
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 3.2
Process Management (Part-II)

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● Monitoring child processes using wait()
● Overwriting process address space using exec()
● How Linux Shell Execute a Command?
● Effect of fork and exec on process attributes
● Writing your own system() library function
● Overview of Background and Daemon processes

o Job Control States
o Intro to Daemon Processes
o Job Scheduling using cron utility
o Managing services using systemctl utility

● Writing your own daemon (programmatically)

Instructor: Muhammad Arif Butt, PhD

Monitoring Child
Process

3

Instructor: Muhammad Arif Butt, PhD

wait() System call

● The wait() system call is used for reaping and cleaning zombies from system, and serves two
purposes
o Notify parent that a child process finished running.
o Tell the parent how a child process finished.

● The parent process calls the wait() system call and gets blocked till any one of its child
terminates.

● The child process returns its termination status using the exit() call and that integer value is
received by the parent inside the status argument.

● On the shell, we can check this value in the $? environment variable.
● On success, the wait() system call returns PID of the terminated child and in case of error

returns a -1
● If a process wants to wait for termination of all its children, then

while(wait(null) > 0);

pid_t wait(int *status)

4

Instructor: Muhammad Arif Butt, PhD

wait() System call
Two purposes of wait() system call:
○ Notify parent that a child process finished running
○ Tell the parent how a child process finished

wait()

Does the
work

wait until signal is received SIGCHLD received

Parent process

Child process

Parent continues

exit()

Send signal of completion
fork()

5

Instructor: Muhammad Arif Butt, PhD

Monitoring Child
Process

Lec3.2/wait/wait1.c

Demonstration

6

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

wait() Status Argument
A process can end in four ways:
● Normal Termination: On successful completion of the task, programs call exit(0) or return

0 from main() function. In case of failure, programs call exit() with a non-zero value (1-255).
The exit codes should be documented in manual pages for proper error handling.

● Terminated by a Signal: A process can be terminated (killed) by signals such as SIGKILL(9),
SIGTERM(15), or SIGINT(2).

● Stopped by a Signal: A process receives SIGSTOP(19) or SIGTSTP(20) and suspends
execution temporarily. The process remains in memory but doesn't consume CPU time Process
state becomes "stopped" or "traced”.

● Continued by a Signal: A process might get SIGCHLD(17), SIGCONT(18) and resumes its
execution.

All this information is encoded in the status argument of the wait() system call.
A programmer can decipher this information using bit operators or using available macros.

7

Instructor: Muhammad Arif Butt, PhD

Decipher Status Argument (using bit-operators)

exit status (0-255) 0

unused (0) Termination signal

Stop signal 0x7F

0XFFF

15 8 7 0Normal Termination:
• If the lower eight bits contains zero that means normal

termination, and the exit status is in the upper 8 bits.
• To check for normal exit: (status & 0x7F) == 0.
• To extract exit code: (status >> 8) & 0xFF.

7

core dump

06815Terminated by Signal:
• If the lower eight bits do not contain zero that means process

is terminated by signal.
• To check for normal exit: (status & 0x7F) != 0
• To extract signal number: status & 0x7f
• Core dump occurred if bit#7 is set: status & 0x80

Stopped by Signal:
• If the lower eight bits are 0x7F, that means process is

stopped by signal, and the upper 8 bits contains stop signal.
• Stop detection: (status & 0xFF) == 0x7F
• To extract signal number: (status >> 8) & 0xFF

Continued by Signal:
• Continue detection: status == 0xFFFF
• This might work on some Linux systems, but is not reliable

or portable. Better use the WIFCONTINUED() macro.

15 8 7 0

15 8 7 0

8

Instructor: Muhammad Arif Butt, PhD

Decipher Status Argument (using Macros)
Instead of bit operators, we can use macros to decipher the status argument of wait(), defined in
﻿/usr/include/x86_64-linux-gnu/bits/waitstatus.h

WIFEXITED(status) This macro returns true if child process exited normally
WEXITSTATUS (status) returns exit status of the child process

WIFSIGNALED(status) This macro returns true if child process is killed by a signal
WTERMSIG(status) returns the number of signal that killed the process
WCOREDUMP(status) returns a non-zero value if the child process created a core dump file

WIFSTOPPED(status) This macro returns true if child process is stopped by a signal
WSTOPSIG(status) returns the number of signal that stopped the process

WIFCONTINUED(status) This macro returns true if child process was resumed by SIGCONT

9

Instructor: Muhammad Arif Butt, PhD

Decipher status using
Macros

Lec3.2/wait/wait2.c
Lec3.2/wait/wait3.c
Lec3.2/wait/wait4.c
Lec3.2/wait/wait5.c

Demonstration

10

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Limitations of wait() System Call
Using wait(), it is not possible for parent to:

• Detect why child was stopped: Retrieve information about stopped children or the signal that
stopped them (SIGSTOP, SIGTSTP, etc.)

• Be notified of child continuation: Detect when a stopped child resumes execution after
receiving SIGCONT

• Wait for specific child: Wait for a particular child by PID; can only wait for the first available
child that changes state

• Perform non-blocking wait: Check child status without blocking; always waits until a child
terminates or changes state

11

Instructor: Muhammad Arif Butt, PhD

waitpid() System call

• The waitpid() system call is used to wait for state changes in a child of the calling process, and obtain
information about the child whose state has changed.

• The pid argument enables the selection of the child to be waited for:
○ If pid > 0 : waits for the child whose PID equals the value of pid
○ If pid == -1: waits for any child

wait(&status) <=> waitpid(-1, &status, 0)

○ If pid == 0: waits for any child process whose process Group ID is the same as the calling/parent process
○ If pid < -1: waits for any child process whose process Group ID equals the absolute value of pid argument

pid_t waitpid(pid_t pid, int* status, int options);

• The third argument of waitpid() call is a bit mask of zero or more of the following flags, defined in
/usr/include/wait.h file:

WUNTRACED Also returns information when a child is stopped by a signal

WCONTINUED Also return information about stopped children that have been resumed by delivery of SIGCONT signal

WNOHANG Performs polling. If no child specified by pid has yet changed state, then return immediately, instead of blocking

12

Instructor: Muhammad Arif Butt, PhD

waitpid() Call

Lec3.2/wait/waitpid.c

Demonstration

13

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Overwriting Process Address Space
using exec Family

14

Instructor: Muhammad Arif Butt, PhD

exec Family of Functions
● A process can replace its current program image with a new executable using the exec() family

of functions
● This action overwrites the entire address space of the calling process, including code, data,

heap, and stack with the new program
● The new program starts execution from its main function
● There are five library functions of exec family and all are layered on top of the execve()

system call. Each of these functions provides a different interface to the same functionality
● There is no return after a successful exec call
● The exec functions return only if an error has occurred. The return value is -1, and errno is

set to indicate the error

15

Instructor: Muhammad Arif Butt, PhD

exec Family of Functions (cont…)

● The first argument to this family of exec() calls, is the name of the executable, which on success will
overwrite the address space of the calling process with a new program from the secondary storage

● The l after the exec means that command line arguments to the new program will be passed as a comma
separated list of strings with a '\0' character at the end

● The p stands for path. It means that the program specified as the first argument should be searched in all
directories listed in the PATH variable. However, using absolute path to program is more secure than
relying on PATH variable, which can be more easily altered by malicious users

● The e stands for environment. It means that after the command line arguments, the program should pass
an array of pointers to null terminated strings, specifying the new environment of the program to be
executed. Otherwise, the caller environment will be used

int execl (const char *pathname, const char* arg0,...,(char*)0);

int execlp (const char *filename, const char* arg0,...,(char*)0);

int execle (const char* pathname, const char* arg0,...,(char*)0,char* const envp[]);

16

Instructor: Muhammad Arif Butt, PhD

exec Family of Functions (cont…)

● The first argument to this family of exec() calls, is the name of the executable, which on success will
overwrite the address space of the calling program with a new program

● The v after the exec means that command line arguments to these functions will be passed as an array of
pointers to null terminated strings

● The p stands for path. It means that the program specified as the first argument should be searched in all
directories listed in the PATH variable. However, using absolute path to program is more secure than
relying on PATH variable, which can be more easily altered by malicious users

● The e stands for environment. It means that after the command line arguments, the program should pass
an array of pointers to null terminated strings, specifying the new environment of the program to be
executed. Otherwise, the caller environment will be used

int execv (const char *pathname, char *const argv[]);

int execvp (const char *filename, char* const argv[]);

int execve (const char* pathname,char* const argv[], char* const envp[]);

17

Instructor: Muhammad Arif Butt, PhD

exec Family of Functions (cont…)
● All exec functions do not return on success -they completely replace the current process image
● If an exec call does return, it always returns -1, indicating that an error occurred
● However, there's no need to explicitly check the return value, as the mere fact that control returned to the

caller implies failure. In such cases, the global variable errno can be inspected to determine the specific
error

EACCES The specified program is not a regular file, or doesn’t have execute permissions
enabled or one of the directory components of pathname is not searchable

ENOENT The specified program does not exist
ENOEXEC The specified program is not in a recognizable executable format
ETXTBSY The specified program is open for writing by another process
E2BIG The total space required by the argument list & environment list exceeds the

allowed maximum

18

Instructor: Muhammad Arif Butt, PhD

The exec Family of
System Calls

Lec3.2/exec/exec1.c
Lec3.2/exec/exec2.c
Lec3.2/exec/exec3.c
Lec3.2/exec/exec4.c

Demonstration

19

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

How Shell Execute Commands?

20

STARTDisplay prompt & wait

Read command line

Parse & Tokenize

Empty

Built-in
Command

Need Path
lookup

Executable
found

fork()
Create child process

Execute Built in found

Resolve in path

Command not found

No

No

No

Yes

Yes

Yes

No

Yes

Instructor: Muhammad Arif Butt, PhD

How Shell Execute Commands? (cont…)

21

fork() System call

Child or
Parent

Child Process
PID = 0

exec() syscall
Replace process image

Setup Environment
Redirections, signals,

file descriptors

exec
Success

Run program

exit() with
status

Process Terminates

Display error
Return to Prompt

Parent Process
Shell Continues

Background

wait() System
call

Block until child exist

Collect exit status

Job
Control

Return to prompt

Continue Shell

Handle Signals

Update Jobs

No

Yes

No

No

Yes

Child Parent

Yes

Instructor: Muhammad Arif Butt, PhD

Process Attributes
Inherited/Preserved after

fork() and exec()

22

Instructor: Muhammad Arif Butt, PhD

Attributes Inherited after fork() & exec()
Files and Directories fork() exec()

PPFDT Inherited Preserved

Close-on-exec Flag Inherited Preserved

File offsets Shared Preserved

Open file status flags Shared Preserved

Directory streams Inherited No

Present working directory Inherited Preserved

File mode creation mask Inherited Preserved

Scheduling , Resources fork() exec()

Nice value Inherited Preserved

Priority Inherited Preserved

Scheduling policy Inherited Preserved

Resource limits Inherited Preserved

Resource usage No Preserved

CPU times No Preserved

Exit Handlers Inherited No

Process Address Space fork() exec()

Text Segment Shared No

Stack Segment No No

Data and Heap Segment Inherited No

Environment Variables Inherited –

Memory Mappings Inherited No

Memory Locks No No

Process IDs fork() exec()

PID No Preserved

PPID No Preserved

PGID Inherited Preserved

SID Inherited Preserved

Real IDs Inherited Preserved

Effective and Saved SUIDs Inherited Preserved

Supplementary Group IDs Inherited Preserved

23

Instructor: Muhammad Arif Butt, PhD

The exec command
● The exec is a shell built-in that replaces the current shell process with the specified command / program.

exec [command] [command arguments]
● For example the command exec ls –l will replace the current shell with the ls command. If successful,

exec never returns because the shell process is completely replaced. So after ls completes, the terminal
session ends, as there is no parent shell to return.

● Similarly, the command exec > output.txt will redirect all future stdout of the current shell to a file.
● Use Cases of exec command:

○ Daemon Processes: Used in start-up scripts where the wrapper script should be replaced by the actual
daemon.

○ Avoiding Process Spawning: No fork() system call - current process is replaced directly. Saves
memory and eliminates unnecessary parent process.

○ Efficient I/O Redirection: Permanently redirects file descriptors for the entire shell session. More
efficient than repeated redirection in individual commands.

24

Instructor: Muhammad Arif Butt, PhD

Process Attributes

Lec3.2/exec/exit_fork.c
Lec3.2/exec/exit_exec.c

Demonstration

25

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Executing shell command using system()

The system(char* cmd) is a standard C library function, which is used to execute shell commands from
within a program. It is passed a string and it spawns a shell program /bin/sh and use it to execute the
argument passed as cmd (/bin/sh -c “cal”). The following two examples describes its behaviour:

int system(const char* command);

//Lec3/2/system/system1.c
#include <stdio.h>
#include <stdlib.h>
int main() {

system(“cal”);
printf(“Done…Bye\n”);
return 0;

}

//Lec3/2/system/system2.c
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char* argv[]) {

system(argv[1]);
printf(“Done…Bye\n”);
return 0;

}

26

Instructor: Muhammad Arif Butt, PhD

Executing shell command using system()
Now study the code of the following program, that prompts the user to enter a filename as input and constructs a command
like system("cat " + filename)and display the contents of the file (snprintf() formats and stores a series of
characters and values in the array as per the format string)

//Lec3/2/system/system4.c
#include <stdio.h>
#include <stdlib.h>
int main() {

char filename[100];
printf("Enter a filename to display its content: ");
fgets(filename, sizeof(filename), stdin);
char command[150];
snprintf(command, sizeof(command), "cat %s", filename);
system(command); // Potentially dangerous!
return 0;

}

The system() function is really great however, it can
introduce significant security vulnerabilities if not used
carefully. If user input is passed to system(), w/o any
validation, an attacker can manipulate that input to
execute arbitrary commands. If the command string
contains special characters like ;, &, or |, it can lead to
command execution beyond what the programmer
intended.

Try running the above program with a file name say f1.txt.

What will happen if the user gives this input: f1.txt;/bin/sh. What will happen, do you get a shell? Is this a shell with
root privileges? If not, can we get a shell with root privileges?

27

Instructor: Muhammad Arif Butt, PhD

The system() Function

Lec3.2/system/system1.c
Lec3.2/system/system2.c
Lec3.2/system/system3.c
Lec3.2/system/system4.c
Lec3.2/system/system5.c
Lec3.2/system/system6.c

Demonstration

28

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Overview of Background
Processes and Daemons

29

Instructor: Muhammad Arif Butt, PhD

Introduction to Daemon Processes
● A daemon is a background system process that performs automated tasks for system

administration (crond), manages kernel-level operations (kthreadd), or provides network
services to clients and other processes (httpd).

● Key Characteristics:
o A daemon is long-lived, often created at system startup and runs until the system is shut down.
o It runs in the background and has no controlling terminal, and operates independently of user
sessions.

o The lack of a controlling terminal ensures that the kernel never automatically generates any
terminal-related signals such as SIGINT, SIGQUIT, SIGTSTP, and SIGHUP for a daemon.

o Modern Linux systems use systemd to manage daemons efficiently, starting services in parallel
and launching them only when needed.

● Example Daemon Processes:
○ crond: a daemon that executes commands at a scheduled time,
○ sshd: the secure shell daemon enables remote system access with encrypted communication.
○ httpd/ngnix:Web server daemons serving content via HTTP/HTTPS protocols.
○ xinetd: is the Extended Internet daemon (super server). If you do not want the services (like daytime,

echo, telnet, etc) to be started at system initialization time by systemd, and be dormant until a
connection request arrives, xinetd is the only daemon process started. When a request comes in for any
one of the above services, xinetd starts the appropriate service.

30

Instructor: Muhammad Arif Butt, PhD

Common Unix job scheduling commands
Linux provides several tools for scheduling tasks to run automatically or at a specified time
● at utility: Schedules one-time tasks for specific future times when you know exactly when

something needs to happen; perfect for temporary jobs, system reboots, or ad-hoc administrative
tasks. For example, to schedule a one-time system reboot at 11:30 PM today, you can use the
command: echo "sudo reboot" | at 23:30

● batch utility: Schedules one-time tasks that run automatically when system load drops below a
threshold (typically 1.5 load average); best for resource-intensive jobs like file compression,
database maintenance, or large data processing that shouldn't interfere with peak system usage.
For example, to schedule a database optimization to run when system load is low, you can use
the command: echo "/usr/bin/mysql_optimize.sh" | batch

● cron utility: Schedules recurring tasks (hourly, daily, weekly, monthly) that need to run
consistently regardless of system load. It is ideal for system maintenance, backups, and regular
monitoring tasks that must execute on schedule. For example, edit crontab and add the
following line to run backup script every day at 2:30 AM

30 2 * * * /usr/local/bin/backup.sh

31

Instructor: Muhammad Arif Butt, PhD

The Linux cron utility

m h dom mon dow <command>
* * * * * <command>

min (0 - 59)
hour (0 - 23)
day of month (1 - 31)
month (1 - 12)
day of week (0 – 7, 0 and 7 means Sunday)

• Use the crontab –e command to edit current user crontab file (/var/spool/cron/crontabs/<user>),
add your crontab entries using the syntax below. Once you save and exit, cron automatically
validates and loads the new schedule. To verify the entries, you can use the crontab –l
command.

• Never edit the crontab file directly, rather use crontab –e, because it validates syntax before
saving.

• The crond is typically installed and enabled on modern Linux systems. You can check its status
using the systemctl command

32

Instructor: Muhammad Arif Butt, PhD

Managing services using systemctl
● The systemd is a system and service manager for Linux operating systems. When

run as first process on boot (as PID 1), it acts as init system that brings up and
maintains user space services. The /sbin/init and /bin/systemd are both a
soft link to /lib/systemd/system

● The systemctl is a program that is used to introspect and control the state of the
systemd system and service manager. To check the status of xinetd on your
system use:

systemctl status/start/stop/enable/disable xinetd

● Try checking and changing the status of following services:
o networking.service
o sshd.service
o cron.service
o apache2.service
o mysql.service
o postgresql.service

33

o xinetd.service
o firewalld.service
o docker.service
o containerd.service
o bluetooth.service
o named.service

Instructor: Muhammad Arif Butt, PhD

Writing a Daemon
Process

34

Instructor: Muhammad Arif Butt, PhD

Writing your own Daemon
Step-I (fork and Parent exit): Perform a fork(), after which the parent exits
and the child continues. The child process inherits the PGID of the parent ensuring
that the child is not a process group leader. The daemon process becomes the child
of /lib/systemd/systemd process having PID of 992, which is further the child
of /sbin/init process having a PID of 1

pid_t cpid = fork();

if(cpid > 0)

exit(0);

35

setsid();
Step-II (Make the daemon session leader): The setsid() creates a new
session and process group. It detaches completely from controlling terminal

struct rlimit r;
getrlimit(RLIMIT_NOFILE, &r);
for(i=3; i<r.rlim_max; i++)

close(i);

Step-III (Close inherited file descriptors): Get maximum file descriptor limit
and close all open file descriptors (except stdin, stdout, and stderr) that the
daemon may have inherited from its parent.

int fd = open("f1.txt", O_CREAT|O_TRUNC|O_RDWR, 0666);
struct flock lock;
lock.l_start = 0;
lock.l_len = 0;
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
int rv = fcntl(fd, F_SETLK, &lock);
if(rv == -1){

printf(”Process is already running\n");
close(fd);
exit(1); }

Step-IV (Single Instance Protection): Only a single
instance of a daemon process should run. For example, if
multiple instances of cron start running, each would run a
scheduled operation. So we can use the opposite logic to
ensure that if one instance of a program is running, no user
should be able to run another instance. Create a file f1.txt
and achieve exclusive write lock on it using fcntl() system
call. If lock fails, that means another instance is already
running.

Instructor: Muhammad Arif Butt, PhD

Writing your own Daemon
Step-V (Redirect Standard I/O to /dev/null): Make the file descriptors 0, 1,
and 2 of PPFDT point to the file /dev/null. This is done to ensures that if the
daemon calls library functions that perform I/O on these descriptors, those
functions won’t unexpectedly fail.

int fd0 = open("/dev/null", O_RDWR);
dup2(fd0, 0);
dup2(fd0, 1);
dup2(fd0, 2);
close(fd0);

36

Step-VI (Environment Setup): Set the file mode creation mask to 0 by calling
umask(0), to ensure that, when the daemon creates files and directories, they
have exactly the same access privileges as mentioned in the mode specified in an
open() or creat() system call. Change the process’s current working directory,
typically to the root directory (/). This is necessary because a daemon usually
runs until system shutdown; if the daemon’s current working directory is on a
file system other than the one containing /, then that file system can’t be
unmounted.

umask(0);

chdir(“/”);

Step-VII (Signal. Handling): Handle the SIGHUP signal, so that when this
signal arrives, the daemon should ignore it

signal(SIGHUP,SIG_IGN);

Instructor: Muhammad Arif Butt, PhD

Compiling and Testing your own Daemon
• Compile and run the daemon:

$ gcc mydaemon.c –o mydaemon
$./mydaemon &
Daemon has started running with PID: 248444

• Check if any process has the f1.txt opened and locked:
$ lsof f1.txt
…

• Try to run multiple instances of daemon:
$./mydaemon &
This process is already running

• Check attributes of daemon:
$ ps -ef | head -1; ps ef | grep mydaemon
…

• Once done, you may kill the daemon process:
$ kill <PID>
$ pkill mydaemon

37

Instructor: Muhammad Arif Butt, PhD

Writing a Daemon

Lec3.2/mydaemon.c

Demonstration

38

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 39

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch SP video on Process Management-I:
https://youtu.be/R_01xGLp0ZQ?si=NQfovVEPiM0t1PMh

• Watch SP video on Process Management-II:
https://youtu.be/91qzstPN1p8?si=4VnUXtlGw9hJadyV

https://youtu.be/R_01xGLp0ZQ?si=NQfovVEPiM0t1PMh
https://youtu.be/91qzstPN1p8?si=4VnUXtlGw9hJadyV

