
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 5.1
Overview of Synchronization

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Introduction to Synchronization
● Examples of Race Condition
● Key Concepts in Concurrency
● Structure of CS Problem Solution
● Characteristics of Good CSP Solution
● Peterson Algorithm (2-Process CSP Solution)
● Bakery Algorithm (N-Process CSP Solution)
● Busy Waiting and its Solution
● Overview of Concurrency Control Mechanisms

2

Instructor: Muhammad Arif Butt, PhD

Introduction to
Synchronization

3

Instructor: Muhammad Arif Butt, PhD

Independent vs Cooperating Processes
Processes executing concurrently in the operating system can be:
● Independent Process: A process that cannot affect or cannot be affected by the execution of

another process. A process that does not share data with another process is independent.
● Cooperating Process: A process that can affect or can be affected by the execution of another

process. A process that share data with other process is a cooperating process.
● Advantages of Cooperating processes:

○ Information sharing.
○ Computation speed up.
○ Modularity.
○ Convenience.

4

Instructor: Muhammad Arif Butt, PhD

Introduction to Synchronization
• In Real Life: Synchronization means coordinating actions so they occur in correct order or at the same time
• In Computer Science: Synchronization refers to relationships among events:

Before → one event must happen before another.
During → one event depends on another in progress.
After → one event must follow another.

• Key Synchronization Constraints:
o Mutual Exclusion: Event A and B must not happen at the same time.
o Serialization: Event A must happen before event B, or vice versa.

• In Real Life: We often check and enforce synchronization constraints using a clock i.e. by comparing times.
• In CS: Too many operations occur in parallel, so we can’t use clocks (due to distributed environments).

Moreover, most of the time the computers cannot keep track of what time various events happen, as there are
too many events happening, too fast, to record the exact time of every event.

5

Instructor: Muhammad Arif Butt, PhD

Why Synchronization is needed?
If computers execute one instruction after another in sequence, the synchronization (serialization
and Mutual execution) is trivial. If statement A comes before statement B, it will be executed first.
Problems with concurrency:

• Multiple CPUs
It is not easy to know if an instruction on CPU1 is executed before an instruction on CPU2.

• Single CPU and multithreaded system
The scheduler decides when each thread runs, the programmer has no control over when
each thread runs.

• Non-determinism
Concurrent programs are often non deterministic, the outcome of a program can change
with each run, even with the same input.

“Two events are concurrent if we cannot tell by looking at the program which will
happen first”

6

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Pseudocode

Consumer Process
item nextConsumed;

while(1) {

while(ctr == 0) ; //do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

ctr--;

}

#define BUFFER_SIZE 5 typedef struct{ ---- } item;

item buffer[BUFFER_SIZE];

int in = 0; //points to location where next item will be placed, will be used by producer process

int out = 0; //points to location from where item is to be consumed, will be used by consumer process

int ctr = 0;

Produces Process
item nextProduced;

while(1) {

nextProduced = getItem();

while(ctr == BUFFER_SIZE); //do nothing

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE; ctr++;

}

7

Instructor: Muhammad Arif Butt, PhD

Mutual Exclusion Violation (Producer-Consumer)
• In the solution of Producer Consumer Problem on previous slide, ctr is a shared variable that is used
by both the producer and the consumer process to check whether the buffer is full or empty

• In Producer and Consumer the single instruction of ctr++ and ctr-- can be written in Assembly as:

Producer
ctr++;
P1 : MOV R1, ctr
P2 : INC R1
P3 : MOV ctr, R1

Consumer
ctr--;
C1 : MOV R2, ctr
C2 : DEC R2
C3 : MOV ctr, R2

• Suppose the initial value of ctr is 5
• Suppose both processes execute concurrently

Interleaving: There can be different ways in which the three instructions of producer and the three
instructions of consumer can be interleaved by the scheduler.
• If Consumer runs last (P1, P2, C1, C2, P3 , C3)
• If Producer runs last (P1, P2, C1, C2, C3, P3)

→ ctr = 4
→ ctr = 6

8

Instructor: Muhammad Arif Butt, PhD

● Consider a Bank Transaction. The Deposit Process deposits a particular amount in the bank via a
cheque. The Withdrawal Process withdraws a particular amount from the bank via ATM.

● In Deposit and Withdrawal process the instruction that updates the balance variable can be
written in Assembly as:

Deposit
D1: MOV R1, balance
D2: ADD R1, depositAmount
D3: MOV balance, R1

Withdrawl
W1: MOV R2, balance
W2: SUB R2, wdrAmount
W3: MOV balance, R2

Interleaving. Calculate the result of following two possible interleaving of the above statements:
o D1, D2 , W1, W2, D3 , W3

o D1, D2 , W1, W2, W3 , D3

Sample Transaction
Current Balance: 100/-
Cheque deposited: 25/-
ATM withdrawal: 10/-

Mutual Exclusion Violation (Deposit-Withdrawl)

9

Instructor: Muhammad Arif Butt, PhD

Example: race1.c

void * dec(void * arg){

for(long i=0;i<100000000;i++)

balance--;

pthread_exit(NULL);

}

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * inc(void * arg){

for(long i=0;i<100000000;i++)

balance++;

pthread_exit(NULL);

}

10

Instructor: Muhammad Arif Butt, PhD

Example: race1a.c

void * inc(void * arg){
int temp = balance;
usleep(10000);
temp = temp + 1;
usleep(10000);
balance = temp;
pthread_exit(NULL);

}

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * dec(void * arg){
int temp = balance;
usleep(10000);
temp = temp - 1;
usleep(10000);
balance = temp;
pthread_exit(NULL);

}

11

Instructor: Muhammad Arif Butt, PhD

Lec5.1/race1.c
Lec5.1/race1a.c

CS Problem

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

12

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Key Concepts in
Concurrency

13

Instructor: Muhammad Arif Butt, PhD

Key Concepts in Concurrency
Race Condition:
• A situation, where several threads or cooperating processes

are updating some shared data concurrently, and the final
value of the data depends on which thread/process finishes
last - unpredictable and incorrect outcomes.

Critical Section:
• A piece of code in threads or cooperating processes in which the thread/process may update some

shared data (variable, file, database)
• Regions of code that must be executed by only one process at a time
• Example: updating a global counter, writing to a file

Critical Section Problem:
• When multiple threads try to execute the critical section simultaneously, the result is data

corruption. Solution is to allow only one thread to execute its critical section at a time

14

Instructor: Muhammad Arif Butt, PhD

● Atomic operation is an operation that always runs to completion or not at all, as it is indivisible
and uninterruptible by other threads or processes.

● Atomic operations are foundational for safe thread cooperation; without them, shared data access
becomes unreliable and prone to race conditions.

● On most machines, memory references and assignments i.e. loads and stores of words are atomic.
● Simple aligned word-sized loads and stores (e.g., reading or writing an integer) are typically

atomic on modern hardware. However, larger or misaligned operations—like double-precision
floating-point stores or multi-word copies are not atomic.

Key Concepts in Concurrency

15

Instructor: Muhammad Arif Butt, PhD

Structure of CSP Solution

do {

ENTRY SECTION

<Critical Section>

EXIT SECTION

<Remainder Section>

} while(true);

Non Critical Section

Non Critical Section

EXIT SECTION

ENTRY SECTION

Critical Section

Controls the entry
into critical section

and gets lock on
required resources

Removes lock on
resources and let

others know that its
CS is over

16

Instructor: Muhammad Arif Butt, PhD

Characteristics of Good CS Problem Solution
1. Mutual Exclusion: If a process is executing in its CS, no other cooperating processes can execute in their

CS. This prevent corruption of shared data and inconsistencies.

2. Progress: If no process is executing in CS and some processes wish to enter in their CS, two things need to
happen:
○ No process in <RS> should participate in the decision
○ This decision has to be taken in a finite time

This ensures the system keeps moving forward (avoids deadlock)

3. Bounded Wait: If a process has requested to enter in the CS, a bound must exist on the number of times
that other processes are allowed to enter in their CS, before the request is granted. This prevents starvation
(where one process waits forever while others repeatedly enter)

17

Instructor: Muhammad Arif Butt, PhD

Peterson’s Algorithm

2-Processes CSP Solution

18

Instructor: Muhammad Arif Butt, PhD

Algorithm Using Strict Alternation

Process P0

do {

while (turn!=0); //Entry Section

<CS>

turn = 1; //Exit Section

<RS>

} while (1);

Process P1

do {

while (turn!=1); //Entry section

<CS>

turn = 0; //ExitSection

<RS>

} while (1);

● Given by a Dutch mathematician Dekker for two processes P0 and P1

● Use a shared variable turn to enforce order, initialized to zero
● If turn = i then Pi can enter in its CS otherwise it will wait

● Guarantees mutual exclusion i.e.; only one process in CS
● If turn = 0 but P0 has no work, P1 is blocked unnecessarily
● Processes are forced to take turns, even if one is idle

19

Instructor: Muhammad Arif Butt, PhD

Algorithm Using Flags

Process P0
do {

flag[0] = true;
while (flag[1]== true]);

<CS>

flag [0] = false; //Exit Section

<RS>

} while (1);

Process P1

do {

flag[1] = true;
while (flag[0]==true);

<CS>

flag [1] = false; //Exit Section

<RS>

} while (1);

● The limitation of strict alternation is solved in this algo, (processes don’t have to take turns).
● Instead of a single variable turn, take an array of two Boolean flags, flag[0]and flag [1]
● A process set its flag to true (showing its intention that it want to enter its CS) and check for the other

process flag, if the other process flag is true keep spinning in loop.

What if both set flag[i] = true at the same time → deadlock (both spin forever)
20

Instructor: Muhammad Arif Butt, PhD

Use of Flags - Improved

Process P0
do {

flag[0] = true;

while (flag[1] == true){

flag[0] = false;

wait(randno());

flag[0] = true;

}

<CS>

flag [0] = false;

<RS>

} while (1);

Process P1
do {

flag[1] = true;
while (flag[0] == true){

flag[1] = false;

wait(randno());

flag[1] = true;

}

<CS>

flag [1] = false;

<RS>

} while (1);

Instead of waiting/spinning indefinitely in the while loop, the process set its flag to false, wait for a
random period of time, set its flag back to true and then again try the while loop condition.

Inefficient: Processes waste CPU cycle in busy waiting
21

Instructor: Muhammad Arif Butt, PhD

Peterson Algorithm
● The algorithm is given by Peterson, the person who wrote the first edition of our textbook “OS

concepts” in 1984
● It combines the shared variables of previous algorithms
● Keep two boolean flags one for each process and a shared integer variable turn

boolean flag[2]; // initialized to false

int turn = 0; // initialized to 0

● Before entering CS, each process:
○ Set its flag to true (I want to enter CS)
○ Sets turn equal to other process ID (but if you want to enter, you go first).
○ It then checks whether the other process wants to enter its CS and is it his turn.
○ If yes, it waits. Otherwise enters CS safely.

22

Instructor: Muhammad Arif Butt, PhD

Peterson Algorithm
Process P0

do {

flag[0] = true;

turn = 1;

while (flag[1] && turn == 1); //spin

<CS>

flag [0] = false;

<RS>

} while (1);

Process P1

do {

flag[1] = true;

turn = 0;

while (flag[0] && turn == 0); //spin

<CS>

flag [1] = false;

<RS>

} while (1);

● If both processes want to enter, the turn variable ensures only one gets in
● After leaving the CS, a process resets its flag
● Works only for two processes. Try extending the above pseudocode for three or more processes

23

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm

N-Processes CSP Solution

24

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm
Think of a bakery having two doors, each with a separate Token number dispenser:
● Whenever a person enters the bakery, he is given a token number (TNumber)
● The customer with the smallest token number is served first
● If two customers have same token number because they entered the bakery at the same time,

who is to be served first?
○ Ladies first
○ Senior Citizen first
○ In OS, smaller PID first

25

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm
In concurrent systems:
● Every process gets a token number before entering the CS
● Process with the smallest token number enters the CS. If process Pi and Pj gets the same

number then
if i < j then

Pi is served first;

else

Pj is served first;

● Process with the smallest PID enters the CS

26

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm - Example
Consider following six cooperating processes, with a token number assigned to each. Keeping the
Bakery algorithm can you give the sequence in which they will enter their CSs.

Sequence of CS entry will be: < P5 P1 P3 P4 P0 >

PID Token number

P0 8

P1 5

P2 0

P3 5

P4 6

P5 2

27

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm - Algorithm Semantics
● Ticket numbering are monotonically increasing 1, 2, 3, 3, 4, 5, …
● Every upcoming process gets a number larger than or equal to existing ones
● Notations

○ (Tnumber, PID) is an ordered pair
○ (a, b) < (c, d) if

(a < c) OR (a == c & b < d)

○ Max(…) is a function that returns the largest ticket number currently assigned
● Data Structures

○ Boolean choosing[n]: initialized to false, true if process is picking a ticket
○ int TNumber[n]: initialized to zero, ticket number for each process

28

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm
do {

Tnumber[i] = 1 + max(Tnumber[0, Tnumber[1],...Tnumber(n–1)]);

for (j = 0; j < n; j++) {

while(Tnumber[j]!=0 && (Tnumber[j],j) < (Tnumber[i],i));}

<CS>

Tnumber[i] = 0;

<RS>

} while (1);

This loop is going to compare the (no, id)
pair of Pi with (no, id) pair of all other
processes and finally selects which
process goes to the CS

If Pj is having a Tnumber equal to 0, i.e. Pj is not interested to
enter its CS. So break this while loop, go back to for loop,
increment j and check next process

If Pj is interested to go to its CS, then check its ordered pair,
with ordered pair of Pi. If Pj’s (no, id) pair is less than Pi’s pair
then Pi wait in this loop, else move up to for loop, increment j
and check next process.

After leaving the CS, Pi set its Tnumber to 0,
showing that it is now not interested to enter its
CS

29

Instructor: Muhammad Arif Butt, PhD

Bakery Algorithm
do {

choosing[i] = true;

Tnumber[i] = 1 + max(Tnumber[0], Tnumber[1],...);

choosing[i] = false;

for (j = 0; j < n; j++) {

while (choosing[j]);

while(Tnumber[j]!=0 && (Tnumber[j],j) < (Tnumber[i],i));}

<CS>

Tnumber[i] = 0;

<RS>

} while (1);

Before getting a Tnumber, every process
will first set its choosing to true and
later will set it to false.

This loop is going to compare the (no, id)
pair of Pi with (no, id) pair of all other
processes and finally selects which
process goes to the CS

If Process Pj is in the process of
getting a ticket number lets
wait.

If Pj is having a Tnumber equal to 0, i.e. Pj is not interested to
enter its CS. So break this while loop, go back to for loop,
increment j and check next process

If Pj is interested to go to its CS, then check its ordered pair,
with ordered pair of Pi. If Pj’s (no, id) pair is less than Pi’s pair
then Pi wait in this loop, else move up to for loop, increment j
and check next process.

After leaving the CS, Pi set its Tnumber to 0,
showing that it is now not interested to enter its
CS

30

Instructor: Muhammad Arif Butt, PhD

$100 QUESTION

Why does Lamport used a variable called choosing? What will happen if we don’t
use it?

31

Instructor: Muhammad Arif Butt, PhD

Busy Waiting

32

Instructor: Muhammad Arif Butt, PhD

Busy-Waiting Problem
● Busy waiting means that a process is waiting for a condition to be satisfied, sitting in a tight

loop, without relinquishing the CPU.

● Lets see a bigger picture:

○ Imagine there are 100 cooperating processes.

○ One process is executing in its CS.

○ 50 out of remaining 99 wants to get inside their CS.

○ These 50 processes are all spinning in their entry section.

○ Whenever the CPU is scheduled to them they keep spinning for the allocated time quantum,
instead of doing any useful work.

○ Thus wasting CPU cycles.

33

Instructor: Muhammad Arif Butt, PhD

Busy-Waiting Problem
Busy waiting not only waste precious CPU cycles, but it can also have effects like priority
inversion:

● Consider a system with two cooperating processes, H (high priority) and L (low priority).
● The scheduling rules are such that H is run whenever it is in ready state.
● At a certain moment, L is in its CS, and H becomes ready to run.

● L is preempted from it CS, and H executes.
● H now begins busy waiting, now due to low priority L is never scheduled while H is running.

● Process L never gets the chance to leave its CS and execute the Exit section, so H loops
forever.

● This situation is referred to as the priority inversion problem.

34

Instructor: Muhammad Arif Butt, PhD

Solution: Sleep and Wakeup
● In busy waiting whenever a process wants to enter its CS, it checks to see if the entry is allowed. If it
is not, the process just sits in a tight loop waiting until it is

● Busy waiting can be avoided, instead of spinning:
1. Block the process → put it in a waiting queue

2. Relinquishing the CPU (in a queue) → let other process run
3. Wait to be awakened at some appropriate time in the future

● Busy waiting can be avoided but incurs the overhead associated with putting a process to sleep (in a
queue) and having to wake it up when the appropriate program state is reached.

● sleep() is a system call that causes the caller to block, that is, be suspended until another process
wakes it up

● The wakeup(processID) signal waiting process to continue

● Next slide shows the producer consumer problem that uses these calls

35

Instructor: Muhammad Arif Butt, PhD

Sleep and Wakeup
#define N 100 // number of slots in the buffer
int count = 0; // number of items in the buffer
void producer(){

int item;

while (TRUE) {

item = produce_item(); // generate next item
if (count == N) sleep(); //if buffer is full, go to sleep
insert_item(item); //put item in buffer
count = count + 1; // increment count of items in buffer
if (count == 1) // if this is the first item in buffer

wakeup(consumer);

}

}

void consumer(){

int item;

while (TRUE) {

if (count == 0) sleep(); // if buffer is empty, go to sleep
item = remove_item(); // take item out of buffer
count = count - 1; // decrement count of items in buffer
if (count == N - 1) // if the buffer was full

wakeup(producer);

consume_item(item);

}

}

36

Instructor: Muhammad Arif Butt, PhD

Sleep and Wakeup

$100 QUESTION

Is there a race condition in the Producer Consumer code shown on previous slide?

37

Instructor: Muhammad Arif Butt, PhD

Overview of Concurrency
Control Mechanisms

38

Instructor: Muhammad Arif Butt, PhD

Concurrency Control Mechanisms

Concurrency control mechanisms are synchronization primitives and techniques used
to coordinate access to shared resources among multiple concurrent processes or
threads, ensuring data consistency, preventing race conditions, and maintaining

system correctness in multi-threaded/multi-process environments.

39

Instructor: Muhammad Arif Butt, PhD

Overview of Concurrency Control Mechanisms
• Software-level Synchronization Primitives: Implemented through collaboration between C

runtime libraries and the OS kernel. Examples include mutexes, spinlocks, condition variables,
barriers, semaphores, and read-write locks.

• Hardware-level Synchronization Primitives: Hardware-based concurrency control mechanisms
rely on special atomic CPU instructions (compare-and-swap and test-set-lock), that perform
indivisible/atomic operations. These instructions enable synchronization directly at the hardware
level without the need for kernel intervention or traditional locking mechanisms. Hardware atomics
are commonly used in high-performance, low-latency applications where the overhead of locks is
prohibitive.

• Compiler-level Synchronization Primitives: Higher-level concurrency control mechanisms are
provided by programming languages, compilers, and frameworks to simplify thread synchronization.
Instead of writing complex locking code manually, developers can use simple annotations or
directives. These tools automatically generate the necessary synchronization logic behind the scenes.
Examples include:

Ø Java’s synchronized keyword, which locks objects implicitly to prevent concurrent access.
Ø GCC’s __transaction_atomic, which allows blocks of code to run atomically, and rolling back changes if a

conflict is detected.
Ø C#'s lock(object) statement, which generates Monitor.Enter()/Monitor.Exit() calls wrapped in

try-finally blocks to guarantee lock release even during exceptions.
40

Instructor: Muhammad Arif Butt, PhD 41

To Do

Coming to office hours does NOT mean that you are academically weak!

