
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 3.3
Achieving Concurrency using Threads

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda

2

● Concurrent / Parallel Programming

● Overview of Threads
● Thread Implementation Models
● Linux Implementations of POSIX Threads
● The pthread API
● Thread Attributes

● Threads and Signals
● Threads and fork()
● Thread Cancellation

Instructor: Muhammad Arif Butt, PhD

Concurrent / Parallel
Programming

3

Instructor: Muhammad Arif Butt, PhD

Sequential Programming
● Suppose we want to add eight numbers x1, x2, x3, x8
● There are seven addition operations and if each operation take 1

CPU cycle, the entire operation will take seven cycles

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

1

3

2

7

.

.

.

4

Instructor: Muhammad Arif Butt, PhD

Concurrent/Parallel Programming
● Suppose we have 4xCPUs or a 4xCore CPU, the seven addition operations can
now be completed in just three CPU cycles, by dividing the task among
different CPUs

CPU4

x1 + x2

CPU 1

CPU1 CPU3CPU2

CPU2

CPU1

1st CPU cycle

2nd CPU cycle

3rd CPU cycle

x3 + x4 x5 + x6 x7 + x8

R1+ R2 R3+ R4

R5+ R6

5

Instructor: Muhammad Arif Butt, PhD

Ways to Achieve Concurrency
Multiple single threaded processes:
● Use fork() to create a new process for handling every new task, the child process serves the

client process, while the parent listens to the new request.
● Possible only if each slave can operate in isolation.
● Need IPC between processes.
● Lot of memory and time required for process creation.

Multiple threads within a single process
● Create multiple threads within a single process.
● Good if each slave need to share data.
● Cost of creating threads is low, and no IPC required.

Single process multiple events:
● Use non-blocking or asynchronous I/O, using select() and poll() system calls.

6

Instructor: Muhammad Arif Butt, PhD

Overview of
Threads

7

Instructor: Muhammad Arif Butt, PhD

Processes and Threads
● Every process has two characteristics:

○ Resource Ownership: A process owns a set of resources, most importantly a virtual address
space that holds the process image (which includes code, data, stack, and heap).

○ Scheduling and Execution: A process follows an execution path defined by its code. This
execution is managed by the scheduler and may be interleaved with the execution of other
processes to enable multitasking.

● These two characteristics are treated independently by the operating system. The unit
of resource ownership is referred to as a process, while the unit of dispatching is referred
to as a thread

A thread is an execution context that is independently scheduled, but shares a single
addresses space with other threads of the same process

8

Instructor: Muhammad Arif Butt, PhD

Single Threaded Process
main()
{

…
f1(…);
…
f2(…);
…

}

f1(…)
{ … }

f2(…)
{ … }

Thread

Process
Terminated

f2

f1

9

Instructor: Muhammad Arif Butt, PhD

Thread Concept
• Previous slide is an example of a process with a single thread. Suppose we want that functions

f1() and f2() should be executed by separate threads, while main() function is executed
concurrently by another thread.

• Multi threading refers to the ability of an OS to support multiple threads of execution
with in a single process.

• Multithreading works similar to multiprogramming, where the CPU switches rapidly back and
forth among threads providing the illusion that threads are running in parallel.

10

Multi-Programming Systems (1960s–1970s): Introduced the concept of concurrent execution of multiple programs by
making the CPU switch between jobs during I/O idle time. This dramatically increased the overall system utilization. Example:
IBM OS/360 MVT.
Multi-Tasking / Time-Sharing Systems (1970s): Enabled multiple users to interact with the computer simultaneously via
terminals. The OS would rapidly switch between users (time slicing), giving the illusion of concurrent use. Example: MULTIX
(1969) and UNIX (1970).
Multi-Threading Systems (1990s): Allow different threads of a single process to run concurrently, sharing the same address
space and resources but executing independently, leading to finer-grained parallelism and efficiency in modern applications.
Example: Mach (1980s), Windows NT (1993), Java (1995), LinuxThreads (1996), NPTL (2003)

Instructor: Muhammad Arif Butt, PhD

Multi Threaded Process
main()
{

…
thread(t1,f1);
…
thread(t2,f2);
…

}

f1(…)
{ … }

f2(…)
{ … }

main t2t1

Process Address Space

PC

PC

PC

11

Instructor: Muhammad Arif Butt, PhD

Processes and Threads (Cont…)
Similarities between Processes & Threads:
● Like a process, a thread can also be in one of many states (new, ready, running,

block, terminated).
● Only one thread can be in running state (single CPU).
● Like a process a thread can create a child thread.

Differences between Processes & Threads:
● Processes are isolated from each other with separate address spaces, while

threads share the same address space within a process.
● Threads share code, data, and open files, whereas processes do not share these

resources by default.
● No automatic protection in threads.

12

Instructor: Muhammad Arif Butt, PhD

Single vs Multi-threaded Process

Process-Level Shared Data

Code Global
Data

File
Descriptors

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

Process-Level Shared Data

Code Global
Data

File
Descriptors

Registers Stack

Thread 1

Single-Threaded Process Multi-Threaded Process

13

Instructor: Muhammad Arif Butt, PhD

Single vs Multi-threaded Process (cont…)

(a) Three processes, each with one thread
(b) One process with three threads

executionEnvironment (resource)

Processes are used to group resources together.
Threads are the entities scheduled for execution on the CPU.

14

Instructor: Muhammad Arif Butt, PhD

Each Thread has its own Stack

• Each thread is invoked by invoking the thread function, therefore, it has a Function Stack Frame of its own.
The FSF contains the procedure’s arguments, local variables and return address.

• Suppose, a thread function X, calls another function Y, which in turn calls a function Z, while Z is executing
the frames for X, Y, Z will be on the stack. Since each thread will generally call different procedures and thus
has a different execution history

15

Instructor: Muhammad Arif Butt, PhD

Multi-Threaded Web Server

• Dispatcher thread or main thread reads incoming requests from the NW. After examining the request, it
chooses an idle worker thread and hands it the request. It also wakes up the worker from blocked state to
ready state.

• Worker now checks to see if the request can be satisfied from the Web page cache, to which all threads have
access. If not, it starts a read() operation to get the page from the disk and blocks until the disk operation
completes. When the thread blocks on the disk operation, another thread is chosen to run, possibly the
dispatcher, in order to acquire more work, or possibly another worker that is now ready to run.

Request for pages
comes in and the
requested page is
sent back to the
client.

16

Instructor: Muhammad Arif Butt, PhD

Multi-Threaded Process
Threads within a process share :
● PID, PPID, PGID, SID, UID, GID
● Controlling Terminals
● Code and Data Section
● Global Variables
● Open files via PPFDT
● Signal Dispositions
● Umask value
● Current Working Directory
● Interval Timers
● CPU time consumed
● Resource Limits
● Nice value
● Record locks (using fcntl())

Threads have their own:
● Thread ID
● CPU Context (PC, and other registers)
● Stack
● State
● The errno variable
● Priority
● CPU affinity
● Signal mask

17

Instructor: Muhammad Arif Butt, PhD

Temporal vs Simultaneous Multi-threading
At the hardware level there are two main types of
multi-threading models:

Temporal Multi-threading:
• At any given time, only one thread can execute in a

pipeline stage.
• Thread execution is time-sliced, meaning threads take

turns using the pipeline.
• Helps utilize CPU resources during stalls (e.g., cache

misses).

Simultaneous Multi-threading (SMT/HT):
• Multiple threads can execute simultaneously in

different parts of the same pipeline stage.
• Takes advantage of superscalar architecture, where

multiple instructions can be issued per cycle.
• Improves instruction-level parallelism and CPU

throughput by utilizing idle execution units.
18

Instructor: Muhammad Arif Butt, PhD

Thread Implementation
Models

19

Instructor: Muhammad Arif Butt, PhD

Thread Implementation Models (1:1)

Advantages:
• Since kernel is aware of the existence of multiple threads within the process, it can schedule these threads
independently and run in parallel on multiprocessor systems.

• When one thread makes a blocking system call (e.g., read()), only that thread is blocked; other threads can
continue to execute.

Disadvantages:
• Thread operations (creation, synchronization, and context switching) are slow as a switch to kernel mode is
required.

• Overhead of managing separate KSE for each of the thread places a significant load on kernel scheduler,
degrading overall performance.

Usage:
• LinuxThreads (used in older versions of glibc) provided a somewhat limited 1:1 model, but had some issues
like non-compliance with POSIX and inconsistent signal handling.

• NPTL (Native POSIX Thread Library), introduced in Linux 2.6, fully implements the 1:1 model and is the
standard threading implementation on modern Linux systems. It is fully POSIX-compliant, highly
performant, and supports real parallelism on SMP systems.

Kernel-level Threads: In the 1:1 model, each user thread maps directly to a kernel
thread (Kernel Scheduling Entity or KSE). All thread operations are carried out by
system calls, with the kernel managing thread creation, scheduling, and synchronization.

20

Instructor: Muhammad Arif Butt, PhD

Thread Implementation Models (1:1)

• All the thread management code is inside the
kernel space, implemented within a system call.
The system call may be called by a library (as in
case of NPTL).

• The Thread table is maintained by kernel
inside the kernel space.

• Kernel knows about individual threads within
each process.

Kernel-level Threads

21

Instructor: Muhammad Arif Butt, PhD

Thread Implementation Models (M:1)

Advantages:
• Thread operations (creation, synchronization, and context switching) are fast as no mode switch is required.
• User-level threads can be used even if the underlying platform does not support multi-threading at the
kernel level.

Disadvantages:
• When one thread makes a blocking system call (e.g., read()), the entire process is blocked.
• Since the kernel is unaware of the existence of multiple threads within a process, it cannot schedule separate
threads to different CPU cores.

Usage: The M:1 model was used by some early threading libraries (e.g., GNU Portable Threads or
Solaris green threads in early Java implementations).

User-level Threads: In the many-to-one (M:1) model, multiple user-level
threads are mapped to a single kernel thread. All thread management
(creation, scheduling, synchronization) occurs in user space. The kernel is
unaware of the existence of multiple threads within the process.

22

Instructor: Muhammad Arif Butt, PhD

Thread Implementation Models (M:1)
User-level Threads

• Mostly implemented by a thread library, where
all the thread management code is inside the
user space.

• The Thread table is maintained by the library
and exist inside the user space.

• Kernel knows nothing about threads.

23

Instructor: Muhammad Arif Butt, PhD

Thread Implementation Models (M:N)

Advantages:
• Combines the benefits of M:1 and 1:1 – Allows high-performance user-level thread management while
still enabling true parallel execution and isolation of blocking operations.

• Resource efficiency – Reduces kernel-level thread overhead by reusing a smaller number of kernel threads
for many user threads.

Disadvantages:
• Complexity: Requires sophisticated cooperation between the user-level threading library and the kernel
scheduler. The scheduling logic is split across layers, which makes implementation and debugging difficult.

• Inconsistency: Poor cooperation between user-space and kernel schedulers can lead to suboptimal thread
performance or starvation.

Usage: Not used in mainstream Linux implementations. Some experimental systems implemented
M:N models (e.g., older versions of GNU Hurd or Windows UMS)

In the many-to-many (M:N) model, multiple user-level threads are mapped
to a smaller or equal number of kernel threads (KSEs). The mapping is
dynamic, and multiple user threads can be multiplexed over fewer kernel
threads. Both the kernel and user-space threading library share
responsibilities for scheduling.

24

Instructor: Muhammad Arif Butt, PhD

Linux Implementation
of POSIX Threads

25

Instructor: Muhammad Arif Butt, PhD

Linux Implementation
of POSIX Threads

26

Instructor: Muhammad Arif Butt, PhD

LinuxThreads (Original Linux pthreads implementation)
Overview:
• LinuxThreads was the initial implementation of POSIX threads for Linux; it's now deprecated (unsupported
since glibc 2.4).

• In addition to application-created threads, it spawns a special “manager” thread responsible for thread
creation and termination, which can be a single point of failure if killed.

• Internally it relies on clone(), but threads appear as separate processes.
• LinuxThreads is a 1:1 model with significant deviations from POSIX behaviour, resulting in unpredictable
and inconsistent semantics—this is one of the main reasons it was superseded.

POSIX Deviations & Behavioral Quirks:
• The getpid() call returns a unique PID per thread, instead of a common process ID.
• Only the thread that invoked fork() can wait() on the child—others can’t.
• On execve(), all other threads are terminated, but the resulting PID corresponds to the calling thread, not
the main thread.

• Threads do not share: User/group IDs, SID and PGID, File locks, Interval timers, semaphore undo values,
nice values etc

27

Instructor: Muhammad Arif Butt, PhD

NPTL (Native POSIX Thread Library)
Overview:
• NPTL is a POSIX-compliant user-space threading library that was introduced in glibc 2.3.2 in 2003.
• It employs a 1:1 threading model, so even though pthread_create() is a user space function, but the
thread it creates is a Kernel Scheduling Entity (KSE)

• Every pthread_create() library function internally make the clone() system call with flags that cause
the new thread to:
o Share memory space and resources (like file descriptors) with its parent.
o Be scheduled independently by the kernel.
o Appear as a separate thread in tools like top, htop, or /proc.

Linux Implementation:
• To check out which Thread implementation your Linux system support, run the following command:

$ getconf GNU_LIBPTHREAD_VERSION
NPTL 2.41

28

Instructor: Muhammad Arif Butt, PhD

pthread API

29

Instructor: Muhammad Arif Butt, PhD

pthread API
The pthread API defines a number of data types and should be used to ensure the portability of
programs and mostly defined in /usr/include/x86_64-linux-gnu/bits/pthreadtypes.h.
Remember you should not use the C == operator to compare variables of these types

Data Type Description
pthread_t Used to identify a thread
pthread_attr_t Used to identify a thread attributes object
pthread_mutex_t Used for mutex
pthread_mutexattr_t Used to identify mutex attributes object
pthread_cond_t Used for condition variable
pthread_cond_attr_t Used to identify condition variable attributes object
pthread_key_t Key for thread specific data
pthread_once_t One-time initialization control context
pthread_spinlock_t Used to identify spinlock
pthread_rwlock_t Used for read-write lock
pthread_rwlockattr_t Used for read-write lock attributes
pthread_barrier_t Used to identify a barrier
pthread_barrierattr_t Used to identify a barrier attributes object 30

Instructor: Muhammad Arif Butt, PhD

pthread API (cont…)

• This function starts a new thread in the calling process. The new thread starts its
execution by invoking the start function which is the 3rd argument to above function.

• On success, the TID of the new thread is returned through 1st argument to above function
• The 2nd argument specifies the attributes of the newly created thread. Normally we pass

NULL pointer for default attributes.
• The 4th argument is a pointer of type void which points to the value to be passed to thread

start function. It can be NULL if you do not want to pass any thing to the thread
function. It can also be address of a structure if you want to pass multiple arguments.

int pthread_create(pthread_t *tid, const pthread_attr_t *attr,
void *(*start)(void *), void *arg) ;

31

Instructor: Muhammad Arif Butt, PhD

pthread API (Cont…)

• This function terminate the calling thread.
• The status value is returned to some other thread in the calling process, which

is blocked on the pthread_join() call.
• The pointer status must not point to an object that is local to the calling thread,

since that object disappears when the thread terminates.

Ways for a thread to terminate:
• The thread function calls the return statement.
• The thread function calls pthread_exit()
• The main thread returns or call exit()
• Any sibling thread calls exit()

void pthread_exit(void *status);

32

Instructor: Muhammad Arif Butt, PhD

pthread API (Cont…)

• Any peer thread can wait for another thread to terminate by calling
pthread_join() function, similar to waitpid(). Failing to do so will produce
the thread equivalent of a zombie process.

• The 1st argument is the ID of thread for which the calling thread wish to wait.
Unfortunately, we have no way to wait for any of our threads like wait()

• The 2nd argument can be NULL, if some peer thread is not interested in the
return value of the new thread. Otherwise, it can be a double pointer which will
point to the status argument of the pthread_exit()

int pthread_join(pthread_t tid, void **retval);

33

Instructor: Muhammad Arif Butt, PhD

Example: t0.c

void f1();
void f2();
int main(){

f1();
f2();
printf("\nBye Bye from main\n");
return 0;

}

void f1(){
for(int i=0; i<5; i++){

printf("%s", "PUCIT");
sleep(1);

}
}

void f1(){
for(int i=0; i<5; i++){

printf("%s", ”ARIF");
sleep(1);

}
}

• Consider the following code and determine its output and behavior:

34

Instructor: Muhammad Arif Butt, PhD

Example: t1.c
void* f1(void*);
void* f2(void*);
int main(){

pthread_t tid1, tid2;
pthread_create(&tid1, NULL, f1, NULL);
pthread_create(&tid2, NULL, f2, NULL);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
printf("\nBye Bye from main thread\n");
return 0;

}
void * f1(void * arg){

for(int i=0; i<5; i++){
printf("%s", "PUCIT");
fflush(stdout);
sleep(1);

}
pthread_exit(NULL);

}

void * f2(void * arg){
for(int i=0; i<5; i++){

printf("%s", "ARIF");
fflush(stdout);
sleep(1);

}
return NULL;

}

$ gcc -c t1.c -D_REENTRANT

$ gcc t1.o -o t1 –lpthread

$./t1

PUCITARIFARIFPUCITARIFPUCITPUCITARIFPUCITARIF

Bye Bye from main thread 35

Instructor: Muhammad Arif Butt, PhD

Thread Creation
Lec3.3/t0.c
Lec3.3/t1.c
Lec3.3/t2.c
Lec3.3/t3.c
Lec3.3/t4.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

36

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Returning value from a Thread Function
• A thread function can return a pointer to its
parent/calling thread, and that can be
received in the 2nd argument of the
pthread_join() function.

• The pointer returned by the
pthread_exit() must not point to an
object that is local to the thread, since that
variable is created in the local stack of the
terminating thread function.

• Making the local variable static will also
fail. Suppose two threads run the same
thread_function(), the second thread
may overwrite the static variable with its
own return value and return value written
by the first thread will be overwritten.

• So the best solution is to create the variable
to be returned in the heap instead of stack.

37

pthread_create(&tid1, NULL, f1, (void*)argv[1]);
pthread_create(&tid2, NULL, f1, (void*)argv[2]);
pthread_join(tid1, &rv1);
pthread_join(tid2, &rv2);
int count1 = *((int*)rv1);
int count2 = *((int*)rv2);
printf("Characters in %s: %d\n", argv[1], count1);
printf("Characters in %s: %d\n", argv[2], count2);
return 0;

}
void* f1(void* args){

char* filename = (char*)args;
int *result = (int*)malloc(sizeof(int));
*result = 0;
char ch;
int fd = open(filename, O_RDONLY);
while((read(fd, &ch, 1)) != 0){

(*result)++;
}
close(fd);
pthread_exit((void*)result);

}

Instructor: Muhammad Arif Butt, PhD

Thread Creation

Lec3.3/rv1.c
Lec3.3/rv2.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

38

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Creating Arrays of Threads
• You may need to create large number of threads for dividing the computational

tasks as per your program logic.
• At compile time, if you know the number of threads you need, you can simply

create an array of type pthread_t to store the thread IDs.
• If you do not know at compile time, the number of threads you need, you may

have to to allocate memory on heap for storing the thread IDs.
• The maximum number of threads that a system allow can be seen in
/proc/sys/kernel/threads-max file. There are however, other parameters
that limit this count like the size of stack the system needs to give to every new
thread.

39

Instructor: Muhammad Arif Butt, PhD

Lec3.3/array_threads1.c
Lec3.3/array_threads2.c
Lec3.3/array_threads3.c

Array of Threads

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

40

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
errno is a global per-process variable used to store the error
number occurred in the last failed system call. What problem
can occur due to this shared variable in a multi-threaded
program?

• The problem is that two or more threads can encounter errors, all causing
the same errno variable to be set. Under these circumstances, a thread
might end up checking errno after it has already been updated by another
thread.

• Solution is to make errno local to every thread; so setting it in one thread
does not affect its value in any other thread. This can be achieved by
compiling with -D_REENTRANT flag of gcc.

41

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
In a multithreaded process, all threads have the same PID as
returned by the getpid() system call. How to uniquely
identify a thread within a multi-threaded process?
• We can use gettid() and pthread_self().
• But must keep in mind the following difference between the values returned by these

two calls

• Since gettid() is Linux specific and therefore not portable. So to uniquely identify a
thread, use combination of process ID as returned by getpid() and POSIX thread
ID as returned by pthread_self()

TID returned by gettid() TID returned by pthread_self()
Assigned by kernel, similar to PIDs POSIX TIDs maintained by thread implementation
May be reused after a very long time once
the PID counter reach the max value

Reused after the completion of the thread

Unique across the system Unique within the process only

42

Instructor: Muhammad Arif Butt, PhD

Lec3.3/id_threads1.c
Lec3.3/id_threads2.c

Thread IDs

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

43

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Thread Attributes

44

Instructor: Muhammad Arif Butt, PhD

Thread Attributes
Every thread has a set of attributes which can be set before creating it. If we pass
a NULL as second argument to pthread_create() function, the default thread
attributes are used. The default value of thread attributes are shown in table
below:

Attribute Default Value Description
detachstate PTHREAD_CREATE_JOINABLE Joinable by other threads
stackaddr NULL Stack allocated by system
stacksize NULL 2 MB
priority --- Priority of calling thread is used
policy SCHED_OTHER Determined by system
inheritsched PTHREAD_INHERIT_SCHED Inherit scheduling attributes

from creating thread

45

Instructor: Muhammad Arif Butt, PhD

Detach State (Avoiding Zombie Threads)
Joinable Thread:
● A joinable thread (like a process) is not automatically cleaned up by GNU/LINUX when it

terminates. The thread's exit status hangs around in system until another thread calls
pthread_join() to obtain its return value. Only then its resources are released.

● For example whenever we want to return data from child thread to parent thread the child thread
must be a joinable thread.

Detached Thread:
● A detachable thread is cleaned up automatically when it terminates. Since a detached thread is

immediately cleaned up, another thread may not wait for its completion by using
pthread_join() to obtain its return value.

● For example suppose the main thread crates a child thread to do back up of a file and the main
thread continue its execution. When the backup is finished , the second thread can just terminate.

● There is no need for it to rejoin the main thread. A thread can detach itself using
pthread_detach(pthread_self()) call

46

Instructor: Muhammad Arif Butt, PhD

Steps to Specify Customized Thread Attributes
• Create a pthread_attr_t object.
• Call pthread_attr_init(), passing it a pointer of above object.
• Modify the attribute object to contain the desired attribute value using the

appropriate setters.
• Pass a pointer to the attribute object when calling pthread_create()
• Destroy pthread attribute object by calling pthread_attr_destroy()

47

Instructor: Muhammad Arif Butt, PhD

pthread API (Cont…)

• The pthread_attr_init() function initializes the thread attributes object
pointed to by attr with default attribute values. After this call, individual
attributes of the object can be set using various related functions (next
slide), and then the object can be used in one or more pthread_create() calls.

• When a thread attributes object is no longer required, it should be
destroyed using the pthread_attr_destroy() function. Destroying a thread
attributes object has no effect on threads that were created using that object.

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

48

Instructor: Muhammad Arif Butt, PhD

pthread API (Cont…)

● This function sets the detach state attribute of the thread attributes object referred to by attr to
the value specified in the second argument detachstate, which can take following two values:
o PTHREAD_CREATE_DETACHED
o PTHREAD_CREATE_JOINABLE

● Associated getters and setters of thread attribute object

int pthread_attr_setdetachstate(pthread_attr_t*attr,int detachstate);

int pthread_attr_getdetachstate();

int pthread_attr_setdetachstate();

int pthread_attr_getstacksize();

int pthread_attr_setstacksize();

int pthread_attr_getstackaddr();

int pthread_attr_setstackaddr();

int pthread_attr_getschedpolicy();

int pthread_attr_setschedpolicy();

int pthread_attr_getinheritsched();

int pthread_attr_setinheritsched();

49

Instructor: Muhammad Arif Butt, PhD

Lec3.3/attr_threads.c

Thread Attributes

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

50

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
If a signal is sent to a multi-threaded process. Which
thread will receive that signal?

The UNIX signal model was designed with the UNIX process model in mind, so
there are some significant conflicts between the signal and thread models.
Combining signals and threads is complex and should be avoided whenever
possible. Some key points to be kept in mind are:
• Signal handlers are per-process.
• Signal masks are per-thread.
• Sending a signal using kill(1) or kill(2) will terminate the process. You can

use pthread_kill(3) to send a signal to another thread in the same process.
• If one thread ignores a signal, then that signal is ignored by all threads

51

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
If one of the threads executes the exec() system call,
what happens?

• If any thread in a multithreaded Linux process executes one of the exec()
functions, the entire process is completely replaced by the new program image.

• All the other threads are terminated, and only the calling thread continues as
single thread of the new program.

• None of the threads executes destructors for thread-specific data or calls cleanup
handlers.

• All the pthread objects (mutexes and condition variables) disappear as the new
program overwrites the memory of the process.

52

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
Consider a multi-threaded process, if one thread executes the
fork() system call, does the new process duplicate only the
calling thread or all threads? Is the child process single
threaded or multi-threaded?
• When a thread in a multi-threaded process calls fork(), the operating system creates a
child process that contains only the calling thread. The child process is created with a single
thread – the one that called the fork(); none of the other threads are duplicated.

• This means the child process is single-threaded, even though the parent process may still be
multi-threaded (all its other threads continue running normally).

53

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
What if the main thread want to cancel another thread or
threads? Suppose multiple threads are searching through a
database, if one thread returns data, remaining threads might
need to be cancelled.

● A thread can call pthread_cancel() to request that another thread be cancelled by
mentioning the TID of the target thread

● This cancellation may cause a problem if the target thread is holding some resources which
it must free later

● To counter this possibility, it is possible for a thread to make itself cancellable or non-
cancellable by calling a function pthread_setcancelstate()

● Moreover, a cancellable thread may also set its cancel type by calling a function
pthread_setcanceltype(), which can be asynchronous, i.e., thread may be cancelled at
any point in its execution or deferred, in which case the cancellation request is queued, until
the target thread reaches next cancellation point.

54

Instructor: Muhammad Arif Butt, PhD

Point to Ponder
Why all multi-threaded code must be compiled with -D_REENTRANT defined?
What difference does it make?

Compiling your multi-threaded code with -D_REENTRANT enables thread-safe behavior by
affecting the standard headers and libraries in the following ways:

• Every thread has it local errono variable that refers to a thread-specific location, ensuring that
error values are not overwritten by other threads.

• Library functions like getc() and putc() are redefined as real function calls instead of
macros. This change allows the use of internal locking mechanisms necessary for thread-safe
access to shared resources (e.g., FILE streams).

• The code becomes compatible with reentrant versions of library functions, such as
gethostbyname_r() instead of gethostbyname(). These reentrant functions are explicitly
designed to be safe in multi-threaded contexts, often by requiring the caller to supply buffers.

55

Instructor: Muhammad Arif Butt, PhD

Example: race1.c
long balance = 0;
void * inc(void * arg);
void * dec(void * arg);
int main(){

pthread_t t1, t2;
pthread_create(&t1, NULL, inc,NULL);
pthread_create(&t2, NULL, dec,NULL);
pthread_join(t1,NULL); pthread_join(t2,NULL);
printf("Value of balance is :%ld\n", balance);
return 0;

}

void * inc(void * arg){
for(long i=0;i<100000000;i++)

balance++;
pthread_exit(NULL);

}

void * dec(void * arg){
for(long i=0;i<100000000;i++)

balance--;
pthread_exit(NULL);

}

56

Instructor: Muhammad Arif Butt, PhD 57

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch SP video on Multi-Threaded Programming:
https://youtu.be/OgnLaXwLC8Y?si=GeXtVLkLCTbCHgeI

https://youtu.be/OgnLaXwLC8Y?si=GeXtVLkLCTbCHgeI

