
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 4.2
Pipes and FIFOs

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Introduction to UNIX Pipes
● Pipes on the Shell
● Pipes in C

○ Unidirectional Comm using pipe
○ Simulating ls | wc shell command
○ Bidirectional Comm using pipes

● FIFOs on the Shell
● FIFOs in C

2

Instructor: Muhammad Arif Butt, PhD

Introduction to UNIX
Pipes

3

Instructor: Muhammad Arif Butt, PhD

How a Letter is Delivered?
● You write a letter.
● You hand it to the postman.
● The postman delivers it to your friend.

4

Instructor: Muhammad Arif Butt, PhD

Pipes & Fifos
Just like letters need a delivery system, processes need a way to send data — that’s where

pipes and FIFOs come in.

● Processes also need a way to send information.
● Instead of letters, they send data.
● Instead of a postman, the Linux kernel delivers it.
● This delivery system is called Pipes and FIFOs.
● In Linux, the kernel takes the role of the postman, and Pipes/FIFOs are the envelopes and

mail routes.

5

Instructor: Muhammad Arif Butt, PhD

Related processes: Processes with a parent–child or sibling relationship, sharing resources inherited from a common
ancestor (often via fork()).

Pipes (Anonymous)
● Temporary connection between related processes.
● Created by | operator in shell and using pipe() system call in C.
● Exist only in memory and disappear once all processes that have it open close it.

FIFOs (Named Pipes)
● Like pipes, but have a name in the filesystem, so can connect unrelated processes as well.
● Created with command mkfifo in shell and using mknod() system call in C.
● Exist as a special file in the file system. Its name persist even after all processes close it,

while data does not persist after processes closes it.

Shared points
● One-way data flow.
● Data passes through a kernel buffer.

Pipes & FIFOs (cont…)

6

Pipes and FIFOs are an IPC tool that are used to communicate between two related processes
executing on the same machine

Instructor: Muhammad Arif Butt, PhD

Pipes on the Shell

7

Instructor: Muhammad Arif Butt, PhD

A pipe connects the output of one process to the input of another. Data flows in one
direction only.

● In Unix command shells, pipes can be created by means of the | operator. For instance, the
following statement instructs the shell to create two processes connected by a pipe:

$ ls | wc -l

● The standard output of the first process, which executes the ls program, is redirected to the
pipe; the second process, which executes the wc program, reads its input from the pipe.

Process 1
ls

Kernel Buffer

Process 2
wc

stdout
stdin

8

Pipes on the Shell

Instructor: Muhammad Arif Butt, PhD

Pipes on the Shell (cont…)

$ sort friends | uniq
Arif
Basirat
Maria
Tahir

Example1: A cmd that will sort the contents of file friends and display those contents on screen after
removing duplication if any

Example 2: A cmd that will count the no. of lines in the man page of ls
$ man ls | wc -l

Example 3: A cmd that will count the no. of lines containing the string ‘ls’ in the man page of ls.

$ man ls | grep ls | wc -l

9

Instructor: Muhammad Arif Butt, PhD

Pipes on the shell
$ man ls | grep ls | wc –l

User Space

ls

unidirectional
byte stream

grep wc

Kernel Space

stdout stdoutstdin stdin

flags ptr

0

1

2

3

stdin

fd1[1]

stderr

PPFDT of ls

flags ptr

0

1

2

3

fd1[0]

fd2[1]

stderr

PPFDT of grep flags ptr

0

1

2

3

fd2[0]

stdout

stderr

PPFDT of wc
unidirectional

byte streamfd1[1] fd1[0] fd2[0]fd2[1]

10

Instructor: Muhammad Arif Butt, PhD

Pipes in C

11

Instructor: Muhammad Arif Butt, PhD

The pipe() System Call
int pipe(int fd[2]);

int pipe2(int fd[2], int flags);

● A unidirectional pipe (buffer) in Kernel memory is created using pipe() or pipe2()
● Returns 0 on success, or –1 on error
● The first argument to pipe is pointer to an integer array. After a successful call fd[0] refers to file

descriptor that points to the read end of the pipe, while fd[1] refers to file descriptor that points to the
write end of the pipe.

● The standard way to perform I/O with pipe is by using the read() and write() system calls.
● If you want to use printf() and scanf() with a pipe, you need to wrap the file

descriptors (fd[0] or fd[1]) using fdopen() to get FILE* streams, which can then be used
with fprintf(), fscanf(), printf(), scanf(), etc.

● Writing makes data instantly available to read, while reading blocks if the pipe is empty.
● Kernel handles synchronization, i.e., reader waits if pipe is empty and writer waits if pipe is full.
● The pipe2() has an additional flags argument that set pipe descriptor attributes, which if set to zero

make pipe2() behaves exactly like pipe() system call.
○ O_CLOEXEC→ pipe not inherited after exec()
○ O_NONBLOCK→ non-blocking I/O (read()/write() won’t wait)

12

Instructor: Muhammad Arif Butt, PhD

Unidirectional Comm Between Two Processes
• A process creates a pipe and then forks to create a copy of itself. Since, PPFDT is inherited after a fork(), so

both parent and child has the same PPFDT.
• We want that parent process should write and child process should read from the pipe.
• Since parent is a writer process, so it redirects its stdout to fd[1] and closes fd[0].
• Since child is a reader process, so it redirects its stdin to fd[0] and closes fd[1].

fd[1]

Parent (writer)

Flow of data

Child (reader)
fd[0]

Kernel Space

User Space

flags ptr

0

1

2

3

stdin

fd[1]

stderr

PPFDT

flags ptr

0

1

2

3

fd[0]

stdout

stderr

PPFDT
Unidirectional

bytes stream

13

Instructor: Muhammad Arif Butt, PhD

#define SIZE 1024
int main(){

int fd[2];
int rv = pipe(fd);
pid_t cpid = fork();

if (cpid != 0){//parent code (parent is writer process)
close(fd[0]);
const char * msg = ”Welcome to data passing using pipe\n";
write(fd[1], msg, strlen(msg));
waitpid(cpid, NULL, 0);
fprintf(stderr, “\nParent exiting.\n”);
exit(0);

} else{//child code (child is reader process)
close(fd[1]);
char buff[SIZE];
memset(buff, '\0',SIZE);
read(fd[0],buff,SIZE);
fprintf(stderr, "Message sent from parent is: ");
int n = write(1, buff, SIZE);
fprintf(stderr, "Child exiting");
exit(0);

}}
14

Unidirectional Comm Between Two Processes

Instructor: Muhammad Arif Butt, PhD

Unidirectional Comm
Two Processes

Lec4.2/pipes/pipe1.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

15

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Simulate Shell Command: ls | wc
• A process creates a pipe and then forks to create a copy of itself.
• The parent process We want that parent process should write and child process should read from the pipe.
• Since parent is a writer process, so it redirects its stdout to fd[1] and closes fd[0].
• Since child is a reader process, so it redirects its stdin to fd[0] and closes fd[1].

fd[1]

Parent (writer)

Flow of data

Child (reader)
fd1[1]

Kernel Space

User Space

flags ptr

0

1

2

3

stdin

fd1[1]

stderr

PPFDT

flags ptr

0

1

2

3

fd[0]

stdout

stderr

PPFDT
Unidirectional

bytes stream

16

Instructor: Muhammad Arif Butt, PhD

Option-A (pipe2a.c): ls | wc
int main() {

int fd[2];

pipe(fd);
pid_t cpid = fork();

if (cpid == 0) {// Child process → wc
close(fd[1]); // not required, so better close it

dup2(fd[0], 0); // Redirect stdin to read end
close(fd[0]); // Close original read end
execlp("wc", "wc", NULL);

}
else {// Parent process → ls

close(fd[0]); // not required, so better close it
dup2(fd[1], 1); // Redirect stdout to write end
close(fd[1]); // Close original write end
execlp("ls", "ls", NULL);
wait(NULL);

}
return 0;

} 17

Limitations:

• Once the parent calls execlp(), it replaces
itself with the ls program, so there is no
parent process left to wait for the child (wc)
to complete and clean up resources. This can
lead to zombie processes, because no one
calls wait() on the child. Actually
the wait(NULL) call in the parent block
is dead code unless execlp() fails.

• Solution: Parent creates pipe, forks two
children, wires pipe between them, waits for
them to finish.

• Another limitation of this code is that it
works for the default ls, but it won’t handle
arguments like ls -l /home.

• Solution: Use execvp() with an argument
array.

Instructor: Muhammad Arif Butt, PhD

int main() {
int fd[2];
pipe(fd);
pid_t pid1 = fork();
if (pid1 == 0) {

// First child: executes "ls"
dup2(fd[1], 1);
close(fd[0]);
close(fd[1]);
char *args[] = {"ls", “/home”, NULL};
execvp(args[0], args);

}
pid_t pid2 = fork();
if (pid2 == 0) {

// Second child: executes "wc -l"
dup2(fd[0], 0);
close(fd[1]);
close(fd[0]);
char *args[] = {"wc", ”-l", NULL};
execvp(args[0], args);

}
// Parent process: close both ends of pipe
close(fd[0]);
close(fd[1]);
// Wait for both children to finish
wait(NULL);
wait(NULL);
printf("Parent: Both children have completed.\n");
return 0;

}
18

Advantages:
Clean separation of responsibilities:
• One child is ls, another child is wc, and the parent remains

alive to wait for both children using wait(NULL).
• The parent process closes both ends of the pipe after forking

(avoids hanging reads/writes).
• Uses dup2(), which is clearer and more specific than dup().
• Use execvp() with an argument array.

100 $ Question
Why we didn't create a process chain or fan in this scenario?
• A process fan is useful when you need to spawn multiple child

processes that run independently or in parallel, typically
performing similar or repetitive tasks. For example, a web
server listens for incoming connections; for each request, it
forks a new child process to handle that connection; each child
handles its task independently, then exits.

• A process chain can be used in this scenario, however, it’s not
the most natural or clean solution for ls | wc. The standard
UNIX pipeline model is:
o A parent forks multiple children (one for each command).
o The parent connects them using pipes.
o Each child is responsible for one stage of the pipeline.

Option-B (pipe2b.c): ls /home/ | wc -l

Instructor: Muhammad Arif Butt, PhD

Simulate Shell cmd
ls | wc

Lec4.2/pipes/pipe2a.c
Lec4.2/pipes/pipe2b.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

19

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Bidirectional Communication using Pipes
fd2[1]

fd1[0]

Parent Child
fd1[1]

fd2[0]

Kernel Space

flags ptr
0

1

2

3

4

5

6

fd1[0]

fd1[1]

fd2[0]

fd2[1]

User Space

flags ptr
0

1

2

3

4

5

6

fd1[0]

fd1[1]

fd2[0]

fd2[1]20

Pipe-1 uses fd1

Pipe-2 uses fd2

• The parent process create two pipes and then do a fork.
• The parent process need to read from to pipe1 and write to pipe2, so it closes

fd1[1] and fd2[0]. The child process need to write to pipe1 and read from pipe2,
so it closes fd1[0] and fd2[1].

• Child process will block on reading pipe2 until the parent writes in pipe2.
• and redirect the appropriate descriptors.

• It then writes to write end of pipe2 the appropriate descriptors.

① write() ① read()

② write()② read()

Instructor: Muhammad Arif Butt, PhD

Bidirectional Comm
Using Pipes

Lec4.2/pipes/pipe3.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

21

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Key Characteristics of Linux Pipes
• Pipes in Linux:
o Pipes are byte streams and data flows as a continuous sequence of bytes without inherent message

boundaries. The sizes of read() and write() calls can differ. The kernel ensures that data is deliverd in
FIFO order. Random access using lseek() is not supported on pipes.

o A standard pipe has one dedicated write end and one dedicated read end. Data flows strictly flows in one
direction.

• Reading from a pipe:
o If you call read() on an empty pipe, the call blocks until data becomes available.
o If the write end of the pipe is closed and no more data remains, read() returns 0 to indicate EOF.
o Data read from a pipe is consumed instantly—bytes are removed and cannot be read again.
o If multiple processes read from the same pipe simultaneously, the data is split among them arbitrarily. No

guarantees about message boundaries or mutual exclusion exist.
• Writing to a pipe:
o Writing to a full pipe blocks the write until sufficient space becomes available (unless O_NONBLOCK is

used)
o If the read end is closed, the kernel sends a SIGPIPE signal to the writer, usually causing termination
o Writes up to PIPE_BUF bytes (at least 512 bytes guaranteed by POSIX; typically 4096 bytes on Linux) are

atomic, i.e., data from different writers won’t interleave.
o Writes larger than PIPE_BUF may be split and interleaved with other writers. With a single writer, there’s

no issue; but with multiple writers, message boundaries may be lost.
22

Instructor: Muhammad Arif Butt, PhD

To Do

man ls | grep ls | wc -l

23

Instructor: Muhammad Arif Butt, PhD

FIFOs
on the Shell

24

Instructor: Muhammad Arif Butt, PhD

Introduction to FIFOs
• Unnamed pipes (created using the | symbol in the shell or the pipe() system call) do not have a name in

the filesystem. They are typically used for communication between related processes (e.g., parent and
child), as the file descriptors are inherited through fork(). Communication between unrelated
processes using unnamed pipes requires explicitly passing file descriptors (e.g., via Unix domain sockets),
which is uncommon.

• Named pipes (FIFOs) are like unnamed pipes, except they have a name in the filesystem (i.e., a pathname
associated with a special FIFO file). This pathname allows unrelated processes (not sharing a parent-child
relationship) to open and use the same pipe (enabling communication between any cooperating processes
on the same system). A FIFO is a special file type that exists on disk (but doesn't store data on disk). It acts
only as a reference to a kernel-managed pipe buffer. The actual data transfer occurs entirely in kernel
memory. The kernel maintains one FIFO object per open FIFO file (only while it is open by at least one
process). We can create a FIFO file using the mkfifo or the mknod shell commands as shown below:

$ mkfifo mypipe
$ mknod mypipe p

• Common uses:
○ Passing data between separate shell commands or scripts, especially when they are not part of the

same pipeline.
○ Client–server communication between independent processes on the same machine.
○ Situations where temporary files are undesirable, but persistent inter-process communication is

needed.
25

Instructor: Muhammad Arif Butt, PhD

Example 1: FIFOs on the Shell
• On Terminal 1, make a FIFO using mkfifo or mknod command, and try to read the empty FIFO

using cat command (it blocks)
• On Terminal 2, use echo command to write to this special file named fifo1.
• You will observe that the blocked cat command on Terminal 1 gets unblocked and the data is

displayed on the screen.

Terminal 1

$ mknod fifo1 p
$ cat < fifo1
Hello World

Terminal 2

$ echo “Hello World” > fifo1

26

Instructor: Muhammad Arif Butt, PhD

Example 2: FIFOs on the Shell
• The timeclient.sh is a bash script that reads and

displays data from the named pipe /tmp/time_fifo.
It blocks and waits for input from the server, printing
each line as it becomes available. If you run the client
first and the time_fifo do not exist, you will get an
error.

• The timeserver.sh is a bash script that creates a
named pipe (/tmp/time_fifo) and enters an infinite
loop to write the current date/time.

• The server do not write to time_fifo every second. If
there is no client reading the time_fifo, the server
will get blocked on the date command. Whenever, a
client opens the time_fifo for reading, the blocked
date command unblocks and write the current
timestamp into the time_fifo, sleeps for 1 seconds
and again gets blocked on the date command.

$ /bin/bash timeserver.sh &

$ /bin/bash timeclient.sh

$ cat /ex1/timeclient.sh

#! /bin/bash

cat /tmp/time_fifo

$ cat /ex1/timeserver.sh

#!/bin/bash

rm -f /tmp/time_fifo

mkfifo /tmp/time_fifo

while true;

do

date 1> /tmp/time_fifo

sleep 1

done

27

Instructor: Muhammad Arif Butt, PhD

FIFOs on the Shell

Lec4.2/fifos/ex1/
timeclient.sh
timeserver.sh

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

28

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

FIFOs in C

29

Instructor: Muhammad Arif Butt, PhD

The mkfifo() Library Call
int mkfifo(const char* pathname, mode_t mode);

● Creates a FIFO special file (a named pipe) at the specified pathname, enabling inter-process
communication via the filesystem.

● The first argument pathname specifies the filesystem path for the FIFO.
● The second argument mode is used for permissions on the file, which can be four octal digits

resulting permissions: mode & ~umask.
● Once created, any process can open the FIFO for reading or writing like a regular file. Must be

opened at both ends before I/O can occur. A reader opening the FIFO will block until
a writer opens it, and vice versa.

● Returns 0 on success, -1 on error, with errno set accordingly. Call failures occur when:

30

if(mkfifo(“/tmp/fifo1”, 0666) < 0){
perror(“ mkfifo failed”);
exit(1);

}

o No write permission in parent directory.
o Pathname already exists.
o Pathname is outside accessible address space.
o Pathname is too long.
o Insufficient kernel memory.

Instructor: Muhammad Arif Butt, PhD

The mknod () System Call
int mknod(const char* pathname, mode_t mode, dev_t device);

● Creates a filesystem node (special file) at the specified pathname, which may be a regular file,
device file, socket, or FIFO, depending on the mode specified.

● The first argument pathname specifies the filesystem path for the node.
● The second argument mode determines both the type of node (e.g., S_IFREG, S_IFIFO,

S_IFCHR, S_IFBLK, S_IFSOCK) and its permissions.
● The third argument dev is used only when creating character or block device files. It encodes

the major and minor device numbers, and is ignored when creating other file types.
● Once created, the node can be opened and used based on its type. For example, if used to create a

FIFO, it behaves just like a FIFO created using mkfifo().
● Returns 0 on success, -1 on error, with errno set accordingly. Call failures reasons are same as

that of mkfifo() given on previous slide.

31

if(mknod(“/tmp/fifo1”, S_IFIFO | 0666, 0) < 0){
perror(“mknod failed”);
exit(1);

}

Instructor: Muhammad Arif Butt, PhD

Example: Reader - Writer

/ex2/reader.c

int main(){

char buff[1024];

int num;

unlink(“mkfifo”);

mknod("myfifo", S_IFIFO | 0666, 0);

printf("Waiting for writers....\n");

// Open FIFO for reading (will block until a writer opens it)

int readfd = open("myfifo", O_RDONLY);

printf("Got a writer\n");

//read data from fifo

while((num=read(readfd,buff,sizeof(buff)-1)) > 0) {

buff[num] = '\0';

printf("Reader read %d bytes: %s", num, buff);

}

close(readfd); return 0;

}
32

/ex2/writer.c

int main(){

char buff[1024];

unlink(“mkfifo”);

mknod("myfifo", S_IFIFO | 0666, 0);

printf("Waiting for readers....\n");

// Open FIFO for writing (will block until a reader opens it)

int writefd = open("myfifo", O_WRONLY);

printf("Got a reader - type some text to be sent\n");

//read from stdin and write to the fifo

while(fgets(buff), sizeof(buff), stdin) != NULL)

write(writefd, buff, strlen(buff)));

close(writefd);

return 0;

}

• The reader program creates a named pipe myfifo, waits for a writer, and continuously reads data from the FIFO. It
prints the received data to stdout until the writer closes the pipe (EOF).

• The writer program creates the same named pipe myfifo, waits for a reader, and sends user input from stdin to the
FIFO. It writes each line typed by the user to the pipe until EOF (Ctrl+D) or error occurs.

Instructor: Muhammad Arif Butt, PhD

Example: Reader - Writer (cont...)
Basic Test:
• Compile reader.c and writer.c files and run the executables in separate terminals.
• Any input typed by the user in the writer terminal is written to the named pipe, and then read by the reader process,

which echoes it to stdout.
Writer Termination:
• If the writer process terminates (e.g., via CTRL+C), while the reader is still running, the next read() call in the reader

returns 0, indicating end-of-file (EOF). The reader can detect this condition and exit gracefully, or take alternative actions.
Reader Termination (CTRL+C):
• If the reader process terminates while the writer is still open, any subsequent write() calls in the writer will fail and

generate a SIGPIPE signal. Unless the writer handles SIGPIPE explicitly, this signal terminates the writer process by
default.

One Reader – Multiple Writers:
• All writers write into the same FIFO. Writes of size ≤ PIPE_BUF (typically 4096 bytes) are atomic, meaning they will

not be interleaved with other writers' data. Writes larger than PIPE_BUF may be split and interleaved, resulting
in mixed or partial data, unless access is synchronized.

One Writer – Multiple Readers:
• The FIFO acts like a shared stream. Each read() removes bytes from the FIFO, so multiple readers will likely get

different parts of the data. This setup does not broadcast the same data to all readers. External synchronization (e.g., via
semaphores or coordination logic) is required if each reader must receive identical data.

33

Instructor: Muhammad Arif Butt, PhD

FIFOs on the Shell

Lec4.2/fifos/ex2/
reader.c
writer.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

34

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Sample Program using FIFO

writefd readfd

Teacher Process Student Process

writefd readfd

User Space

MESSAGE1

MESSAGE1

MESSAGE2

MESSAGE2

fifo1 fifo2

Kernel Space

Unidirectional

fifo2

Unidirectional

fifo1

flags ptr
0

1

2

3

4

5

6

Opens fifo1 in read mode (readfd)

Opens fifo2 in write mode (writefd)

flag
s

ptr
0

1

2

3

4

5

6

PPFDT PPFDT

35

1. read()

2. write()

3. write()
2. read()

3. write()

1. write()

stdout stdout

Opens fifo1 in write mode (writefd)

Opens fifo2 in read mode (readfd)

Instructor: Muhammad Arif Butt, PhD

Sample Program using FIFO (Cont.)
Server Process Flow:
● Create two FIFOs: fifo1 (client → server) and fifo2 (server → client).
● Open fifo1 for reading client messages.
● Open fifo2 for writing server responses.
● Perform a blocking read() on fifo1.

○ Upon receiving a message from the client, display it.
● Send a response to the client via write() on fifo2.
● Close both FIFO file descriptors and terminate.

Client Process Flow:
● Open fifo1 for writing to the server.
● Open fifo2 for reading server responses.
● Send MESSAGE1 to the server using write() on fifo1.
● Perform a blocking read() on fifo2 and display the received message.
● Close both FIFO file descriptors.
● Remove the FIFO special files using unlink()

36

Instructor: Muhammad Arif Butt, PhD

FIFOs on the Shell

Lec4.2/fifos/ex3/
student.c
teacher.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

37

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD 38

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch video on UNIX unnamed Pipes
https://youtu.be/VA8FEgahi1Y?si=SZ5ysUmkA6Hs1jXI

● Watch video on UNIX Named Pipes (FIFOs):
https://youtu.be/jowB4nuf55c?si=iSj4xHbIiAMdRPw2

https://youtu.be/VA8FEgahi1Y?si=SZ5ysUmkA6Hs1jXI
https://youtu.be/jowB4nuf55c?si=iSj4xHbIiAMdRPw2

