
Instructor: Muhammad Arif Butt, PhD

Operating Systems FundamentalsOperating Systems

Lecture 4.4
Socket Programming

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● TCP/IP Stack
● Addressing Schemes Used On TCP/IP Layers
● Client Server Paradigm
● How Stream Sockets Work?
● POSIX Socket API For TCP Client
● POSIX Socket API For TCP Server

Instructor: Muhammad Arif Butt, PhD

TCP/IP Stack

Instructor: Muhammad Arif Butt, PhD

TCP/IP Stack
● Internet or Internetwork is a network of networks that connects different computer

networks, allowing hosts on all the networks to communicate with one another.

● Although various internetworking protocols have been devised, but TCP/IP has become
the dominant protocol suite developed by DARPA (Defense Advanced Research Projects
Agency).

● TCP/IP is a layered architecture with different protocols working on different layers.

● A networking protocol is a set of rules defining how information is to be transmitted
across a network, specifying:

● How the data to be exchanged is encoded?

● How the sending and receiving events are coordinated among the participants?

Instructor: Muhammad Arif Butt, PhD

Protocols in TCP/IP Suite
ApplicationApplication Application

UDP TCP

IP

SO
C

K
_D

G
R

A
M

Network Medium
SO

C
K

_R
A

W

SO
C

K
_STR

E
A

M

U
ser Space

K
ernel Space

H
ardw

are

Ethernet Token Ring FDDI WiFi ISDN ATM

Frame Formats NW Medium

Instructor: Muhammad Arif Butt, PhD

Protocols in TCP/IP Suite
Application Layer

Transport Layer

Internet Layer

Link Layer/ Physical

● Consist of processes that uses the NW
● Provides programming interface used

for building a program
● Protocols used are http, telnet, ftp,

smtp, ssh
● Addresses are string based URIs

(URL, URN)

● Provides host-to host communication
● Protocols used are TCP, UDP, RAW
● 16 bits Port numbers are used for

addressing

● Break data into fragments small
enough for transmission via link layer

● Routing data across internet
● Protocols used are IP, ARP, ICMP,

IGMP
● IPv4 and IPv6 are used for addressing

● Place packets on the NW medium and
receiving packets off the NW medium

● NW access methods used are
Ethernet, Token ring, FDDI, ISDN,
SONET, ATM

● 48 bit Mac address are used for
addressing

Instructor: Muhammad Arif Butt, PhD

Addressing Schemes
Used On

TCP/IP Layers

Instructor: Muhammad Arif Butt, PhD

Addressing Schemes Used On TCP/IP Layers

Instructor: Muhammad Arif Butt, PhD

Addressing on the Application Layer
Addressing on the Application Layer
o The Internet Assigned Numbers Authority (IANA) oversees the assignment of domain names to

organizations. These domain names can have multiple strings separated by periods. Each host on
the Internet is uniquely identified by a Fully Qualified Domain Name (FQDN), which consists of two
parts:

hostname.domain-name

o These FQDNs are stored in a hierarchical and decentralized database that maps hostnames to their
corresponding IP addresses. The service that performs the lookup is called Domain Name System
(DNS) or Berkley Internet Name Domain (BIND) specified in RFC 882 and RFC 883.

o URL (Uniform Resource Locator): A URL identifies a resource located on a specific host within a
domain. Its format is:

protocol://hostname.domain-name[: port]/path-to-resource

For Example: http://pucit.pu.edu.pk:80/academics/timetable-pucit.html

Organizations can add prefixes to their domain names to define hosts. For example, in the above
example pu.edu.pk is the domain-name, while pucit is the suffix to define its subdomain.

http://pucit.pu.edu.pk/academics/timetable-pucit.html

Instructor: Muhammad Arif Butt, PhD

Addressing on the Transport Layer (…)
The transport layer addresses are called Port Numbers. A 16 bit integer used to identify a specific process
to which a NW message is to be forwarded when it arrives at a host. There may be a machine which is
running both the http and ssh service. The http process will be listening on port 80, while ssh process
will be listening on port 22

● Well Known / Reserved Ports (0 to 1023): These are permanently assigned to specific applications
(also known as services). For example, ssh daemon uses port 22. Well known ports are assigned
numbers by a central authority the Internet Assigned Number Authority (http://www.iana.org)

● Registered Ports (1024 to 49151): IANA also records registered ports, which are allocated to
application developers on a less stringent basis

● Dynamic/Private/Ephemeral Ports (49152 to 65535): IANA specifies the ports in the range 49152
to 65535 as dynamic or private, with the intention that these ports can be used by local applications. If
an application doesn’t select a particular port (i.e., it doesn’t bind() its socket to a particular port), then
TCP and UDP assign a unique ephemeral port (i.e., short-lived) number to the socket

● View /etc/services file on your UNIX machine for details

http://www.iana.org/

Instructor: Muhammad Arif Butt, PhD

Addressing on Transport Layer
Protocol Port Service
echo 7 IPC testing
daytime 13 Provides current date and time
ftp-data, ftp 20, 21 File Transfer Control (TCP)
ssh 22 Secure Shell for secure Remote Login facility (TCP)
telnet 23 Remote login facility (TCP)
smtp 25 Simple Mail Transfer Protocol (TCP)
time 37 Provides standard time
bootps, bootpc 67, 68 Bootp server and client (UDP)
tftp 69 Trivial File Transfer Protocol (UDP)
finger 79 Provides information about a user
http 80, 8080 Web Server (TCP)
sunrpc 111 Sun Remote Procedure Call
NTP 123 Network Time Protocol (UDP)
https 443 Secure Web Server (TCP)
RMI Registry 1099 Registry for Remote Method Invocation
NFS 2049 Network File Server (UDP)

Instructor: Muhammad Arif Butt, PhD

Classful Addressing on the Internet Layer (IPv4)
Class A IP Addresses
• Total Addresses: 27−2 = 126 networks
• Range: 1.0.0.0 to 126.0.0.0
• Hosts per Network: 224−2 = 16777214 hosts
• Subnet Mask: 255.0.0.0 or /8

0 Net ID (7) Host ID (24)

Class B IP Addresses
• Total Addresses: 214 = 16384 networks
• Range: 128.0.0.0 to 191.255.0.0
• Hosts per Network: 216−2 = 65534 hosts
• Subnet Mask: 255.255.0.0 or /16

10 Net ID (14) Host ID (16)

Class C IP Addresses
• Total Addresses: 221 = 2097152 networks
• Range: 192.0.0.0 to 223.255.255.0
• Hosts per Network: 28−2 = 254 hosts
• Subnet Mask: 255.255.255.0 or /24

110 Net ID (21) Host ID (8)

0.x.x.x and 127.x.x.x are reserved, and
is the reason for subtracting 2 from 27

Every valid IP Address of a class lie between the Network Address and the Broadcast Address of that class.

Instructor: Muhammad Arif Butt, PhD

● There exist class D and Class E addresses as well. Class D addresses (224.0.0.0 to
239.255.255.255) are used for multi-cast communication, while Class E addresses (225.0.0.0 to
255.255.255.255) are not assigned for public use rather reserved by the IETF for future use.

● The network address for a specific class is represented with all bits as ZERO in the host
portion of the address.

● The broadcast address for a specific class is represented with all bits as ONES in the host
portion of the address.

● The subnet mask address for a specific class is represented with all bits as ONES in the
network portion and with all bits as ZERO in the host portion. To get the network address you
just bit-wise AND the IP address with the subnet mask. All routing is performed based on the
NW address.

● Classless Internet Domain Routing (CIDR): In 1993, CIDR was introduced that
revolutionized IP address allocation and routing by eliminating the rigid boundaries of classful
addressing. It offers the advantages of efficient allocation of IP addresses and flexible sub-
netting. This helped to meet the growing demand of Internet and the limited address space of
IPv4 (4 billion). In CIDR the address 192.168.10.0/25 means the first 25 bits of the IP address
are used for the NW portion.

Classful Addressing on the Internet Layer (IPv4)

Instructor: Muhammad Arif Butt, PhD

Public IP Addresses (IPv4)
• Public IP Addresses as mentioned on the

previous page are unique across the entire
Internet and are used for communication over
the Internet, making them accessible from any
device globally.

• Public IP addresses are routable on the
internet and are assigned to devices that need
to be reachable from outside the local network,
such as web servers, email servers, and
network gateways.

• Devices having public IP addresses are exposed
to potential security risks as they are
accessible from the Internet.

Instructor: Muhammad Arif Butt, PhD

Private IP Addresses (IPv4)
Private IP Addresses: IETF has designed three address ranges (one for each class) as private,
which are commonly used for devices within a local area network, such as computers, laptops, printers and
smartphones:

● 10.0.0.0 to 10.255.255.255
● 172.16.0.0 to 172.31.255.255
● 192.168.0.0 to 192.168.255.255

The devices having private IP addresses are non-routable, i.e., not directly exposed to the public Internet,
providing a layer of security by keeping internal devices hidden from external threats. They can only be used
either on a fully disconnected NW or on a NW behind firewall.

100$ Question:
How can a device having a private IP address accesses the resources on the Internet having

public IP addresses?

NetWork Address Translation (NATing), that allows a single device called gateway computer (router)
having a public IP address to act as an agent between the Internet and the private NW. A gateway computer
is an entry/exit point in a LAN, that receives incoming requests from devices having private IP addresses and
send it to the Internet with its own public IP address. So, this means that a single public IP address can
represent an entire group of computers on the Internet.

Instructor: Muhammad Arif Butt, PhD

Private IP Addresses (IPv4) (Cont.)

“CIDR and NATing has significantly extended the useful life of IPv4”

Instructor: Muhammad Arif Butt, PhD

Addressing on the Physical Layer

Organizationally Unique Identifier
00-50-56

Network Interface Specific Identifier
C0-00-01

● MAC Address Format:
o A 48-bit address is used on the physical layer.
o Divided into two parts:

▪ Organizationally Unique Identifier (OUI): The most significant 3 bytes (e.g., 00-50-56).
▪ Network Interface Specific Identifier: The least significant 3 bytes (e.g., C0-00-01).

● MAC Address Assignment:
o Manufacturers request an OUI from the IEEE to ensure a unique prefix for their devices.
o The manufacturer then assigns a unique identifier to the remaining 3 bytes for each device.
o This ensures a globally unique MAC address for every device.

● Routing and Address Resolution:
o If the destination IP address is outside the local network, the packet is sent to a configured gateway for

routing.
o If the destination IP address is within the same local network, the Address Resolution Protocol (ARP) is

used to find the corresponding MAC address from the IP address.

Instructor: Muhammad Arif Butt, PhD

Client Server Paradigm

Instructor: Muhammad Arif Butt, PhD

Client Server Paradigm

Internet
Server
Machine

telnet (23)
FTP (20/21)
SSH (22)
DHCP (546/547)
NFS (2049)

echo (7)
discard (9)
daytime (13)
chargen (19)
time (37)
DNS (53)
HTTP (80/8080)
HTTPS (443)
NTP (123)

Client
Machine

nc
telnet
ssh
Web Browsers

Server Design Based on Connection Mode & Execution Strategy:
• Iterative connectionless
• Iterative connection-oriented
• Concurrent connectionless
• Concurrent connection oriented

Stateful
Long Connections

Stateless
Short Connections

Instructor: Muhammad Arif Butt, PhD

What is a Socket?
A socket is a communication end point to which an application can write data (to be sent

to the underlying network) and from which an application can read data. The
process/application can be related or unrelated and may be executing on the same or

different machines

● From IPC point of view, a socket is a full-duplex IPC channel that may be used for
communication between related or unrelated processes executing on the same machine or across
networked systems using TCP/IP or other protocols.

● Available APIs for socket communication are:
o Berkley/POSIX sockets (Linux, UNIX, macOS)
o Winsock for MS Windows

Instructor: Muhammad Arif Butt, PhD

Types of Sockets
Internet Sockets:
• Stream Sockets (SOCK_STREAM): Provide reliable, connection-oriented communication over

TCP. Ideal for applications that require guaranteed data delivery, such as web servers or SSH.
• Datagram Sockets (SOCK_DGRAM): Offer connectionless, unreliable communication using

UDP. Suitable for fast, low-overhead communication like DNS, VoIP, or real-time video
streaming.

UNIX Domain Sockets:
• Provide inter-process communication (IPC) on the same host using the file system as an address

namespace. Faster and more secure than internet sockets for local communication between
processes
• Many system services (systemd) use UDS to interact with client applications.
• Nginx/Apache often use UDS to communicate with backend servers like PHP-FPM, or Node.js.
• PostgreSQL, MySQL, Redis, and MongoDB support client connections via UDS.
• Apps running in sandboxes (like Chromium) may use UDS to comm with trusted host services.

Instructor: Muhammad Arif Butt, PhD

How Stream Sockets
Work?

Behind the curtain

Instructor: Muhammad Arif Butt, PhD

System Call Graph: TCP Sockets

Socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

Connection Established
using 3-way Handshake

Data (Request)

Data (Response)

EOF Notification

Block until a connection
request arrives

socket()

SERVER

CLIENT

Instructor: Muhammad Arif Butt, PhD

Pictorial Representation of TCP Socket
Server

Client 1

Client 2

Connection operation

Send/Receive operation

Instructor: Muhammad Arif Butt, PhD

POSIX Socket API
For TCP Client

Instructor: Muhammad Arif Butt, PhD

Pseudocode: TCP Sockets
SERVER

socket()

bind()

listen()

while(1) {

accept()

while(client writes) {

Read a request

Perform requested action

Send a reply

}

close client socket

}

close passive socket

CLIENT

socket()

connect()

while(x) {

write()

read()

}

close()

Instructor: Muhammad Arif Butt, PhD

socket()
int socket(int domain, int type, int protocol);

● socket()creates an endpoint for communication
● On success, a file descriptor for the new socket is returned
● On failure, -1 is returned and errno is set appropriately
● The first argument domain specifies a communication domain under which the

communication between a pair of sockets will take place. Communication may only take
place between a pair of sockets of the same type

● These families are defined in /usr/include/x86.../bits/socket.h

Domain Comm
Performed

Comm between
applications

Address format Address
structure

AF_UNIX Within kernel On same host pathname sockaddr_un
AF_INET Via IPv4 On hosts connected

via an IPv4 network
32-bt IPv4 addr +
16-bit port#

sockaddr_in

AF_INET6 Via IPv6 On hosts connected
via IPv6 network

128-bit IPv6 addr +
16-bit port#

sockaddr_in6

Instructor: Muhammad Arif Butt, PhD

socket() (...)
int socket(int domain, int type, int protocol);

● The second argument type specifies the communication semantics. These types are
defined in the header file /usr/include/x86.../bits/socket_type.h. Most
common types are SOCK_STREAM and SOCK_DGRAM

● The 3rd argument specifies the protocol to be used within the network code inside the
kernel, not the protocol between the client and server. Just set this argument to “0” to
have socket() choose the correct protocol based on the type. You may use constants,
like IPPROTO_TCP, IPPROTO_UDP. You may use getprotobyname() function to get
the official protocol name (discussed later).You may look at /etc/protocols file for
details

● To view more details about these constants visit following man pages:
■ $man 7 tcp, udp, raw, unix, ip, socket
■ $man 5 protocols

Instructor: Muhammad Arif Butt, PhD

socket() (...)
0
1
2
3
4
5

PPFDT
Family: AF_INET
Service: TCP
Local IP:
Local Port:
Remote IP:
Remote Port:

DS created by socket() call

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
● The socket data structure contains several pieces of information for the expected style of IPC,

including family/domain, service type, local IP, local port, remote IP, and remote port
● UNIX kernel initializes the first two fields when a socket is created
● When the local address is stored in socket data structure we say that the socket is half associated
● When both local and remote addresses are stored in socket data structure, we say that socket is

fully associated

Instructor: Muhammad Arif Butt, PhD

0
1
2
3
4
5

PPFDT
Family: AF_INET
Service: TCP
Local IP:
Local Port:
Remote IP:
Remote Port:

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
How addresses in socket data structure are populated
For Client
● Remote endpoint address is populated by connect()
● Local endpoint address is automatically populated by TCP/IP s/w when client calls connect()
For Server
● Local endpoint addresses are populated by bind()
● Remote endpoint addresses are populated by accept()

socket() (...)
DS created by socket() call

Instructor: Muhammad Arif Butt, PhD

connect()

● The connect() system call connects the socket referred to by the descriptor sockfd to the
remote server (specified by svr_addr)

● If we haven't call bind(), (which we normally don't in client), it automatically chooses a local
endpoint address for you

● On success, zero is returned, and the sockfd is now a valid file descriptor open for reading and
writing. Data written into this file descriptor is sent to the socket at the other end of the
connection, and data written into the other end may be read from this file descriptor

● TCP sockets may successfully connect only once. UDP sockets normally do not use connect(),
however, connected UDP sockets may use connect() multiple times to change their
association

● When used with SOCK_DGRAM type of socket, the connect() call simply stores the address of
the remote socket in the local socket's data structure, and it may communicate with the other
side using read() and write() instead of using recvfrom() and sendto() calls

int connect(int sockfd, const struct sockaddr *svr_addr,int addrlen);

Instructor: Muhammad Arif Butt, PhD

connect() (Cont.)
connect() performs four tasks
1. Ensure that the specified sockfd is valid and that it has not already been connected
2. Fills in the remote end point address in the (client) socket from the second argument
3. Automatically chooses a local endpoint address by calling TCP/IP software
4. Initiates a TCP connection (3 way handshake) and returns a value to tell the caller

whether the connection succeeded

Family: AF_INET
Service: TCP
Local IP:
Local Port:
Remote IP:
Remote Port:

0
1
2
3
4
5

Instructor: Muhammad Arif Butt, PhD

Internet Socket Address Structure
Generic Socket Address structure: This is a basic template on which other address data structures of
different domains are based. When sa_family is AF_UNIX the sa_data field is supposed to contain a pathname as
the socket's address. When sa_family is AF_INET the sa_data field contains both an IP address and a port number
struct sockaddr{

u_short sa_family;
char sa_data[14];

}
Internet Socket Address Structure:
struct sockaddr_in{

u_short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

}
UNIX Domain Socket Address Structure:
struct sockaddr_un{

short sun_family;
char sun_path; }

struct in_addr{
in_addr_t s_addr;

}

Instructor: Muhammad Arif Butt, PhD

Populating Address Structure
● Example: We normally need to populate the address structure and then pass it to

connect(). Following is the code snippet that do the task:

● Question: Why we need to cast the sockaddr_in to generic socket address structure
sockaddr?

● Answer: Address structures (of all families) need to be passed to bind(), connect(),
accept(), sendto(), recvfrom(). In 1982, there was no concept of void*, so the
designers defined a generic socket address structure

struct sockaddr_in svr_addr;

svr_addr.sin_family = AF_INET;

svr_addr.sin_port = htons(54154);

inet_aton(“127.0.0.1”, &svr_addr.sin_addr);

memset(&(svr_addr.sin_zero), '\0', sizeof(svr_addr.sin_zero))

connect(sockfd,(struct sockaddr*)&svr_addr,sizeof(svr_addr));

Instructor: Muhammad Arif Butt, PhD

Little Endian vs Big Endian
● Byte order is the attribute of a processor that indicates whether integers are represented

from left to right or right to left in the memory

● In Little Endian Byte Order, the low-order byte of the number is stored in memory at
the lowest address and the high-order byte of the same number is stored at the highest
address

● In Big Endian Byte Order, the low-order byte of the number is stored in memory at the
highest address and the high-order byte of the same number is stored at the lowest
address

00000000 00000000 00000000 00000001

0x20030x20020x20010x2000

00000001 00000000 00000000 00000000short int var = 0x0001;

char *byte = (char*)&var;

if (byte[0] == 1)

printf(“Little Endian”);

else

printf(“Big Endian”);

Instructor: Muhammad Arif Butt, PhD

Byte Order and Byte Ordering Functions
uint16_t htons(uint16_t host16bitvalue);
uint16_t htonl(uint32_t host32bitvalue);

Returns: value of arg passed is converted to NBO
uint16_t ntohs(uint16_t net16bitvalue);
uint16_t htons(uint32_t net32bitvalue);

Returns: value of arg passed is converted to HBO

● The API htons() is used to convert a 16-bits data from host byte order to network byte order
such as TCP or UDP port number

● The API htonl() is used to convert a 32-bits data from host byte order to network byte order
such as IPv4 address

● The API ntohs() is used to convert a 16-bits data from network byte order to host byte order
such as TCP or UDP port number

● The API ntohl() is used to convert a 32-bits data from network byte order to host byte order
such as IPv4 address

Instructor: Muhammad Arif Butt, PhD

Address Format Conversion Functions
in_addr_t inet_addr(const char* str);
int inet_aton(const char* str,struct in_addr *addr)

● Both of these functions are used to convert the IPv4 internet address from dotted decimal
C string format pointed to by str to 32-bit binary network byte ordered value

● The inet_addr() return this value, while inet_aton() function stores it through the
pointer addr

● The newer function inet_aton() works with both IPv4 and IPv6, so one should use this
call in the code even if working on IPv4

Instructor: Muhammad Arif Butt, PhD

read() and write()
ssize_t read(int fd, void* buf, size_t count);
ssize_t write(int fd, const void* buf, size_t count);

● The read() and write() system calls can be used to read/write from files, devices,
sockets, etc. (with any type of sockets stream or datagram)

● The read() call attempts to read up to count bytes from file descriptor fd into the
buffer starting at buf. If no data is available read blocks. On success returns the
number of bytes read and on error returns -1 with errno set appropriately

● The write() call writes count number of bytes starting from memory location pointed
to by buf, to file descriptor fd. On success returns the number of bytes actually written
and on error returns -1 with errno set appropriately

● The send() and recv() calls can be used for communicating over stream sockets or
connected datagram sockets. If you want to use regular unconnected datagram sockets
(UDP), you need to use the sendto() and recvfrom()

Instructor: Muhammad Arif Butt, PhD

send()

int send(int sockfd, const void* buf, int count,int flags);

● The send() call writes the count number of bytes starting from memory location
pointed to by buf, to file descriptor sockfd

● The argument flags is normally set to zero, if you want it to be “normal” data. You can
set flag as MSG_OOB to send your data as “out of band”. It's a way to tell the receiving
system that this data has a higher priority than the normal data. The receiver will
receive the signal SIGURG and in the handler it can then receive this data without first
receiving all the rest of the normal data in the queue

● The send()call returns the number of bytes actually sent out and this might be less
than the number you told it to send. If the value returned by send() does not match the
value in count, it's up to you to send the rest of the string

● If the socket has been closed by any side, the process calling send() will get a SIGPIPE
signal

Instructor: Muhammad Arif Butt, PhD

recv()
int recv(int sockfd, void* buf, int count, int flags);

● The recv() call attempts to read up to count bytes from file descriptor sockfd into
the buffer starting at buf. If no data is available it blocks

● The argument flags is normally set to zero, if you want it to be a regular vanilla
recv(), you can set flag as MSG_OOB to receive out of band data. This is how to get data
that has been sent to you with the MSG_OOB flag in send() As the receiving side, you
will have had signal SIGURG raised telling you there is urgent data. In your handler for
that signal, you could call recv() with this MSG_OOB flag

● The call returns the number of bytes actually read into the buffer, or -1 on error
● If recv() returns 0, this can mean only one thing, i.e., remote side has closed the

connection on you

Instructor: Muhammad Arif Butt, PhD

close()
int close(int fd);

● After a process is done using the socket, it can call close() to close it, and it will be
freed up, never to be used again by that process

● On success returns zero, or -1 on error and errno will be set accordingly
● The remote side can tell if this happens in one of two ways:

■ If the remote side calls read(), it will return zero
■ If the remote side calls write(), it will receive a signal SIGPIPE and write()

will return -1 and errno is set to EPIPE
● In practice, Linux implements a reference count mechanism to allow multiple processes

to share a socket. If n processes share a socket, the reference count will be n. close()
decrements the reference count each time a process calls it. Once the reference count
reaches zero (i.e., all processes have called close()) the socket will be deallocated

Instructor: Muhammad Arif Butt, PhD

shutdown()
int shutdown(int fd, int how);

● When you close a socket descriptor, it closes both sides of the socket for reading and writing,
and frees the socket descriptor. If you just want to close one side or the other, you can use
shutdown() call

● The argument fd is descriptor of the socket you want to perform this action on, and the action
can be specified with the how parameter

● SHUT-RD(0): Further receives are disallowed
● SHUT-WR(1): Further sends are disallowed
● SHUT-RDWR(2): Further sends and receives are disallowed
Difference between close() and shutdown():
● close() closes the socket ID and frees the descriptor for the calling process only, the

connection is still opened if another process shares this socket ID. The connection stays opened
for both read and write

● shutdown() breaks the connection for all processes sharing the socket ID. It doesn't close the
file descriptor or free the socket DS, it just change its usability. To free a socket descriptor, you
still have to call close()

Instructor: Muhammad Arif Butt, PhD

Internet Domain
TCP Stream Clients
Lec4.4/sockets/
echoclient.c
daytimeclient.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

43

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

POSIX Socket API
For TCP Server

Instructor: Muhammad Arif Butt, PhD

bind()

int bind(int sockfd, struct sockaddr* myaddr, int addrlen)

● A socket created by a server process must be bound to an address and it must be advertised.
Thus any client process can later contact the server using this address

● The bind() call assigns the address given in the 2nd argument myaddr, to the socket referred
to by the sockfd given in the 1st argument (obtained from a previous socket() call)

● The 2nd argument, myaddr is a pointer to a structure specifying the address to which this
socket is to be bound. There are different address families and each having its own format.
The type of structure passed in this argument depends on the socket domain

● The addrlen argument specifies the size in bytes of the address structure pointed to by
myaddr

● On success, the call returns zero. On failure -1 is returned and errno is set appropriately

Instructor: Muhammad Arif Butt, PhD

listen()

int listen(int sockfd, int backlog);

● The listen() system call requests the kernel to allow the specified socket mentioned in the
1st argument to receive incoming calls. (Not all types of sockets can receive incoming calls,
SOCK_STREAM can)

● This call put a socket in passive mode and associate a queue where incoming connection
requests may be placed if the server is busy accommodating a previous request

● The backlog argument is the number of connections allowed on the incoming queue. The
maximum queue size depends on the socket implementation

● On success it returns zero and on failure -1 is returned and errno is set appropriately
● We need to call bind() before we call listen(), otherwise the kernel will have us listening

on a random port

Instructor: Muhammad Arif Butt, PhD

accept()

int accept(int sockfd, struct sockaddr* callerid, socklen_t *addrlen);

● The accept() system call is used by server process and returns a new socket descriptor to
use for a new client. After this the server process has two socket descriptors; the original one
(master socket) is still listening on the port and new one (slave socket) is ready to be read and
written

● It is used with connection-based socket types (SOCK_STREAM)
● The argument sockfd is a socket that has been created with socket(), bound to a local

address with bind(), and is listening for connections

● On success, the kernel puts the address of the client into the second argument pointed to by
callerid and puts the length of that address structure into the third argument pointed to
by addrlen

● On success return a non-negative integer that is a descriptor for the accepted socket. On
failure -1 is returned and errno is set appropriately

Instructor: Muhammad Arif Butt, PhD

Lec4.4/sockets/
echoserver.c
command-server.c
forked_echoserver.c
threaded_echoserver.c

Demonstration

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Internet Domain
TCP Stream Servers

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video overview of TCP/IP
https://youtu.be/p5SrRob-bWg?si=r7fIr9DlyYm4Y4w5

● Watch SP video on Socket Programming Part-I (Internet Domain TCP Sockets)
https://youtu.be/tk_RpIVbOMQ?si=PlAf7Q_KSmsr9gWX

● Watch SP video on Socket Programming Part-II (Internet Domain UDP Sockets)
https://youtu.be/yNUFQaSclmM?si=_oI1CsjqIGN1j7Pq

● Watch SP video on Socket Programming Part-III (UNIX Domain Sockets)
https://youtu.be/TDRIweWXHe4?si=_OARm5gVKrxd2nAO

● Watch SP video on Socket Programming Part-IV (Design of Concurrent Servers)
https://youtu.be/irRkNrruwxc?si=IV2rX3f5H1kqaXgK

49

https://youtu.be/p5SrRob-bWg?si=r7fIr9DlyYm4Y4w5
https://youtu.be/tk_RpIVbOMQ?si=PlAf7Q_KSmsr9gWX
https://youtu.be/yNUFQaSclmM?si=_oI1CsjqIGN1j7Pq
https://youtu.be/TDRIweWXHe4?si=_OARm5gVKrxd2nAO
https://youtu.be/irRkNrruwxc?si=IV2rX3f5H1kqaXgK

