
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 4.1
Overview of Linux IPC and Signal Handling

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Taxonomy of Inter Process Communication
● Overview of Signals
● Synchronous vs Asynchronous Signals
● Signal Disposition
● Passing signals using shell commands kill,
killall, pkill, trap

● Signal Handling using kill(), alarm(),
pause(), raise(), abort()

● Ignoring / Writing Signal Handlers using
signal()

● Masking Signals to Avoid Signal Races using
sigprocmask()

2

Instructor: Muhammad Arif Butt, PhD

Introduction to
UNIX IPC

3

Instructor: Muhammad Arif Butt, PhD

Independent vs Cooperating Processes
Processes executing concurrently in the operating system can be:
● Independent Process: A process that cannot affect or cannot be affected by the execution of

another process. A process that does not share data with another process is independent
● Cooperating Process: A process that can affect or can be affected by the execution of another

process. A process that share data with other process is a cooperating process
● Advantages of Cooperating processes:

○ Information sharing
○ Computation speed up
○ Modularity
○ Convenience

4

Instructor: Muhammad Arif Butt, PhD

Application Design Options

Design using a large monolithic
program that does everything

Multiple processes (using fork) that that
communicate using some form of IPC

A single multi-threaded process Multiple multi-threaded processes

Inter Process Communication (IPC) is a mechanism that allows process to communicate
(exchange data) and coordinate with each other

5

Instructor: Muhammad Arif Butt, PhD

Ways to share information b/w UNIX processes

Shared
memory

Processes accessing shared memory
without involvement of kernel at all

Kernel
area

shared kernel buffer

Filesystem

Process A Process B Process A Process AProcess B Process B

6

Instructor: Muhammad Arif Butt, PhD

Communication Synchronization

Taxonomy of IPC

Inter Process Communication

Signals

Communication facilities are
concerned with exchanging
data between processes

Synchronization facilities are concerned with
synchronizing the actions of processes or
threads

Signals are asynchronous notifications
sent to processes to inform them of
events or request specific actions

7

Instructor: Muhammad Arif Butt, PhD

communication

signal

synchronization

message
passing

shared
memory

byte stream

pseudoterminal

message

PIPE

FIFO

stream socket

System V message queue

POSIX message queue

datagram socket

System V shared memory

POSIX shared memory
anonymous mapping

mapped file
standard signal

real time signal

semaphore

file lock

mutex (threads)

POSIX semaphore
named

unnamed
"record" lock (fcntl())

file lock (flock())

memory mapping

System V semaphore

Condition variable (threads)

Taxonomy of IPC
In

te
r

P
ro

ce
ss

 C
om

m
un

ic
at

io
n

8

Instructor: Muhammad Arif Butt, PhD

Communication - Message Passing
● In Message passing, the processes communicates by sending and receiving discrete messages.
● One process writes data to the IPC facility, and another process reads the data and vice versa.
● The kernel often manages the data exchange.
● Message passing facilities require two data transfers between user memory and kernel memory:

one transfer from user memory to kernel memory during writing, and another transfer from
kernel memory to user memory during reading.

● Message passing facilities have destructive read semantics ie; the message will be erased
when the reader reads it. So, if another reader attempts to fetch data from a data-transfer
facility that currently has no data, then (by default) the read operation will block until some
process writes data to the facility.

● The synchronization between reader and writer is implicit as the kernel handles the
message ordering and delivery.

9

Instructor: Muhammad Arif Butt, PhD

Communication - Message Passing (cont…)

Message
Passing

Byte
stream

Pseudo
Terminal

Message

Pipes

FIFOs

Stream
sockets

System V
message

queue

POSIX
message

queue

Datagram
sockets

Byte stream: Data is sent as a continuous stream of bytes. The
receiving process reads the data in the order it was sent, but there are no
defined message boundaries Each read operation may read an arbitrary
number of bytes from the IPC facility, regardless of the size of blocks written
by the writer.
Example: Pipes , FIFOs and stream sockets.

Message: Data is sent and received in discrete units called messages. Each
message has a clear boundary, and the operating system often provides a
queue to hold messages until they are received. Each read operation reads a
whole message, as written by the writer process. It is not possible to read
part of a message, leaving the remainder on the IPC facility; nor is it possible
to read multiple messages in a single read operation.
Example: System V message queue, POSIX message queue, datagram
sockets.

Pseudo Terminals: This is a pair of devices - a master and a slave - that
provides a way for a user-space process to control and communicate with
another process, as if it were a terminal. It is a more specialized form of
stream-based communication, often used for applications like SSH and
terminal emulators

10

Instructor: Muhammad Arif Butt, PhD

Communication - Shared Memory
● The processes exchange data by directly reading and writing to a shared memory region.
● One process writes data to the shared region and other process reads the data from the shared

memory.
● The kernel accomplishes this by making page table entries in each process point to the same pages

of RAM.
● Once the memory is mapped, then data transfer does not require kernel involvement.
● This method is faster because no data transfer between user and kernel memory is involved.
● In Shared memory, read is non destructive, i.e., data placed in shared memory can be read by

any number of processes any number of times.
● Synchronization is not implicit, and developers must implement explicit synchronization to

manage access to shared region

11

Instructor: Muhammad Arif Butt, PhD

Communication - Shared Memory (cont…)

Shared
Memory

System V
shared

memory

POSIX
Shared
memory

memory
mapping

● Most modern UNIX systems provide three flavors of shared
memory: System V shared memory, POSIX shared memory, and
memory mappings.

● Following are some important points to be kept in mind about shared
memory:

○ Although shared memory provides fast communication, this speed
advantage is offset by the need to synchronize operations on the
shared memory. For example, one process should not attempt to
access a data structure in the shared memory while another
process is updating it. A semaphore is the usual synchronization
method used with shared memory.

○ Data placed in shared memory is visible to all of the processes that
share that memory. This contrasts with the destructive read
semantics described before for data-transfer facilities.

12

Instructor: Muhammad Arif Butt, PhD

Kernel

Process C
Address Space

Process A
Address Space

Process B
Address Space

Data Transfer vs Shared Memory
Process A

Address Space

Shared Memory

Process B
Address Space

Kernel

M

Process B
reads the
msg from
shared
space M

M

M

M

M

2

Process B
reads the msg
from kernel
space

Process A writes
the msg into
kernel space

1

Process A
writes the
msg into
shared
space

13

Instructor: Muhammad Arif Butt, PhD

Synchronization Facilities

• Semaphores is a simple signaling mechanism used to control access to a shared resource by multiple processes. Linux
provides both System V semaphores and POSIX semaphores, which have essentially similar functionality.

• Mutexes and condition variables are synchronization facilities normally used with POSIX threads.
• File locks: File locks are a synchronization method explicitly designed to coordinate the actions of multiple processes

operating on the same file. File locks come in two flavors: read (shared) locks and write (exclusive) locks. Any number of
processes can hold a read/shared lock on the same file (or region of a file). However, when one process holds a
write/exclusive lock on a file (or file region), other processes are prevented from holding either read or write locks on that file
(or file region). Linux provides file-locking facilities via the flock() and fcntl() system calls.

synchronization

semaphore

file lock

mutex (threads)

POSIX semaphore
named

unnamed
"record" lock (fcntl())

file lock (flock())

System V semaphore

Condition variable (threads)

Synchronization facilities allow processes to coordinate their actions. Allowing processes to avoid doing things
such as simultaneously updating a shared memory region or the same part of a file. Without synchronization,
such simultaneous updates could cause an application to produce incorrect results.

14

Instructor: Muhammad Arif Butt, PhD

Persistence of IPC objects
The term persistence refers to the lifetime of an IPC object. It can have three levels:
1. Process Persistence: A process-persistent IPC object remains in existence as long as it is held

open by at least one process. When the last process closes the object (or terminates), the object is
automatically destroyed. Pipes, FIFOs, and sockets are examples of IPC facilities with process
persistence.

2. Kernel Persistence: A kernel-persistent IPC object exists until either it is explicitly deleted or
the system is shut down. System V message queues, semaphores, and shared memory are kernel
persistent.

3. File-system Persistence: An IPC object with file-system persistence retains its information even
when the system is rebooted. POSIX message queues, semaphores, and shared memory can be file-
system persistent if the implementation supports it, but this is implementation-dependent and not
guaranteed.

15

Instructor: Muhammad Arif Butt, PhD

Overview of
Signals

16

Instructor: Muhammad Arif Butt, PhD

Introduction to Signals
Suppose a program is running in a while(1) loop in the foreground, and the user
presses Ctrl+C key. The program dies. How does this happens?
● User presses Ctrl+C on keyboard.
● The tty driver receives the keystroke, recognizes the character combination as predefined ‘interupt’

character.
● The tty driver calls signal system.
● The signal system sends SIGINT(2) to currently running process.
● Process receives SIGINT(2) signal and performs the default action for SIGINT i.e., terminates.
● The process shuts down.
● Actually Ctrl+C, ask the kernel to send SIGINT to the currently running foreground process.

Note: The key Ctrl+C is not hardcoded, you can use stty command or the system call tcsetattr()
to replace the current intr control character with another keystroke.

17

Instructor: Muhammad Arif Butt, PhD

Introduction to Signals (cont...)
Signal is a software interrupt delivered to a process by OS because:
1. The process did something : These signal are computer way of saying “Something went wrong

inside the program. These signals are typically generated by system:
o SIGSEGV: process tried to access the memory location it was not allowed to
o SIGILL: process tried to execute an instruction that the CPU didn't understand
o SIGFPE: process tried to do a mathematical operation like division by zero

2. The user did something: Signals generated by keyboard when user want to control a running
program. The user may want to send :
o SIGINT: <CTRL + C> to terminate the program
o SIGQUIT: <CTRL + \> to forcefully terminate a program
o SIGTSTP: <CTRL + Z> to pause the execution of a program

3. One process wants to tell another process something: The child process sends SIGCHLD to
parent, to tell the parent process that it has terminated or stopped

18

Instructor: Muhammad Arif Butt, PhD

• Signals are a limited form of inter-process communication in UNIX. They are usually delivered to
a process by OS, typically to notify it of an asynchronous events, such as user requests to
terminate a process or a process accessing an invalid area of memory.

• Each signal has a symbolic name and an integer value associated with it (e.g., SIGSEGV or 11)
that differentiate it from other signals defined in system header file /usr/include/asm-
generic/signal.h

• You can see a list of signals on your system using kill -l command.
• Linux supports 32 real time signals ranging from SIGRTMIN (32) to SIGRTMAX (63). Unlike

standard signals, real time signals have no predefined meanings, are used for application specific
purposes.

• Whenever a process receives a signal, it is interrupted from whatever it is doing, and a kernel
function specific to that signal is executed called signal handler. When the signal handler
function returns, the process continues execution as if this interruption has never occurred.

Introduction to Signals (cont…)

19

Instructor: Muhammad Arif Butt, PhD

Synchronous and Asynchronous Signals
Synchronous Signals are generated as a direct result of executing a specific instruction in the
program. For example SIGFPE (illegal arithmetic operation) and SIGSEGV (accessing memory
location it does not have permission for. Characteristics of synchronous signals are:
o Delivered immediately when the triggering event occurs.
o Directly related to the instruction being executed.
o Predictable and deterministic.

Asynchronous Signals are ggenerated by events external to the program's execution. They can
arrive at any time during program execution and are not directly caused by the current instruction.
For example, when a user press <Ctrl + C>, when a process sends a signal using kill() system call,
when a timer expires (SIGALRM). Characteristics of asynchronous signals are:
o Can be delivered at any point during program execution.
o Generated by external events or other processes.
o Unpredictable timing.

20

Instructor: Muhammad Arif Butt, PhD

Signal Disposition
Each signal has a current disposition, which determines how the process behaves when it receives
that signal. Once generated, the system delivers the signal to the target process. The process can
then:
1. Accept the default signal action: This is the standard behavior for a signal as defined by OS.
2. Ignore the signal: A process can explicitly ignore a signal. The process will take no action and

continue its execution, except for SIGKILL and SIGSTOP, which cannot be ignored.
3. Catch the signal: Define and install a custom function that will be executed when the process

receives the signal called signal handler

21

Instructor: Muhammad Arif Butt, PhD

Signal Disposition (cont…)
Upon delivery of a signal, a process carries out one of the following default actions, depending on the
signal: [$man 7 signal]

1. The signal is ignored; that is, it is discarded by the kernel and has no effect on the process. The
process never even knows that it occurred.

2. The process is terminated. This is sometimes referred to as abnormal process termination, as
opposed to the normal process termination that occurs when a process terminates using exit().

3. A core dump file is generated, and the process is terminated. A core dump file contains an image
of the virtual memory of the process, which can be loaded into a debugger in order to inspect the
state of the process at the time that it terminated.

4. The process is stopped, execution of the process is suspended.
5. Execution of the process is resumed, which was previously stopped.

A process can change the disposition of a signal using signal() or sigaction() system calls.

22

Instructor: Muhammad Arif Butt, PhD

Signal handler

Code of
signal handler

is executed

return

③
Code of signal
handler is
executed

return

Signal handler

Signal Delivery and Handler Execution

④
①

Delivery
of signal

flow
 of execution

②Kernel calls signal handler on

behalf of process

Program resumes at point of

interruption

Main program

Start of program

instruction m

instruction m+1

exit()

5

23

Instructor: Muhammad Arif Butt, PhD

Pending Signals
• A pending signal is one that's been generated but not yet delivered to the process. This can

happen when the signal is generated while the process is not scheduled or it's blocked. The signal
stays in a pending state until delivery conditions are met.

• Normally, a pending signal is delivered to a process as soon as it is next scheduled to run, or
immediately if the process is already running e.g., if the process sent a signal to itself.

• For standard (non–real-time) signals, Linux ensures there's at most one pending signal of each
type (duplicate standard signals are not queued).

• You can use sigpending() to retrieve the set of signals currently pending delivery to the calling
thread.

24

Instructor: Muhammad Arif Butt, PhD

Signal Handling
on Shell

25

Instructor: Muhammad Arif Butt, PhD

Signal Related Shell Commands

Command Description
kill Send signals to processes by PID
killall Send signals to all instances of a process by name
pkill Send signals to processes matching criteria (name, user, etc.)
trap Catch and handle signals in shell scripts
nohup Run commands immune to hangup signals
fg Bring background job to foreground (sends SIGCONT if stopped)
bg Put stopped job in background (sends SIGCONT)
jobs List active jobs and their signal status

pkill -u user123 chrome # Kill chrome processes for user123
pkill -f "python3 my_script" # Match full command line
pkill -SIGKILL sshd # Force kill all sshd processes

Instructor: Muhammad Arif Butt, PhD

Signals on Shell: kill, killall, pkill
● The kill command is used to send a signal to a process by its ID:

$ kill <-SIGXXX> <pid>

● To view the available signal numbers and their corresponding constants use following command:
$ kill -l

● The default signal for kill is SIGTERM (15) which is polite request to terminate the process, which will allow the
process to free resources (memory, files, sockets etc) and execute the exit handlers registered using atexit() or
signal handlers registered using signal() or sigaction().

$ kill <pid>

● To forcefully terminate a process, send SIGKILL(9), which cannot be caught or ignored:
$ kill -9 <pid>

● You can use killall command to send a signal to all processes using a specific name:
$ killall chrome # Kill all instances of chrome processes
$ killall vlc # Kill all instances of vlc processes

● You can use pkill command to send a signal to processes matching a pattern(name, full command, user etc)
$ pkill -f “python3 my_script” # Match full command line
$ pkill -u kakamanna chrome # Kill chrome processes for user kakamanna

27

Instructor: Muhammad Arif Butt, PhD

Signals on Shell: trap
● The trap command in Bash is used to specify commands to execute automatically when the shell receives a specific

signal or event, such as SIGINT, SIGTERM, or shell exit.
$ trap 'commands_to_execute' <signal_name_or_number>

● The define a custom handler for SIGINT(2) use the following command:
$ trap ‘echo ”Received SIGINT. Cleaning up...”’ SIGINT

● To list all currently defined traps use following command:
$ trap –p

● To ignore a signal use the following command:
$ trap ‘’ SIGINT

● To reset the signal handler to default use the following command:
$ trap – SIGINT

● Most signals may be caught by the process but there are few signals that the process cannot be caught or ignore
and cause the process to terminate:
○ SIGKILL(9): This signal immediately and unconditionally terminates a process. A process cannot catch, block

or ignore it.
○ SIGSTOP(19): This signal immediately suspends a process's execution.

● System shutdown process first sends SIGTERM(15) to all processes, waits a while and after allowing them a grace
period to shut down cleanly, it kills which are still running processes using SIGKILL(9)

28

Instructor: Muhammad Arif Butt, PhD

Important Signals

SIGHUP 1
When a terminal disconnect (hangup) occurs, this signal is sent to the controlling process of the
terminal. A second use of SIGHUP is with daemons. Many daemons are designed to respond to the
receipt of SIGHUP by reinitializing themselves and rereading their configuration files.

SIGINT 2 When the user types the terminal interrupt character (<Control+C>, the terminal driver sends this
signal to the foreground process group. The default action for this signal is to terminate the process.

SIGKILL 9 The sure kill signal, can’t be blocked, ignored, or caught by a handler, and always terminates a process.

SIGPIPE 13
This signal is generated when a process tries to write to a pipe, a FIFO, or a socket for which there is
no corresponding reader process. This normally occurs because the reading process has closed its file
descriptor for the IPC channel

SIGALRM 14 The kernel generates this signal upon the expiration of a real-time timer set by a call to alarm()

SIGTERM 15

Used for terminating a process and is the default signal sent by the kill command. Users sometimes
explicitly send the SIGKILL signal to a process, however, this is generally a mistake. A well-designed
application will have a handler for SIGTERM that causes the application to exit gracefully, cleaning up
temporary files and releasing other resources beforehand. Killing a process with SIGKILL bypasses
SIGTERM handler.

Default behavior : Term

29

Instructor: Muhammad Arif Butt, PhD

Important Signals (cont…)
Default behavior : Core

SIGQUIT 3
When the user types the quit character (Control+\) on the keyboard, this signal is sent to the
foreground process group. This signal will terminate the process and generate a core dump file, which
developer can load inside gdb debugger to perform postmortem of the process.

SIGILL 4 This signal is sent to a process if it tries to execute an illegal (i.e., incorrectly formed) machine-
language instruction module

SIGFPE 8 Generate by floating point Arithmetic Exception

SIGSEGV 11
Generated when a program makes an invalid memory reference. In C, this signal is delivered to a
process when it tries to dereference a pointer containing a bad address. The name of this signal derives
from the term segmentation violation.

30

Instructor: Muhammad Arif Butt, PhD

Important Signals (cont…)
Default behavior : Stop
SIGSTOP(19) 19 This is the sure stop signal. It can’t be blocked, ignored, or caught by a handler; thus, it always stops

the execution of a process.

SIGTSTP(20) 20

This is the job-control stop signal, sent to stop the foreground process group when the user types the
suspend character (usually <Control+Z>) on the keyboard.. The name of this signal derives from
“terminal stop.”

SIGCHLD 17
This signal is sent (by the kernel) to a parent process when one of its children terminates (either by calling
exit() or as a result of being killed by a signal). It may also be sent to a process when one of its children is
stopped or resumed by a signal.

SIGCONT 18

When sent to a stopped process, this signal causes the process to resume (i.e., to be rescheduled to run at
some later time). When received by a process that is not currently stopped, this signal is ignored by default.
A process may catch this signal, so that it carries out some action when it resumes.

Default behavior : Continue

31

Instructor: Muhammad Arif Butt, PhD

Core dumps
● A core dump file, typically named core, is an image of the process virtual memory at the time it

was terminated. It contains a snapshot of process variables, stack and registers details at the time
of failure. From a core file, the programmer can investigate the reason for termination using a
debugger. By default core file creation is disabled to save the disk space.

● The ulimit command is used to view/set resource limits for the current shell and the processes
started by it.
o Soft limit: The current limit enforced by the kernel. A process can increase its soft limit up to the hard

limit.
o Hard limit: The maximum allowed limit. Only the superuser (root) can increase this.

● To display the current limits: $ulimit -a

● To display the core file size: $ulimit -c (returns zero by default).
● To enable core file creation: $ulimit -c unlimited

● Once a core dump is created, you can use a debugger to analyze it. The general steps are:
$ gcc -g -Wall divbyzero.c (Compile your code with the -g flag to include debugging symbols)

$./a.out (Run the program, which will cause a crash and generate a core file)

$ gdb ./a.out core (Load the core file in gdb, which will pinpoint the root of program crash)
32

Instructor: Muhammad Arif Butt, PhD

Foreground vs Background Processes

33

● In a CLI, processes can exist in one of two states: foreground or background:
○ Foreground Process: This is the single process that is actively holding the terminal. It

receives all keyboard input and its output is displayed directly on the screen. A program like
vim or less is a classic example of a foreground process. You must wait for a foreground
process to finish or be stopped before you can execute another command.

○ Background Process: These are processes that run without a direct connection to the
terminal. They don't typically require user input and their output is not shown on the screen,
allowing the user to continue using the terminal for other commands. Common examples
include an audio player or a file search utility like find.

● Unlike a Graphical User Interface (GUI) where you can simply click to minimize or switch
applications, a CLI requires specific commands and signals to move a process between these two
states. For example, pressing Ctrl+Z sends a SIGTSTP signal to a foreground process, moving it to
a stopped state in the background. From there, you can use the bg command to resume it in the
background or fg to bring it back to the foreground

Instructor: Muhammad Arif Butt, PhD

Job Control States

Command

Command &

Terminated

Suspended

1. <Ctrl+c> (SIGINT)
2. <Ctrl+\> (SIGQUIT)

Running in
foreground

Running in
background

bg (SIGCONT)

kill(SIGSTOP)

Stopped in
background

f
g

(
S
I
G
C
O
N
T
)

k
i
l
l

fg
(S
IG
CO
NT
)

<Ctrl+z> (SIGTSTP)

kill

Instructor: Muhammad Arif Butt, PhD

Managing Background & Foreground Tasks

Commands Description

jobs Lists jobs with status (Running / Stopped)

fg %n Brings job n to the foreground

bg %n Resumes stopped job n in the background

kill %n Sends terminate signal to job n

$ sleep 100 &
[1] 15018
$ jobs
[1] + running sleep 100
$ fg %1
[1] + 15018 running sleep 100
^Z
[1] + 15018 suspended sleep 100
$ bg %1
[1] + 15018 continued sleep 100
$ kill %1
[1] + 15018 terminated sleep 100 35

● The jobs command is used to track and manage background or suspended tasks within the current shell session.
It works alongside fg, bg, and kill to control process states interactively.

● This is especially useful in scripting, multitasking in terminal sessions, or when dealing with long-running
foreground commands.

● Every command run in the shell can be:
○ Foreground: Takes control of the terminal.
○ Background: Runs while the terminal remains usable.

● Background execution: Use & at the end of a command → sleep 60 &
● To view background/suspended jobs → jobs

Instructor: Muhammad Arif Butt, PhD

Signal Handling in C

36

Instructor: Muhammad Arif Butt, PhD

kill() System Call

• One process can send a signal to another process using the kill() system call.
• The pid argument identifies one or more processes to which the signal specified by sig argument is to be sent
• Four different cases determine how pid is interpreted:
o If pid > 0, the signal is sent to the process with the process ID specified by pid.
o If pid == 0, the signal is sent to every process in the same process group as the calling process, including

the calling process itself.
o If pid < –1, the signal is sent to all of the processes in the process group whose ID equals the absolute value

of pid
o If pid == –1, the signal is sent to every process for which the calling process has permission to send a signal,

except init and the calling process. If a privileged process makes this call, then all processes on the system
will be signaled, except for these last two.

• If sig argument is zero then normal error checking is performed but no signal is sent. Used to determine if a
specified process still exists. If it doesn't exist, a -1 is returned & errno is set to ESRCH

• If no process matches the specified pid, kill() fails and sets errno to ESRCH

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

37

Instructor: Muhammad Arif Butt, PhD

raise() Function Call

● In UNIX-based operating systems, processes have the ability to send signals to themselves (Self signaling).
● The raise() is a library function that allows a process to send signal to itself.
● In a single-threaded program, a call to raise() is essentially a wrapper for following call to kill():

kill(getpid(), sig);

● When a process sends itself a signal using raise() or kill(), the signal is delivered immediately even
before the raise() returns to the caller.

● The only error that can occur with raise() is EINVAL, if the provided signal number is invalid.

#include <signal.h>

int raise(int sig);

38

Instructor: Muhammad Arif Butt, PhD

abort() Function

● The abort() function terminates the calling process by raising a SIGABRT(6) signal and causes it to
produce a core dump file.

● The default action for SIGABRT is to produce a core dump file before terminating the process. The core dump
file can then be used within a debugger to examine the state of the program at the time of the abort() call

● abort() function never returns.

#include <stdlib.h>

void abort();

39

Instructor: Muhammad Arif Butt, PhD

pause() System Call

● The purpose of pause() is to suspend the process execution until a signal is received and handled.

● The pause() system call causes the invoking process / thread to sleep until a signal is received that either
terminates it or causes it to call a signal catching function.

● When a process calls pause(), it enters a sleeping state and stops consuming CPU resources. It will only
wake up if a signal is delivered to it.

● The pause() system call is an efficient way for a process to wait for an event, where the event is defined as
the receipt of a signal.

● If the received signal default action is to terminate the process (e.g SIGTERM), the pause() call will not
return, as the process is terminated directly by the kernel.

#include <stdlib.h>

void pause();

40

Instructor: Muhammad Arif Butt, PhD

alarm() System Call

● The alarm() system call is used to ask the system to send a special signal SIGALRM(14) to the process
after a specified number of seconds.

● The SIGALRM signal is delivered asynchronously. If the process does not have a custom handler for SIGALRM,
the default action is to terminate the process.

● This function returns the previously registered alarm clock for the process that has not yet expired, i.e., the
number of seconds left for that alarm clock is returned as the value of this function.

● Previously registered alarm clock is cancelled and it will start a new alarm.
● If seconds = 0, no new alarm is scheduled and any pending alarm request is canceled.
● Timers are normally used to allow one to check timeout:

○ Wait for user input up to 30 seconds, else exits.
○ If a server has not responded in last 30 seconds, notify the user and exits.
○ Set an alarm before making a network call that could block indefinitely.

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

41

Instructor: Muhammad Arif Butt, PhD

Adding a Delay: sleep
int sleep(unsigned int seconds);
int usleep(useconds_t usec);
int nanosleep(const struct timespec* req,struct timespec* rem);

● The sleep() and usleep() functions are library functions provided by the C standard library (glibc), and
they are internally implemented using the Linux nanosleep() system call.

● All these calls suspends the execution of the calling process until either the specified time interval has
elapsed, or the process receives a signal that interrupts the sleep.

● The sleep() call has a precision of seconds, usleep() call has a precision of micro-seconds, while the
nanosleep() system call has a precision of nano-seconds.

● The nanosleep() is the most precise and modern way to sleep. It pauses the process for a duration
specified in a timespec structure, which can define both seconds and nanoseconds:

struct timespec {

time_t tv_sec; /* No of seconds */

long tv_nsec; /* No of nanoseconds */

};
● If the nanosleep() system call is interrupted by a signal, it returns a value and stores the remaining

unslept time in the rem parameter.
42

Instructor: Muhammad Arif Butt, PhD

Sending Signals
Lec4.1/sendingsignals/
sig1.c
sig2.c
sig3.c
sig4.c
sig5.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

43

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Writing signal handlers

44

Instructor: Muhammad Arif Butt, PhD

signal() System call

● The signal() system call installs a new signal handler for the signal with number signum.
● This allows the process to change the behavior of that signal from default action to a custom one.
● The second argument is the address of custom function to be registered. sighandler_t is the type of the

signal handler function, which can have three values:
i) SIG_IGN: the signal is ignored.
ii) SIG_DFL: the default action associated with signal occur (revert the default action for that signal).
iii) A user specified function address.

● It returns the previous handler for the specified signal, or SIG_ERR on error.
● Ignoring SIGFPE, SIGILL or SIGSEGV signal that was not generated by kill() or raise() functions

results in undefined behavior.

#include <signal.h>

sighandler_t signal(int signum, sighandler_t handler)

45

Instructor: Muhammad Arif Butt, PhD

Handling Signals with signal()

void newhandler(int sig) {
// ---Your code to handle SIGINT (Ctrl+C) come here---

}

int main() {

void (*oldhandler)(int);

oldhandler = signal(SIGINT, newhandler);
// ---Your program logic comes here, where SIGINT is handled by newhandler ---

signal(SIGINT, oldhandler); // Restore the original SIGINT handler

return 0;

}

• The following code snippet, temporarily installs a custom signal handler for the SIGINT signal. It first saves
the current SIGINT handler, then sets newhandler as the new handler using the signal() function.

• After executing the desired part of the program where the custom behavior is needed, it restores the original
signal handler to return the program to its previous state.

• This pattern is useful when a program needs to override signal handling only during a specific portion of its
execution.

46

Instructor: Muhammad Arif Butt, PhD

Handling Signals
Lec4.1/handlingsig/
ignoringsig.c
handler1.c
handler2.c
handler3.c
handler4.c
handler5.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

47

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Masking Signals to
Avoid Signal Races

48

Instructor: Muhammad Arif Butt, PhD

Blocking a Signal using Signal Mask
• Sometimes, we need to ensure that a segment of code is not interrupted by the delivery of a

signal(s). This is mostly done to protect critical sections of code from being interrupted, which helps
avoid race conditions and inconsistent program states. So we need to block signal(s) from being
delivered to the process.

• When a blocked signal is generated, it is not delivered to the process and remains pending until
that signal is unblocked.

• Blocking a signal is different from ignoring a signal, where the signal is delivered and the process
handles it by throwing it away.

• Every process has a signal mask represented by sigset_t data type, which acts like a bitmask,
where each bit corresponds to a specific signal. If a bit is set to one, the corresponding signal is
blocked. Initially, the signal mask for a new process contains all zeros, meaning no signals are
blocked.

49

Instructor: Muhammad Arif Butt, PhD

Functions related to Signal Sets
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);

In order to set the signal mask of a process, we can create a new sigset_t variable and set its bits according to
our need. There are two ways you can do this:
• Option 1:
o Pass the address of set variable to the sigemptyset() function, which will initializes the set to be

empty, with all signals excluded from the set.
o Then use the sigaddset() function, to add the specified signal to the set.

• Option 2:
o Pass the address of set variable to the sigfillset() function, which will initializes the set to be full,

with all signals included in the set.
o Then use the sigdelset() function, to delete the specified signal from the set.

50

Instructor: Muhammad Arif Butt, PhD

Masking signal using sigprocmask()
int sigprocmask (int how,const sigset_t *set1, sigset_t *set2)

SIG_BLOCK 1 The set of blocked signals is the union of set1 and the current signal set.
SIG_UNBLOCK 2 The signals in the set1 are removed from the current set of blocked signals.
SIG_SETMASK 3 The set of blocked signals is set to the argument set1.

• The sigprocmask() system call is used to fetch and/or change the signal mask of the calling thread. The
signal mask is the set of signals whose delivery is currently blocked for the caller.

• The set1 argument is the new signal mask that we want to set. If it is NULL, then the signal mask is
unchanged (how is ignored) but the current value of the signal mask is returned in set2.

• If argument set2 is non-null, the previous value of signal mask is stored in it. This is useful when we want
to restore the previous masking state once we're done with our critical section.

• The how argument determines how the signal mask is changed and must be one of the following:

51

Instructor: Muhammad Arif Butt, PhD

Masking Signals
Lec4.1/maskingsig/
sigprocmask1.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

52

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 53

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video overview of IPC
https://youtu.be/EX7EWSX8-qM?si=nQ5KEAqd7ndPU0EH

● Watch SP video on Signals
https://youtu.be/YBg9sWw4qbU?si=g2GximUuHnTlui6B

https://youtu.be/EX7EWSX8-qM?si=nQ5KEAqd7ndPU0EH
https://youtu.be/YBg9sWw4qbU?si=g2GximUuHnTlui6B

