
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 4.3
Message Queues and Shared Memory

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
Message Queues
§ Overview
§ Creating/Opening a Message Queue
§ Sending/Receiving messages in a message queue
§ Control Operations on System V Message Queues

Shared Memory
§ Overview
§ Creating/Attaching a Shared Memory Segment
§ Reading/Writing in a Shared Memory Segment
§ Detaching a Shared Memory Segment
§ Control Operations on System V Shared Memory

2

Instructor: Muhammad Arif Butt, PhD

System V vs POSIX
IPC

3

Instructor: Muhammad Arif Butt, PhD

System-V IPC vs POSIX IPC
System V IPC:
● It is one of the earliest inter-process communication mechanisms introduced in UNIX systems supporting

message queues, shared memory segments, and semaphores.
● Resources are identified using integer keys, often generated using the ftok() function.
● Resources are memory resident (in kernel space), and can persist in the system after the creating processes

terminates. Need to be explicitly removed using control functions like msgctl(), shmctl(), or semctl().
● System V API is considered less intuitive, with limited error reporting and fewer options for resource naming

or permissions management compared to POSIX.

● POSIX IPC:
● It is a modern, user-friendly alternative supporting message queues, shared memory, and semaphores.
● Resources are named using human-readable strings (filenames), making management and debugging easy.
● Resources are memory-resident (in kernel space) and can persist in the system after the creating process

terminates. They need to be explicitly removed using mq_unlink(), shm_unlink(), sem_close() or
sem_unlink().

● POSIX APIs provide more consistent, standardized interfaces across UNIX-like systems, with improved error
handling and richer feature sets (e.g., notification via signals, timeout options).

4

$ man 7 sysvipc

$ man 7 mq_overview
$ man 7 shm_overview
$ man 7 sem_overview

Instructor: Muhammad Arif Butt, PhD

System V MQ vs POSIX MQ

5

1. Message Retrieval by Priority:
o In System V message queues, the reader can specify and can retrieve a message of specific

priority.
o The POSIX message queues always returns the oldest message with the highest priority first.

2. Notification on Message Arrival:
o POSIX message queues allows the generation of a signal (a synchronous notification with

mq_notify()), when a message arrives on an empty queue.
o System V message queues do not provide built-in notification mechanisms. You must poll the

queue or use external signalling techniques.

Instructor: Muhammad Arif Butt, PhD

API for System V IPC
Summary of programming interfaces for System V IPC objects:

Interface Message Queues Shared Memory Semaphores

Header file <sys/msg.h> <sys/shm.h> <sys/sem.h>

Associated DS msqid_ds shmid_ds semid_ds

Create/Open object msgget() shmget()+shmat() semget()

Close Object none shmdt() none
Control Operations msgctl() shmctl() semctl()

Performing IPC msgsnd(),
msgrcv()

Access memory in shared
region

semop()

6

Instructor: Muhammad Arif Butt, PhD

Overview of
Message Queues

7

Instructor: Muhammad Arif Butt, PhD

Overview of a Message Queue

Message Table

MQ Entry

MQ Entry

MQ Entry

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

User Space

Kernel Space

Kernel Data Area

Sender Receiver

Message Queue are used to pass messages between related or unrelated processes executing on same machine. It
can be thought of like a linked list of messages in kernel space. Processes with adequate permissions can put
messages on to the queue and processes with adequate permissions can remove messages from the queue.

8

Instructor: Muhammad Arif Butt, PhD

Overview of a Message Queue (cont…)
A Message Queue is stored entirely in kernel space and is organized into three main components:
● Message Table:

○ Resides in the kernel and contains entries for all active message queues in the system.
○ Each Message Queue Entry holds metadata about the queue and a pointer to the first message record in

that queue.
○ This acts as the “directory” for all queues, allowing the kernel to manage multiple queues

simultaneously.
● Message Record:

○ Represents an individual message stored within the queue.
○ Each record contains:

Ø Next Pointer → The address of the next message in the queue, forming a linked list.
Ø Message Type → Helps processes selectively read specific messages.
Ø Message Size → Indicates the number of bytes in the message’s data section.
Ø Kernel Data Pointer → Points to the location in kernel memory where the actual message data is

stored.
● Kernel Data Area:

○ A dedicated space in kernel memory where the actual contents of messages are stored.
○ All queues in the system share this memory pool, but each message record’s Kernel Data Pointer

ensures the right process accesses the right data.
https://elixir.bootlin.com/linux/v5.19.17/source/include/linux/msg.h#L9

https://elixir.bootlin.com/linux/v5.19.17/source/ipc/msg.c#L48 9

https://elixir.bootlin.com/linux/v5.19.17/source/include/linux/msg.h
https://elixir.bootlin.com/linux/v5.19.17/source/ipc/msg.c

Instructor: Muhammad Arif Butt, PhD

Named Pipes vs Message Queues
Aspect Named Pipes (FIFOs) Message Queues (System V / POSIX)

Persistence Process-persistent; data disappears
when no process has the pipe open.

Kernel-persistent; remains until explicitly removed, even
after processes terminate.

Data Structure Byte stream with no message
boundaries; read as continuous bytes.

Maintains discrete, delimited messages; each read
retrieves one complete message.

Blocking
Behavior

write() blocks until a reader is
present (unless non-blocking is used).

msgsnd() / mq_send() does not require a reader;
message is enqueued.

Prioritization No message ordering or priority;
strictly FIFO data flow.

Supports message priorities; messages sorted by priority
and timestamp.

Monitoring
Status

No built-in way to check internal
state.

Can query status (e.g., message count, size)
via msgctl() or mq_getattr().

Communication
Mode

Requires both ends (reader/writer) to
be active simultaneously.

Supports asynchronous communication; sender and
receiver can run independently.

10

Instructor: Muhammad Arif Butt, PhD

Implementing
Message Queues

using System V API

11

Instructor: Muhammad Arif Butt, PhD

Creating/Opening a System V Message Queue
int msgget(key_t key, int msgflag);

• To create a brand new message queue or to get the identifier of an existing queue we use the msgget()
system call, which on success returns a unique message queue identifier. This identifier is then used in all
later operations on that message queue, allowing multiple processes to communicate or share resources
through it.

• If a message queue associated with the first argument (key) already exist, the call returns the identifier of
the existing message queue, otherwise it creates a new message queue.

• For the first argument key, we have two options:
o Use IPC_PRIVATE constant. For related processes, the parent process creates message queue prior to

performing a fork(), and the child inherits the returned message queue identifier. For unrelated
processes we can use this constant, but in that case the creator process has to write the returned message
queue identifier in a file that can be read by the other process.

o Use the ftok() library call to generate unique key, and then use that key as first argument to msgget()
to either generate a new message queue identifier or get an existing one.

• The second argument msgflag is normally IPC_CREAT|0666. If no message queue exists with the given
key, create a new one with the specified permission mode.

12

Instructor: Muhammad Arif Butt, PhD

Creating/Opening a System V Message Queue

13

• The key returned by ftok() (file-to-key conversion) is a 32 bit value, created by taking:
o Least significant 8 bits from proj argument.
o Least significant 8 bits of minor device number of the device containing the filesystem on

which the file in the first argument reside.
o Least significant 16 bits of the inode number of the file referred by first argument pathname.

int ftok(const char* pathname, int proj_id);

Instructor: Muhammad Arif Butt, PhD

Message Queue Identifier
IPC Identifier
● An IPC identifier is similar to a file descriptor, but instead of referring to files, it refers to an IPC

object.
o File descriptor → Exists only within a specific process and is not visible to others.
o IPC identifier → Belongs to the IPC object itself and is visible system-wide, meaning all

processes can reference the same object using the same identifier.

Same Identifier for All
● All processes accessing the same IPC object will use the same identifier to interact with it.
● If a process already knows the identifier, it can skip the get call entirely and directly access the

object.
● The process that creates the object can share the identifier with others, by writing it to a file or

passing it through another IPC mechanism. This allows multiple processes to coordinate and use
the same resource.

14

Instructor: Muhammad Arif Butt, PhD

Sending Messages
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

• The msgsnd() system call is used to send a message to the message queue identified by its first argument
(mqid), which is the message queue identifier, generated using the msgget() system call.

• The second argument is a pointer to a structure of type msgbuf having following two fields:
struct msgbuf{

long mtype; //used to retrieve a selective message, must be a positive integer

char mtext[512]; //actual message

}

• The third argument msgsz is the size of message data (mtext), excluding the mtype field.
• The fourth argument msgflag can be 0 or IPC_NOWAIT.

○ 0 → Blocking mode (wait if queue is full).
○ IPC_NOWAIT→ Non-blocking mode (return error if queue is full).

15

Instructor: Muhammad Arif Butt, PhD

Illustration of Sending Messages

Message Table

MQ Entry

MQ Entry

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

User Space

Kernel Space

Kernel Data Area

Sender

16

msgget()

MQ Entry

msgsnd()

msgsnd()

Instructor: Muhammad Arif Butt, PhD

Example: sender.c
#define SIZE 512

struct msgbuf{

long mtype;

char mtext[SIZE];

};

int main(){

key_t key = ftok("./myfile", 65);

int qid = msgget(key, IPC_CREAT | 0666);

struct msgbug msg1;

msg1.mtype = 10;

strcpy(msg1.mtext, ”Learning is fun with Arif\n");

msgsnd(qid, &msg1, sizeof(msg1.mtext), 0);

return 0;

}

17

$ gcc sender.c –o sender

$ ipcs –q
key msqid owner perms used-bytes messages

$./sender

$ ipcs –q
key msqid owner perms used-bytes messages

$./sender

$ ipcs –q
key msqid owner perms used-bytes messages

$ ipcrm –q <msqid>

$ ipcs –q
key msqid owner perms used-bytes messages

Instructor: Muhammad Arif Butt, PhD

Sending Messages
in MQ

Lec4.3/msgq/sender.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

18

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Receiving Messages
int msgrcv(int msqid, void *msgp, size_t maxmsgsz, long msgtype, int msgflg);

The msgrcv() system call is used to read and remove a message from the specified message queue,
copying its contents into the buffer pointed to by msgp.
● msqid→ Message Queue Identifier (returned by msgget()).
● msgp→ Pointer to the message structure where the received data will be stored.
● maxmsgsz→ Maximum number of bytes available for mtext.
● msgtype→ Controls which message to retrieve (see Message Selection below).
● msgflg→ Normally kept as IPC_NOWAIT, i.e., return immediately if no matching message is available.

Messages need not to be read in the order in which they are sent. Instead we can select messages accordingly to
the value in the mtype field of message. This selection is controlled by msgtype argument, which can take
following values:

19

msgtype Description
msgtype == 0 First message from queue is removed and returned to calling process
msgtype > 0 First message from queue whose mtype field equals to msgtype is removed and returned to caller
msgtype < 0 First message of the lowest mtype field less than or equal to absolute value of msgtype is removed & returned to the caller

Instructor: Muhammad Arif Butt, PhD

Receiving Messages
Suppose that we have a message queue containing messages as shown and we perform msgrcv()
calls of the following form:

Queue
position Msg type Msg Body

1 300 ….
2 100 ….
3 200 ….
4 400 ….
5 100 ….

20

msgrcv(id,&msg,maxmsgsz,0,0); Would retrieve msgs in following order:
1(mtypr=300)
2(mtypr=100)
3(mtypr=200)
4(mtypr=400)
5(mtypr=100)

msgrcv(id,&msg,maxmsgsz,100,0); Would retrieve msgs in following order:
2(mtypr=100)
5(mtypr=100)

Any further calls would block, since no message of type 100 remains.

msgrcv(id,&msg,maxmsgsz,-300,0);Would retrieve msgs in following order:
2(mtypr=100)
5(mtypr=100)
3(mtypr=200)
1(mtypr=300)

Any further call would block, since type of the remaining message(400) exceeds 300

Instructor: Muhammad Arif Butt, PhD

Illustration of Receiving Messages

Message Table

MQ Entry

MQ Entry

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

Message Record

Next Pointer

Message Type

Message Size

Kernel Ptr

User Space

Kernel Space

Kernel Data Area 21

msgget()

MQ Entry

msgrcv()

msgrcv()

Receiver

Instructor: Muhammad Arif Butt, PhD

Example: receiver.c
#define SIZE 512

struct msgbuf{

long mtype;

char mtext[SIZE];

};

int main(){

key_t key = ftok("./myfile", 65);

int qid = msgget(key, IPC_CREAT | 0666);

struct msgbuf msg;

msgrcv(qid, &msg, SIZE, 0, IPC_NOWAIT);

printf("Message Received: %s\n",msg.mtext);

return 0;

}

22

$./sender

$ ipcs -q

$./sender

$ ipcs –q
key msqid owner perms used-bytes messages

$./receiver

Message Received: ……………

$ ipcs –q
key msqid owner perms used-bytes messages

$./receiver

$ ipcs –q
key msqid owner perms used-bytes messages

$ ipcrm –q <msqid>

$ ipcs –q
key msqid owner perms used-bytes messages

Instructor: Muhammad Arif Butt, PhD

Receiving Messages
from MQ

Lec4.3/msgq/receiver.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

23

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

System V Message Queue
Control Operations

24

Instructor: Muhammad Arif Butt, PhD

The ipcs and ipcrm Commands
• The ipcs command is used to display information about the active System V IPC objects on a

Linux system, including message queues, shared memory segments, and semaphores. It provides
details such as the key, identifier, owner, permissions, size, and status of these IPC resources.
This command is particularly useful for system administrators and developers to monitor IPC
usage and diagnose IPC. It can be customized with options like -q (message queues), -m (shared
memory), -s (semaphores), -p (permissions) and -c (creator details) to filter the output.

• The ipcrm command is used to remove System V IPC objects from the system, such as message
queues, shared memory segments, and semaphores, that are no longer in use or have been
orphaned. Resources can be removed by their identifier (ID) or by their key. This is crucial for
freeing up kernel memory and ensuring that unused IPC resources do not persist indefinitely.
Common options include -m for shared memory, -q for message queues, and -s for semaphores,
followed by the corresponding ID of the object to be deleted.

25

Instructor: Muhammad Arif Butt, PhD

Limits Related to System V Message Queues
• In Linux operating system, the /proc/sys/kernel/ directory contains tunable parameters

related to kernel’s behaviour, including limits, scheduling, messaging, and system control
settings.

• Some important limits related to System V message queues are contained in following files. These
control the kernel's behaviour regarding System V message queues and can be viewed or
changed at runtime (as root):
o /proc/sys/kernel/msgmax – Maximum size (in bytes) of a single message that can be sent

to a System V message queue.
o /proc/sys/kernel/msgmnb – Maximum number of bytes allowed in a single System V

message queue (i.e., the queue size limit).
o /proc/sys/kernel/msgmni – Maximum count of System V message queues allowed system-

wide.

26

Instructor: Muhammad Arif Butt, PhD

System V MQ Control Operations in C
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The msgctl() is typically used for querying queue status, modifying permissions, or deleting System V
message queues to free system resources.
o msqid→ Message queue identifier returned by msgget().
o cmd→ Control command specifying the operation to perform (IPC_STAT, IPC_SET, IPC_RMID).
o buf → Pointer to a struct msqid_ds used to get or set message queue attributes. For deleting a

message queue the third argument is set to NULL.

27

struct msqid_ds {
struct ipc_perm msg_perm; // Ownership and permissions (UID, GID, etc.)

time_t msg_stime; // Time of last msgsnd()

time_t msg_rtime; // Time of last msgrcv()

time_t msg_ctime; // Time of last change

msgqnum_t msg_qnum; // Number of messages in the queue

msglen_t msg_qbytes;// Max number of bytes allowed in the queue

pid_t msg_lspid; // PID of last msgsnd()

pid_t msg_lrpid; // PID of last msgrcv()

};

Instructor: Muhammad Arif Butt, PhD

Overview of
Shared Memory

28

Instructor: Muhammad Arif Butt, PhD

Overview of Shared Memory
• Shared memory is an inter-process communication (IPC) mechanism that allows multiple processes

to access a common region of memory, enabling high-speed data exchange. The kernel sets up this
region by mapping the same physical memory pages into the address space of each participating
process using page tables.

• Once the memory is mapped, no further kernel involvement is needed during access — making
shared memory one of the fastest IPC mechanisms, as it avoids copying data between user and
kernel space.

• Key Characteristics of Shared Memory:
o Fast Communication: Processes can read from and write to shared memory directly, offering

performance benefits for large or frequent data exchange.
o Non-Destructive Reads: Unlike pipes or message queues (which remove data when read),

shared memory allows reading without consuming the data.
o Requires Synchronization: Due to concurrent access, proper synchronization (e.g., using

semaphores or mutexes) is essential to avoid race conditions when one process is modifying data
while another reads it.

29

Instructor: Muhammad Arif Butt, PhD

Kernel

Process C
Address Space

Process A
Address Space

Process B
Address Space

Data Transfer vs Shared Memory
Process A

Address Space

Shared Memory

Process B
Address Space

Kernel

M

Process B
reads the
msg from
shared
space M

M

M

M

M

2

Process B
reads the msg
from kernel
space

Process A writes
the msg into kernel
space (pipes and
message queues)

1

Process A
writes the
msg into
shared
space

30

Instructor: Muhammad Arif Butt, PhD

Shared Memory in Process Logical Address Space
argv, environ

Stack

Shared memory segments
Memory mappings

Shared librariesTASK_UNMAPPED_BASE

Reserved for heap expansion

Heap

Uninitialized data (bss)
Initialized data

Text (program code)
0x08048000 In

cr
ea

si
ng

 v
ir

tu
al

 a
dd

re
ss

es

Top of stack (rsp)

Program break (brk)

31

0x00007FFFFFFFFFFF

etext

end

edata

a kernel constant that defines the
starting address for memory-
mapped regions in a process's
virtual address space.

Instructor: Muhammad Arif Butt, PhD

System V vs POSIX Shared Memory

32

Name and Identification:
o System V shared memory segments are identified using integer keys (often generated with ftok)
o POSIX shared memory objects are identified by string names, resembling filesystem paths.
Creation and Access:
o System V uses shmget(), shmat(), and shmdt() to create, attach, and detach shared memory

segments.
o POSIX uses shm_open() and mmap() to create and map shared memory into a process’s address

space.
Clean-up and Deletion:
o System V shared memory must be manually deleted using shmctl(..., IPC_RMID, ...).
o POSIX shared memory must be unlinked using shm_unlink() to remove the named object.

File System Integration:
o System V shared memory is not visible in the file system.
o POSIX shared memory objects appear under the /dev/shm/ directory on most Linux systems,

allowing easier inspection.

Instructor: Muhammad Arif Butt, PhD

Implementing
Shared Memory

using System V API

33

Instructor: Muhammad Arif Butt, PhD

Creating/Opening Shared Memory Segment
void* shmget(int key_t key, size_t size, int shmflag);

• To create a brand new shared memory segment or to get the identifier of an existing one we use
the shmget() system call, which on success returns a unique shared memory identifier used in
all later operations on that segment.

• If a shared memory segment with the given key already exists, the call returns its identifier,
otherwise it creates a new segment.

• For the first argument key, we have two options:
o Use IPC_PRIVATE constant to create a new segment. For related processes, the parent creates

the segment before fork() and the child inherits the identifier. For unrelated processes, the
creator must write the identifier to a file for others to read.

o Use ftok() to generate a unique key for creating new or accessing existing segments.
• The second argument size specifies the segment size in bytes, rounded up to PAGE_SIZE

multiples. It can be 0 when accessing existing segments but must specify the desired size when
creating new ones.

• The third argument shmflg is normally IPC_CREAT|0666. In case if you want to access an
existing segment, you can keep this argument as zero.

34

Instructor: Muhammad Arif Butt, PhD

Attaching a Shared Memory Segment
void* shmat(int shmid, const void * shmaddr, int shmflag);

• The shmat() system call is used to attach (map) a shared memory segment to the calling
process's address space, which on success returns the address at which the shared memory
segment has been attached. This allows the process to read from and write to the shared memory
segment using regular memory operations.

• The first argument shmid is the shared memory identifier returned by shmget(). This identifies
which shared memory segment to attach to the process.

• The second argument shmaddr is the address where the memory segment will be attached. The
recommended and portable way is the specify NULL over here and let the OS Kernel select a
suitable address.

• The third argument shmflg can be SHM_RDONLY to attach the shared memory segment for read-
only access. We can place a zero over there for giving both read and write access.

• On success shmat() returns the address at which the shared memory segment is attached,
which can be treated like a normal C pointer. We can assign the return value from shmat() to a
pointer of some intrinsic data type or a programmer defined structure.

35

Instructor: Muhammad Arif Butt, PhD

Detaching a Shared Memory Segment
int shmdt(const void* shmaddr);

• To detach a shared memory segment from the calling process's address space we use the
shmdt() system call, which on success returns 0. This removes the shared memory segment
from the process's virtual address space but does not destroy the segment itself. Deletion can be
performed using the shmctl() system call.

• The only argument shmaddr must be the address returned by a previous shmat() call,
specifying which shared memory segment to detach from the process. After successful
detachment, the shared memory segment is no longer accessible from the calling process. Any
attempt to access memory at that address will result in a segmentation fault.

• Detaching a shared memory segment does not affect other processes that may still have the same
segment attached to their address spaces. However, the system decrements the attach count for
the shared memory segment. When the attach count reaches zero and the segment is marked for
deletion, and is actually removed from the system

36

Instructor: Muhammad Arif Butt, PhD

System V Shared Memory Control Op
int shmctl(int shmid, int op, struct shmid_ds *buf);

The msgctl() is typically used for querying queue status, modifying permissions, or deleting System V
message queues to free system resources.
o shmid→ Shared memory identifier returned by shmget().
o op→ Control command specifying the operation to perform (IPC_STAT, IPC_SET, IPC_RMID).
o buf→ Pointer to a struct shmid_ds used to get or set shared memory segment attributes. For deleting

a shared memory segment the third argument is set to NULL.

37

struct shmid_ds {
struct ipc_perm shm_perm; // Ownership and permissions

size_t shm_segsz; // Size of segment (bytes)

time_t shm_atime; // Last attach time

time_t shm_dtime; // Last detach time

time_t shm_ctime; // Creation time / last modification time via shmctl

pid_t shm_cpid; // PID of creater

…

};

Instructor: Muhammad Arif Butt, PhD

Example: writer.c
int main(){

key_t key = ftok("./f1.txt", 65); //generate a unique key

//use above key and create a segment of size 1 KiB having read/write pmns to all

int shmid = shmget(key, 1024, IPC_CREAT | 0666);

char *buffer = (char*)shmat(shmid, NULL, 0); //attach shared memory to its address space

printf(“Please enter a string to be written in shared memory:\n”);

fgets(buffer, 512, stdin); //read from stdin and write to shared memory pointed to by buf

printf(“\nData has been written in shared memory. Bye\n”);

shmdt(buffer); //process detach the shared memory segment and exits

return 0;

}

38

$ gcc. writer.c –o writer

$ ipcs –m
key shmid owner perms bytes nattch status

$./writer

$ ipcs –m
key shmid owner perms bytes nattch status

$ ipcrm –m <shmid>

$ ipcs –m

Instructor: Muhammad Arif Butt, PhD

Writing to Shared
Memory

Lec4.3/shm/writer.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

39

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Example: reader.c
int main(){

key_t key = ftok("./f1.txt", 65); //generate key with same parameters as in writer
//use above key and create/get segment ID of size 1 KiB having read/write pmns to all

int shmid = shmget(key, 1024, IPC_CREAT | 0666);

char *buffer = (char*)shmat(shmid, NULL, 0); //attach shared memory to its address space

printf(“Data read from memory: %s\n”, buffer);

shmdt(buffer); //process detach the shared memory segment and exits

//shmctl(shmid, IPC_RMID, NULL); //destroy the shared memory from kernel

return 0;

}

40

$ gcc. reader.c –o reader

$./reader
Data read from memory: Learning is fun with Arif

$./reader
Data read from memory: Learning is fun with Arif

$ ipcs –m
key shmid owner perms bytes nattch status

$ ipcrm –m <shmid>

$./reader
Data read from memory:

Instructor: Muhammad Arif Butt, PhD

Reading from
Shared Memory

Lec4.3/shm/reader.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

41

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Example: Race Condition
void inc(){

long i;

for (i = 0; i < 100; i++)

*balance = *balance + 1;

}

void dec(){

long i;

for (i = 0; i < 100; i++)

*balance = *balance - 1;

}

void inc();
void dec();
long *balance;
int main(){

key_t key1 = ftok("file1", 65);
int shm_id1 = shmget(key1, 8, IPC_CREAT | 0666);
balance = (long*)shmat(shm_id1, NULL, 0);
*balance=0;
printf(”Value of balance is: %ld\n", *balance);
int cpid = fork();
if (cpid == 0){

inc();
shmdt(balance);
exit(0);

}else{
dec();
waitpid(cpid,NULL,0);
printf(”Value of balance is: %ld\n", *balance);
shmdt(balance);
shmctl(shm_id1, IPC_RMID, NULL);
return 0; }}

42

Instructor: Muhammad Arif Butt, PhD

Race Condition
Shared Memory

Lec4.3/shm/cs-problem.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

43

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Limits Related to System V Shared Memory
• In Linux operating system, the /proc/sys/kernel/ directory contains tuneable parameters related to

kernel’s behaviour, including limits, scheduling, messaging, and system control settings.
• Some important limits related to System V shared memory are contained in following files. These control the

kernel's behaviour regarding System V shared memory and can be viewed or changed at runtime (as root):
o /proc/sys/kernel/shmmax – Maximum size (in bytes) of a single System V shared memory segment.

This determines the largest shared memory segment that can be created with shmget().
o /proc/sys/kernel/shmall – Maximum total amount of shared memory (in pages) that can be allocated

system-wide. This is the cumulative limit across all shared memory segments.
o /proc/sys/kernel/shmmni – Maximum number of System V shared memory segments allowed

system-wide. This controls how many separate shared memory segments can exist simultaneously (4096).
• Some other files related to System V Shared memory inside /proc/ are:
o /proc/sysvipc/shm – Displays comprehensive details of all existing shared memory segments including

IDs, keys, ownership, size, process information (creator and last accessor), attach count, and timestamps.
o /proc/<PID>/maps – Shows memory mappings for a specific process, revealing which shared memory

segments are attached with their virtual addresses and access permissions.
o /proc/meminfo – Provides system-wide memory statistics including overall shared memory usage.

44

Instructor: Muhammad Arif Butt, PhD 45

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video on Message Queues:
https://www.youtube.com/watch?v=UAbMS3kYV5s

● Watch SP video on Shared Memory:
https://www.youtube.com/watch?v=IzhnAW8u1iQ

https://www.youtube.com/watch?v=UAbMS3kYV5s
https://www.youtube.com/watch?v=IzhnAW8u1iQ

