:
o Character Files: Typically sequential access only (tape drives, serial ports)
o Block Files: Support random access, can seek to any position (hard disks, ssd)

4. I/O Operations:
o Character Files: Use read/write system calls directly
o Block Files: Can use both direct I/O and memory mapped I/O through kernel’s page
cache

10

Instructor: Muhammad Arif Butt, PhD

Character Special vs Block Special Files (cont…)
Examples of Character Special Files:
Ø /dev/null accepts and discards all input, returns EOF on reads (the "black hole" device)
Ø /dev/zero provides infinite stream of null bytes (0x00) for creating empty files or clearing

memory
Ø /dev/random generates cryptographically secure random numbers
Ø /dev/tty represents the controlling terminal for the current process
Ø /dev/pts/0 represents the controlling terminal for the current process

Examples of Block Special Files:
Ø /dev/sda primary storage devices like SATA/SCSI hard drives and SSDs
Ø /dev/hda primary storage devices like IDE hard drives and SSDs
Ø /dev/loop0 loopback devices that make regular files accessible as block devices for mounting
Ø /dev/nvme0n1 Non-Volatile-Memory-Express solid-state drives (0n1 specify controller and

namespace)
Ø /dev/mmcblk0 Multi-Media-Card block storage device for (SD cards)

11

Instructor: Muhammad Arif Butt, PhD

Creating Special Files
• In Linux, the mknod command is used to create special files. The command takes four arguments:

mknod <filename> <type> <major> <minor>
o The <type> specifies the file type (character special [c], block special [b], named pipe [p])
o The major number identifies the device driver while the minor number identifies the specific

device instance used by the driver to distinguish between multiple devices
stat /dev/sda /dev/null [display device numbers of devices]
file /dev/sda /dev/null [show device type]
lsblk [show all block devices]
sudo mknod /tmp/mynull c 1 3 [create character device]
sudo mknod /tmp/mydisk b 8 0 [create block device]
ls -l /tmp/mynull /tmp/mydisk [verify]

• Important Notes:
o The Linux kernel maintains separate tables for character and block devices, indexed by major

numbers and each table entry points to the device driver function of that specific device. The
minor number is passed to the device driver function to differentiate the device instance.

o Creating a device file doesn't create the actual device or driver
o Device files are just interfaces, the real functionality comes from kernel drivers

12

Instructor: Muhammad Arif Butt, PhD

Creating Special Files

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

13

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Terminal Devices

14

Instructor: Muhammad Arif Butt, PhD

Terminal Devices
● Terminal Devices are character special files that provide text I/O interfaces. Like

other device files, they are located inside /dev/ directory, and allow
communication between users and the Linux system.
$ ls -l /dev/tty3 /dev/pts/1
crw------- 1 root tty 4,3 Aug 14 10:20 /dev/tty3

crw--w---- 1 user tty 136,1 Aug 14 10:25 /dev/pts/1

● Both are character devices (start with c), having different major numbers: 4 (tty)
vs 136 (pts).

● Every terminal that we open on our system has an associated character special
file. To check the terminal you are currently on, use the following command:
$ tty

15

Instructor: Muhammad Arif Butt, PhD

Terminal Devices (cont…)
● Controlling Terminals are text mode only devices (/dev/ttyN) have direct

hardware access. Can be accessed via Ctro+Alt+F1 through F6. They have a
major number of 4.

● Pseudo-terminals are virtual terminals (/dev/pts/N) used inside GUI
terminals. Created dynamically when terminal emulator opens. Has a major
number of 136.

● The /dev/tty is a dynamic alias that always refers to the controlling terminal of
the current process. Always resolves to the real TTY or PTS device.

● You can write to a specific terminal, provided you have write permissions:
$ echo "Hello students" > /dev/pts/1

$ cp friends.txt /dev/pts/1

● You can read from a specific terminal, provided you have read permissions:
$ read input < /dev/tty

$ echo "You entered: $input”
16

Instructor: Muhammad Arif Butt, PhD

Writing on someone else Terminal
// A terminal is just a file supporting which you can read and write regular i/o
// usage: $./mywrite /dev/pts/N

int main(int argc, char *argv[]){

if (argc != 2){

fprintf(stderr,"usage: ./a.out ttyname\n");

exit(1);

}

int fd = open(argv[1], 1); /* open terminal file for o/p */

char buf[512]; /* loop until EOF on input */

while(fgets(buf, 512, stdin) != NULL) /*read keyboard of character special file*/

if (write(fd, buf, strlen(buf)) == -1) /*write vdu of character special file*/

break;

close(fd); /*close the file once you are out of loop*/

return 0;

}

P1 Terminal

17

Instructor: Muhammad Arif Butt, PhD

Reading from someone else Terminal
// A terminal is just a file supporting which you can read and write regular i/o
// usage: $./myread /dev/pts/N

int main(int argc, char *argv[]){

if (argc != 2){

fprintf(stderr,"usage: ./a.out ttyname\n");

exit(1);

}

int fd = open(argv[1], 0); /* open terminal file for i/p */

char buf[512]; /* loop until EOF on input */

while((n=read(fd, buf, sizeof(buf)-1))>0){

buf[n] = ‘\0’;

printf(“%s”, buf);

fflush(stdout);

}

close(fd); /*close the file once you are out of loop*/

return 0;

}

P1 Terminal

18

Instructor: Muhammad Arif Butt, PhD

Writing Terminal

Demonstration

Lec2.4/mywrite.c
Lec2.4/myread.c

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

19

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Accessing and Modifying
Terminal Attributes

20

Instructor: Muhammad Arif Butt, PhD

What are Terminal Attributes?
● Linux terminal attributes are configuration settings that control how the TTY

driver processes input and output data flowing between the keyboard, programs,
and vdu.

● The stty command is a Linux utility that displays and modifies terminal line
settings and attributes for the current TTY device. The attributes can have thre
types of values: Numerical, Character and Boolean values.

$ stty -a # Show all settings in readable format
$ stty -g # Show settings in stty-readable format
$ stty sane # Reset to sensible defaults

21

Instructor: Muhammad Arif Butt, PhD

Four Categories of TTY Driver Processing
● Input Processing transforms keyboard characters before they reach the process,

for example icrnl converts carriage return (Enter key) to newline character.
● Output Processing transforms characters from the process before displaying

them on screen, for example onlcr converts newline characters to carriage return
+ newline.

● Control Processing defines how characters are transmitted and represented, for
example cs8 sets 8-bit character size for data transmission.

● Local Processing controls how the TTY driver handles characters while they
remain buffered in the driver, for example icanon enables line-by-line input and
echo displays typed characters on screen

22

Instructor: Muhammad Arif Butt, PhD

Canonical vs Non-Canonical Input Modes
Canonical Mode (Default Mode)
• Line-buffered input: Data processed line by

line
• Enter key required: Input available only after

pressing Enter
• Line editing enabled: Backspace, delete,

Ctrl+U work
• Buffering location: Inside the TTY driver

program

Non-Canonical Mode
• Character by character input: Data available

immediately
• No Enter key required: Each key press is

processed instantly
• Line editing disabled: No backspace or editing

word
• No Buffering: Direct character by character

processing

• Enable canonical mode, and understand by
running the cat command:

$ stty icanon

$ cat

$ stty -a | grep icanon

• Disable canonical mode, and understand by
running the cat command:

$ stty -icanon

$ cat
23

Instructor: Muhammad Arif Butt, PhD

Terminal Attributes

Demonstration

Lec2.4/mycat.c
Lec2.4/echostate.c
Lec2.4/icanonstate.c
Lec2.4/mycat_noncanonical.c

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

24

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Programmatically Setting Terminal
Three ways to get/set the attributes of terminal driver from a C program:
• Use system() library call
• Use tcgetattr() and tcsetattr() library calls
• Use ioctl() system call

Three steps to change the attributes of a terminal driver:
• Get the attributes from the driver
• Modify the attribute(s) you need to change
• Send these revised attributes back to the driver

25

Instructor: Muhammad Arif Butt, PhD

Terminal Attributes

Demonstration

Lec2.4/password_simple.c
Lec2.4/password_system.c
Lec2.4/password_tcget.c

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

26

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Bonus
Non-Blocking I/O Models

27

Instructor: Muhammad Arif Butt, PhD

UNIX I/O Models
There exist five different I/O models in all UNIX based systems:
• Blocking I/O model
• Non-Blocking I/O model
• Multiplexed I/O model
• Signal Driven I/O model
• Asynchronous I/O model

Before I give you an overview of each of these, remember there are normally, two
distinct phases for an input operation:
• Blocks on syscall: Wait for data to be ready in the kernel buffer
• Blocks on data copy: Wait for data to be copied from kernel buffer to process buffer

28

Model Blocks on syscall? Blocks on data copy? Notification
Blocking Yes Yes None needed
Non-blocking No Yes Polling required
Multiplexing Yes (on select/poll) Yes select/poll returns
Signal-driven No Yes SIGIO signal
Asynchronous No No Completion notification

Instructor: Muhammad Arif Butt, PhD

Blocking I/O Model

29

Application/Process Kernel

read() system call Data not available

Wait for
data to

be available
in kernel buffer

Data ready

Copy data
Copy data

From
Kernel

buffer to
Process
bufferCopy complete

return OK
Process data

Process blocks and wait for data
to be ready in kernel buffer and
then data to be copied to process
address space.

Instructor: Muhammad Arif Butt, PhD

Non-Blocking I/O Model

30

Application/Process Kernel

read() system call Data not available Wait for
data to
be ready
in the

kernel buffer

Copy data
From

Kernel
buffer to
Process
buffer

Copy complete
return OK

Process data

EWOULD BLOCK

read() system call Data not available
EWOULD BLOCK

.

.

.

.

.

.
read()

system call Data ready
Copy data

Process blocks while
data is copied from kernel
to application buffer

Process repeatedly
calls read waiting
for an OK

Instructor: Muhammad Arif Butt, PhD

Multiplexed I/O Model

31

Application/Process Kernel

No data ready
system call

select()

Data ready
Return readable

read() system call Copy data

Copy Complete
return OKProcess data

Wait for
data to
be ready

in kernel buffer

Copy data
From

Kernel
Buffer to
Process
buffer

Process blocks in call to select,
waiting for possibly many
descriptors to become readable

Process blocks while data
is copied from kernel to
application buffer

Instructor: Muhammad Arif Butt, PhD

Signal Driven I/O Model

32

Application/Process Kernel

No datagram ready
Establish SIGIO
signal handler using
sigaction()

Datagram ready
Deliver SIGIO

recvform() system call Copy datagram

Copy complete
return OK

Process datagram

Wait for
data to
be ready

in kernel buffer

Copy data
from

Kernel buffer
to

Process buffer

Process continues
executing

Process blocks while
data is copied from
kernel to application
buffer

return

Signal handler

Instructor: Muhammad Arif Butt, PhD

Asynchronous I/O Model

33

Application/Process Kernel

aio_read()
system call

No datagram ready
return

Datagram ready
Copy datagram

Deliver signal

Specified in aio_read()
Signal handler
process datagram

Wait for data
to be ready
in kernel buffer

Copy data from
Kernel buffer to
process buffer

Process
Continuous
executing

Copy complete

Instructor: Muhammad Arif Butt, PhD 34

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch SP video on Terminal Devices:
https://www.youtube.com/watch?v=t5sC6G73oo4&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=17

• Watch OS video on Character and Block Special Files:
https://www.youtube.com/watch?v=MOP6sfXVKcY&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=26

https://www.youtube.com/watch?v=t5sC6G73oo4&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=17
https://www.youtube.com/watch?v=MOP6sfXVKcY&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=26

