
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 3.5
Process Scheduling Algorithms - II



Instructor: Muhammad Arif Butt, PhD

Lecture Agenda 

2

● Multilevel Queue Scheduling

● Multilevel Feedback Queue Scheduling
● Rotating Staircase Deadline Schedular
● Unix SVR3 Scheduling Algorithm
● Linux CFS Scheduler
● Scheduling related shell commands

● Process Scheduling Info in /proc/[PID]/
● Scheduling related system calls



Instructor: Muhammad Arif Butt, PhD

Multilevel Queue 
Scheduling 

3



Instructor: Muhammad Arif Butt, PhD

Multilevel Queue Scheduling
• A multilevel queue scheduling algorithm partitions the Ready Queue into several separate

queues:
o Foreground (interactive)
o Background (batch)

• Processes are permanently assigned to a queue on entry to the system, based on some property of
the process, e.g. memory size, process priority, process type.

• Processes do not move between queues.
• Each queue has its own scheduling algorithm:

• Foreground – RR
• Background – FCFS

• More over there must be scheduling between
the queues, e.g. foreground queues may have
absolute priority over back ground queues.

4



Instructor: Muhammad Arif Butt, PhD

MLQ Scheduling - Example 14
Draw the graph (Gantt chart) for the following processes using MQ Scheduling algorithm.

If (CPU time < 4) then Q1 (FCFS)
else if (4 <= CPU time < 7) then Q2 (FCFS)
else Q3 (FCFS)

Process Arrival Time Burst Time

p1 0 8

p2 2 2 

p3 3 4

p4 5 6

p5 7 9

p6 9 3

p7 10 5

5



Instructor: Muhammad Arif Butt, PhD

MLQ Scheduling - Example 15
Draw the graph (Gantt chart) for the following processes using MQ Scheduling algorithm.

If (CPU time < 4) then Q1 (FCFS)
else if (4 <= CPU time < 7) then Q2 (RR – 3sec)
else Q3 (FCFS)

Process Arrival Time Burst Time

p1 0 8

p2 2 2 

p3 3 4

p4 5 6

p5 7 9

p6 9 3

p7 10 5

6



Instructor: Muhammad Arif Butt, PhD

Multilevel Feedback 
Queue Scheduling

7



Instructor: Muhammad Arif Butt, PhD

Multilevel Feedback Queue Scheduling
• In MLFQ, processes can move up or down between queues based on their behaviour over time.

This is what distinguishes MLFQ from static multilevel queue scheduling.
• Processes that uses too much CPU time is moved to a lower priority queue thus leaving the

interactive and I/O bound processes in the higher priority queue. This ensures that interactive
and I/O-bound processes, which often block and yield the CPU early, stay in higher-priority
queues, improving responsiveness.

• Starvation can occur when lower-priority processes are never scheduled because higher-priority
queues are always full. Aging is a common solution: processes that wait too long are gradually
promoted to higher queues.

• Parameters of a Multilevel-feedback-queue scheduler are:
○ Number of queues
○ Scheduling algorithms for each queue
○ Method used to determine when to demote a process
○ Method used to determine when to upgrade a process
○ Method used to determine which queue a process will

enter when that process needs service
8



Instructor: Muhammad Arif Butt, PhD

MLFQ Scheduling - Example 16
Queue Setup is given in the opposite 
table and the rules are given below:
• All processes enter Q1 first.
• If a process does not finish in its quantum, it

is moved to the next lower queue.
• If a process waits more than 10 seconds in Q3

without execution, it is promoted to Q2
(aging).

• All processes arrive at time 0.

Given the Process table having its
arrival time and CPU burst. Draw the
Gantt Chart that shows the process
completion time.

Queue Priority Scheduling Time Quantum Behaviour
Q1 High Round Robin 4 sec All processes starts here
Q2 Medium Round Robin 6 sec For CPU-intensive jobs
Q3 Low FCFS – Starvation-prone jobs

Process Arrival Time CPU Burst
P1 0 6
P2 0 9
P3 0 3
P4 0 12
P5 0 2

9



Instructor: Muhammad Arif Butt, PhD

Rotating Staircase 
Deadline Scheduler

10



Instructor: Muhammad Arif Butt, PhD

Rotating Staircase Deadline Scheduler
RSDL is a scheduling algorithm that employs multi-level queues arranged like a staircase. Each
priority level has its own execution quota, and each process has a personal quota at its current level

How It Works:
• Arrival & Placement: Processes are placed in the queue corresponding to their priority level.
• Execution: Scheduler cycles through processes at the current highest non-empty level using RR.
• Per-Process Quota: Each process at that level gets a fixed CPU time slice (its quota). When it

runs out, it is demoted to the next lower priority.
• Per-Level Quota: Each level has an aggregate runtime limit. When this level-level quota is

exhausted, all remaining processes at that level are collectively pushed down one level, even if
they haven't used their individual quotas.

• Fairness Guarantee: Lower-priority processes eventually get CPU time despite higher-priority
workloads, eliminating starvation.

Con Kolivas implemented RSDL as a Linux scheduler, however, it was not merged into mainline Linux. However, it heavily
influenced the development of the Completely Fair Scheduler (CFS), which has been the default Linux scheduler since kernel
version 2.6.23

11



Instructor: Muhammad Arif Butt, PhD

UNIX SVR3
Scheduling Algorithm

12



Instructor: Muhammad Arif Butt, PhD

Unix Svr3 Scheduling Algorithm (Cont.)
• The Traditional UNIX scheduler employs thirty-two multi-level feed back queues implementing round robin

algorithm with a fixed time quantum of 100 ms.
• There are total of 128 different priority values, 0 to 49 for kernel processes and rest for user level programs.

Four priority values are mapped on each queue.
• A process enters in an appropriate queue based on its priority value, which is computed by a formula and is

recomputed every second (not inherited).
• When it comes to scheduling the process in the smallest priority number queue is selected. After every 

second, the priorities of all the processes are recalculated and they are promoted or demoted in the queues 
accordingly.

• The priority of a process is calculated as the sum of three terms as shown in the formula:
usrprij(i) = Basej + CPUj(i) + nicej

• Basej means base value for process j, which differentiate between user and kernel priorities. For user
processes its value is 50-127, while for kernel processes its value is 0-49

• CPUj(i), means the CPU utilization of process j through interval i. It is calculated by multiplying the
previous cpu utilization with a decay rate. In SVR3 the decay rate is ½

• The nice value (a per process attribute) is a user controllable adjustment factor. It is called nice because a
process increases its nice value and in turn reduces its priority and show nice behavior to other processes by
giving them the opportunity to run. A user can change the nice value of a process by nice(1) and renice(1)
commands. The nice values range from -20 to 19 with a default value of 0

13



Instructor: Muhammad Arif Butt, PhD

Unix SVR3 Scheduling Algorithm

Run Queue 0

Run Queue 1

Run Queue 2

Run Queue 31

usrprij (i) = Basej + cpuj (i) + nicej

Where Basej = 50
cpuj (i) = DR * cpuj (i-1)
nicej = -20 to +19

0 – 3

4 – 7

8 – 11

124 – 127

128 Priority values
○ 0–49: Kernel
○ 50–127: User level programs

14



Instructor: Muhammad Arif Butt, PhD

Limitations of Unix Svr3 Scheduling Algorithm
• With large number of processes, overhead of re-computing process priorities

every second is very high.

• Since the kernel itself is non-preemptive, high priority processes may have to
wait for low priority processes executing in kernel mode

15



Instructor: Muhammad Arif Butt, PhD

Linux CFS Scheduler

16



Instructor: Muhammad Arif Butt, PhD

Introduction to CFS
• The Completely Fair Scheduler (CFS) is the default process scheduler in modern Linux

systems, introduced in kernel version 2.6.23. It was developed to address the limitations of earlier
scheduling models, especially the O(1) scheduler, which, while efficient, lacked true fairness in
how CPU time was distributed. It is designed by Ingo Molnar and is based on Rotating Staircase
Deadline (RSDL) scheduler by Con Kolivas.

• Traditional schedulers used fixed time slices and discrete priority queues. This often led to:
o Starvation of lower-priority or I/O-bound processes.
o Poor responsiveness for interactive applications
o Unfair CPU distribution, especially under load
o Complexity in tuning scheduling policies manually

• CFS was designed to eliminate these issues by modeling CPU scheduling as a fair sharing
problem.

CFS (Normal scheduling):
o Web browsers, text editors, compilers
o Most applications and background tasks
o When you want the system to stay responsive

Real-time scheduling:
o Audio/video processing with strict deadlines
o Industrial control systems
o Scientific data acquisition

17



Instructor: Muhammad Arif Butt, PhD

Scheduling Classes of CFS

• The Stop class is the highest priority class. A process of this class is preempted by nothing.
• The Deadline class is introduced in Linux kernel version 3.14. The scheduling policy used by this class is

SCHED_DEADLINE and is used for periodic real time tasks.
• The Realtime class is used by POSIX real time tasks like IRQ threads with priority values in the range of 0 to 99.

The scheduling policies used by this class are SCHED_FIFO, and SCHED_RR.
• The CFS class is the class under which most of the user processes including the famous bash command interpreter

runs. It uses priority values in the range of 100 to 139. The scheduling policies used by CFS class are SCHED_NORMAL
(which is the default for all user processes), and SCHED_BATCH (for CPU intensive tasks).

• Finally, the Idle class is the lowest priority scheduling class having no scheduling policy. The kernel idle thread
runs when nothing else is runnable on a CPU and it may take the CPU to low power state as well.

Stop Deadline Real Time CFS Idle

SCHED_DEADLINE
SCHED_FIFO
SCHED_RR

SCHED_NORMAL
SCHED_BATCH

NULL

There are five scheduling classes: Stop, Deadline, Realtime, CFS, and Idle. The scheduler iterates over each class in
priority order, starting with the highest priority class. If a class has a runnable process it is run, if not then the turn of
a process from the lower priority class comes. In the very end, comes the turn of idle scheduling class, which runs last,
never fails: it always returns the idle task.

18



Instructor: Muhammad Arif Butt, PhD

Working of CFS
• CFS scheduler maintains a “time-ordered red

black tree” to manage the list of runnable
processes.

• Every process task_struct has a member
struct sched_entity, which further contains
struct rb_node to represent every node of the
tree.

• The sched_entity structure also contains a 64
bit field vruntime, which indicates the amount of
time a process has run and serves as the index for
the red black tree.

• Tasks with the gravest need for the CPU (lowest
vruntime) are stored towards the left side of the
tree.

• The tasks with the least need for the CPU
(highest vruntime) are stored towards the right
side of the tree.

• Suppose we have a red-black tree populated with every runnable process in the system, with their
vruntime shown in the figure. When it is time to select next process to run from the CFS class, the
scheduler picks the left most node to maintain fairness.

19



Instructor: Muhammad Arif Butt, PhD

Working of CFS (cont…)
Context Switch and Time Slice:
• In CFS, there is no concept of time slice. Once a

process is selected to run, during execution its
vruntime is incremented. A context switch or
rescheduling occurs when:
o The vruntime of another task is smaller than

the currently running task, or
o When a process that has a higher priority than

the currently running process is awakened.

20



Instructor: Muhammad Arif Butt, PhD

Working of CFS (cont…)
Vruntime of a new Process:
• CFS keeps track of the minimum vruntime value

among all the processes in the tree. Whenever a
new task is created, this value is given to it so as
to give it a chance to schedule quickly and to
achieve good response time

• Question: A user’s process which is forking again
and again will get more CPU time as compared to
another user’s process which is not forking.
Answer: A process that forks child processes
share its vruntimes among all processes of the
group, while the single task maintains its own
independent vruntime.

21



Instructor: Muhammad Arif Butt, PhD

Working of CFS (cont…)
How Priorities are managed?
• CFS does not use priorities directly, but uses them

as a decay factor of vruntime.
• Lower priority tasks have higher factors of decay,

i.e., vruntime grows faster.
• Higher priority tasks have smaller factors of

decay, i.e., vruntime grows slower

22



Instructor: Muhammad Arif Butt, PhD

Working of CFS (cont…)
How CFS Handles CPU Bound and I/O Bound
Processes?
• Consider the example of a text editor, an I/O

bound process and a video encoder, which is a
CPU bound process.

• The video encoder executes most of the times and
therefore will have a high vruntime value

• On the contrary, the text editor sleeps for most of
the time and therefore will have a very low
vruntime value

• Hence, whenever the text editor wakes up it
preempts the video encoder, handle the user keys
and sleeps again

23



Instructor: Muhammad Arif Butt, PhD

Scheduling Related 
Shell Commands

24



Instructor: Muhammad Arif Butt, PhD

The nice & renice Commands
• The nice value (a per process attribute) is a user controllable adjustment factor. It is called nice

because a process increases its nice value and in turn reduces its priority and show nice behavior to
other processes by giving them the opportunity to run.

• Lower nice value: More CPU time (higher priority).
• Higher nice value: Less CPU time (lower priority).
• The nice command is used to set the priority at process start, while renice command is used to

change the priority of a running process. The nice values range from -20 to 19 with a default value
of 0. Regular users can only increase niceness of own processes, while root can set negative nice
values as well.

• Examples:
o Run a process with a nice value of -5: $ sudo nice -n -5 top

o Make PID 1234 lower priority: $ renice -n 5 -p 1234

o Increase priority of PID 5678: $ sudo renice -n -10 -p 5678

o Change priority for all in group 1010: $ renice -n 15 -g 1010
Normal Processes (use CFS Scheduler): 
PRI = 20 (base user priority) + nice value + 60
nice = 0 → PRI = 20 + 0 + 60 = 80 (default)
nice = -10 → PRI = 70 (higher priority)
nice = +10 → PRI = 90 (lower priority)

Real-time Processes (use SCHED_FIFO or SCHED_RR):
Real-time processes must be manually assigned a static PRI value from
0 to 99. You cannot change their PRI using nice/renice. However,
can use chrt command

25



Instructor: Muhammad Arif Butt, PhD

The chrt Command
• The chrt command is used to display or set a process’s real-time scheduling policy and priority.
• Unlike nice, which adjusts relative niceness under the CFS, chrt sets real-time scheduling

attributes, managed under the Real-Time Scheduling Classes in Linux. [$ chrt –-help]
• Real-time scheduling gives selected processes predictable CPU access ahead of normal tasks.
• It can set policies like SCHED_FIFO or SCHED_RR with priorities ranging from 1 (lowest) to 99

(highest) for real-time tasks.
• Changing a process to a real-time policy can make it highly responsive but may starve other

processes if not managed carefully.
• Regular users can view scheduling policies and priorities, but only root can change them.
• Examples:

o Display scheduling policy and priority of PID 1234: $ chrt -p 1234

o Launch a process with FIFO policy and priority 50: $ sudo chrt -f 50 <mycommand>

o Change running process to RR policy with priority 20: $ sudo chrt –r –p 20 <PID>

• Note: Only root can assign real-time policies and even doing that misusing real-time scheduling
can lock up the system if a task never yields the CPU. So use with caution

26



Instructor: Muhammad Arif Butt, PhD

The taskset Command
• CPU affinity is a per-process attribute that defines the set of CPU cores on which a process is

allowed to run. In a multi-processor / multi-core system, when a process is rescheduled, it does not
necessarily run on the same CPU on which it ran previously. If a process moves from one CPU to
the other, the cache of the first CPU must be invalidated and the cache of the second CPU must be
populated with the process data. Restricting a process to specific CPUs can improve cache
performance, reduce context switching, and control CPU load distribution.

• CFS tries to ensure soft CPU affinity, i.e., tries to run the task on the same CPU on which it ran
previously. We can ensure hard CPU affinity using a per process attribute cpus_allowed, which
is a 32 bit mask having one bit per CPU or core in the system.

• The taskset command is used to view or set a process’s CPU affinity mask, either for a new
process or for an already running one. Regular users can change the affinity of their own processes,
while root can set affinity for any process.

• Examples:
o Display CPU affinity of a process:: $ taskset –p <PID>

o Launch a command restricted to CPU 0 & 2: $ taskset –c 0,2 <mycommand>

o Launch a server to CPU 0 to 3: $ taskset –c 0-3 ./server

27



Instructor: Muhammad Arif Butt, PhD

• The schedtool is a powerful CLI utility to view and modify Linux process scheduling policies and priorities.
• Use sudo apt-get install schedtool to install it on you machine.

The schedtool Command

28



Instructor: Muhammad Arif Butt, PhD

• Query Process Information:
o Display all scheduling info for a specific process: $ schedtool -v 1234

o Query multiple processes: $ schedtool -v 1234 2345 5678

• Set Nice Value of a Process:
o Set nice value to 10: $ schedtool -n 10 -p 1234

o Set nice value to -5: $ sudo schedtool -n -5 -p 1234
o Launch a command with nice value: $ schedtool -n 15 -e make –j4

• Set CPU Affinity:
o Pin to CPU 0 only: $ schedtool -a 0 -p 1234

o Pin to CPU 0, 2 and 3: $ schedtool -a 0,2,3 -p 1234

• Set Scheduling Policy:
o Set to batch scheduling (SCHED_BATCH): $ schedtool -B -p 1234

o Set to normal scheduling (SCHED_OTHER): $ schedtool -N -p 1234

• Set Static Priority (Real-time only) :
o Set FIFO with priority 50: $ sudo schedtool -F –p 50 -P 1234

o Set to RR with priority 80:: $ sudo schedtool -R -p 80 1234

The schedtool Command (cont…)

29



Instructor: Muhammad Arif Butt, PhD

Process Scheduling 
Info in /proc/[PID]/

30



Instructor: Muhammad Arif Butt, PhD

Process Scheduling info in /proc/[PID]/
File Content Description

stat Contains scheduling policy, nice value, priority, CPU times, and state in 
space-separated fields

status Human-readable format showing voluntary/involuntary context switches and 
CPU times

sched Detailed CFS scheduler statistics including runtime, wait time, and 
scheduling policy

task/[TID]/stat Per-thread scheduling information (same format as main stat file)
task/[TID]/sched Per-thread detailed scheduler statistics
cpuset Shows which CPU cores/nodes the process is allowed to run on
comm Process command name (useful for identifying the process)
cmdline Full command line with arguments

31



Instructor: Muhammad Arif Butt, PhD

Scheduling Related 
System Calls

32



Instructor: Muhammad Arif Butt, PhD

System Calls Related to Scheduling
System Call Description
nice() Adjusts the calling process’s nice value by a specified increment
getpriority() Retrieves the nice value (priority) of a specified process, process group, or user
setpriority() Sets the nice value (priority) of a specified process, process group, or user
sched_get_priority_min() Returns the minimum priority for a given scheduling policy
sched_get_priority_max() Returns the maximum priority for a given scheduling policy
sched_getscheduler() Retrieves the current scheduling policy of a given process or thread
sched_setscheduler() Sets the scheduling policy and real-time parameters for a specified process
sched_getparam() Gets the real-time scheduling parameters (e.g., priority) of a specified process
sched_setparam() Sets the real-time scheduling parameters (e.g., priority) for a specified process
sched_yield() Voluntarily gives up the CPU, allowing other threads of equal priority to run
sched_rr_get_interval() Fetches the time quantum used under the SCHED_RR (round-robin) policy for a process
sched_getcpu() Returns the number of the CPU on which the calling thread is currently executing
sched_getaffinity() Retrieves the CPU affinity mask, indicating on which CPUs a process is allowed to run on
sched_setaffinity() Sets the CPU affinity mask to specify which CPUs a process is permitted to execute on

33



Instructor: Muhammad Arif Butt, PhD 34

To Do

Coming to office hours does NOT mean that you are academically weak!

• Watch OS video on Process Scheduling:
https://www.youtube.com/watch?v=3ap2kU4bA9E&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=12

• Watch SP video on Process Scheduling:
https://www.youtube.com/watch?v=Y86pa2nrT_k&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=21

https://www.youtube.com/watch?v=3ap2kU4bA9E&list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8&index=12
https://www.youtube.com/watch?v=Y86pa2nrT_k&list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW&index=21

