
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 5.2
Concurrency Control Mechanisms - I

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Data Sharing among Threads
● Thread-safe vs Reentrant Functions
● Overview of Concurrency Control Mechanisms
● Achieving Mutual Exclusion:

Ø Using pthread_mutex_t
Ø Using pthread_spinlock_t
Ø Using x86 H/W Instructions

● Synchronize Execution Phases:
Ø Using pthread_barrier_t

● Conditional Waiting:
Ø Using pthread_cond_t

● Classic Synchronization Problems
Ø Producer Consumer Problem
Ø Dining Philosopher Problem
Ø Reader-Writer Problem
Ø Sleeping Barber Problem 2

Instructor: Muhammad Arif Butt, PhD

Data Sharing among
Threads

3

Instructor: Muhammad Arif Butt, PhD

Data Sharing among Threads of a Process
What Data is Shared among Threads of a Process?
• Global Variables: Variables declared outside of all functions are accessible by all threads.
• Static Variables: Local variables with static keyword are shared across function calls and

threads.
• Heap Memory: Memory allocated on the heap (e.g., via malloc, new) is shared if its address is

stored in a global/static variable or passed to multiple threads.
• Object Members: If multiple threads operate on the same object instance, its data members

are shared.

What Data is not Shared among Threads of a Process ?
• Local Variables: The variables declared inside functions without static keyword are stored on

the Function Stack Frame. As each thread has its own FSF, so they get separate copies.
• Function Parameters: These are also stored on the FSF, therefore, each thread calling the

same function has its own copy of parameters.

4

Instructor: Muhammad Arif Butt, PhD

Example: Data Sharing (race1.c)

5

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc, NULL);

pthread_create(&t2, NULL, dec, NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

printf("balance:%ld\n", balance);

return 0;

}

void * dec(void * arg){
for(long i=0;i<100000000;i++)

balance--;
pthread_exit(NULL);

}

void * inc(void * arg){
for(long i=0;i<100000000;i++)

balance++;
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Example: Data Sharing (race1a.c)

6

long balance = 0;
void * inc(void * arg);
void * dec(void * arg);
int main(){

pthread_t t1, t2;
pthread_create(&t1, NULL, inc, NULL);
pthread_create(&t2, NULL, dec, NULL);
pthread_join(t1,NULL);
pthread_join(t2,NULL);
printf("balance:%ld\n", balance);
return 0;

}

void * dec(void * arg){
int temp = balance;
usleep(10000);
temp = temp - 1;
usleep(10000);
balance = temp;
pthread_exit(NULL);

}
void * inc(void * arg){

int temp = balance;
usleep(10000);
temp = temp + 1;
usleep(10000);
balance = temp;
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Example: Data Sharing (race2.c)

7

int charcount = 0;
void* f1(void * arg);
int main(int argc, char* argv[]){

pthread_t tid1, tid2;
pthread_create(&tid1, NULL, f1, (void*)argv[1]);
pthread_create(&tid2, NULL, f1, (void*)argv[2]);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
printf("Number of characters in both files: %d\n", charcount);
return 0;

}
void* f1(void* args){

char* filename = (char*)args;
char ch;
int fd = open(filename, O_RDONLY);
while((read(fd, &ch, 1)) != 0)

charcount++;
close(fd);
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Example: Data Sharing (race3.c)

8

char** ptr;
void * thread_function(void * localarg);
int main(){
pthread_t tid[2];
int thread_ids[2] = {0,1};
char* msg[2] = {"Hello from Arif", "Hello from PUCIT"};
ptr = msg;
for(int i=0;i<2;i++)
pthread_create(&tid[i], NULL, thread_function, (void*)&thread_ids[i]);
for(int i=0;i<2;i++)
pthread_join(tid[i], NULL);
return 0;
}

void * thread_function(void * localarg){
int myid = *((int*)localarg);
static int svar = 0;
printf("Thread %d starting...\n", myid);
int temp = svar; // Read
usleep(10000); // 10ms delay to increase race window
temp = temp + 1; // Modify
usleep(10000); // Another delay
svar = temp; // Write back
printf("[%d]: %s (svar = %d)\n", myid, ptr[myid], svar);
printf("Thread %d finishing...\n", myid);
pthread_exit(NULL);
}

Instructor: Muhammad Arif Butt, PhD

Summary of Data Sharing (race3.c)
Race Condition occurs when:
• Variable is shared between threads
• At least one thread writes/modifies the variable
• Access is not synchronized
Only svar meets all the above three criteria, which is why it’s the only variable with a race
condition in shareddata.c

Variable Shared? Race Condition? Reason
ptr Yes No Read-only access
svar Yes Yes Read-modify-write operations
msg Yes No Read-only access
myid No No Local variable (stack)
temp No No Local variable (stack)
tid No No Main thread only
thread_ids Partial No Different indices per thread

9

Instructor: Muhammad Arif Butt, PhD

Lec5.2/race1.c
Lec5.2/race1a.c
Lec5.2/race2.c
Lec5.2/race3.c

Data Sharing among
Threads

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

10

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Thread-safe Functions
vs

Reentrant Functions

11

Instructor: Muhammad Arif Butt, PhD

Four Classes of Thread unsafe Functions
Class I: Failing to protect shared variables:

● Multiple threads modify shared/global data simultaneously → race conditions.
● Solution: Use synchronization primitives to protect shared variable.

Class II: Relying on persistent state across invocations:
● Function assumes data stored from previous call is valid → concurrent calls overwrite it.
● Solution: Avoid persistent state, or protect with synchronization.

Class III: Returning a pointer to a static variable:
● All callers share the same static return buffer.
● Solution: Don’t return static memory, use caller-provided buffers, or thread local storage.

Class IV: Calling a thread unsafe function:
● A function itself may internally use globals/statics, or call other unsafe functions.
● Solution: Call thread safe or re-entrant versions of functions.

12

Instructor: Muhammad Arif Butt, PhD

Thread-safe vs Reentrant Function
Thread-safe Function
● A function that can be safely called by multiple threads at the same time even if they share data,

as it uses synchronization primitives to ensures consistent results.
● A thread-safe function should meet the following criteria:

○ Produce consistent behavior when invoked concurrently by multiple threads.
○ Uses local variables or synchronized access to shared variables.
○ Avoids unsynchronized calls to non-thread-safe functions.
○ May use locks to serialize access.

Reentrant Function
● A function that can be safely interrupted (e.g., by signals, recursion, or concurrent execution) and

re-entered before the previous execution completes. This is because each call uses its own data
and must not rely on shared mutable state.

● A reentrant function should meet the following criteria:
○ Uses only local (stack) data.
○ Avoids static or global variables - or accesses them in a fully isolated/atomic way.
○ Doesn’t call non-reentrant functions.

13

Instructor: Muhammad Arif Butt, PhD

Example 1: Reentrant vs Thread-safe

int temp;
void swap(int *x, int *y){

temp = *x;
*x = *y;
*y = t;

}

Is this function Thread-Safe?
No: The function uses a shared global variable temp, which is not
protected by any synchronization mechanism. If two threads call
swap() at the same time, they will both read and write temp
concurrently, leading to a race condition and corrupted results.

Is this function Reentrant?
No: A reentrant function must not use global or static data. Since
temp is a global variable, if the function is interrupted (e.g., by a
signal handler calling swap() again), it would overwrite temp mid-
execution, causing incorrect behaviour.

14

Instructor: Muhammad Arif Butt, PhD

Example 2: Reentrant vs Thread-safe

__thread int temp;

void swap(int *x, int *y) {
temp = *x;
*x = *y;
*y = temp;

}

Is this function Thread-Safe?
Yes: The function is thread-safe because:
• The variable temp is declared with __thread, making it

thread-local storage (TLS).
• Each thread gets its own independent copy of temp.
• Multiple threads can call swap() simultaneously without

interfering with each other’s temp variable.
• The parameters x and y are local to each function call on

each thread's stack.

Is this function Reentrant?
No: The function is not reentrant because:
• Even though t is thread-local, it's still global within each thread.
• If the same thread calls swap() recursively or from a signal handler, the calls will share the

same temp variable.
• This creates a race condition where nested calls can corrupt each other's intermediate state.

15

Instructor: Muhammad Arif Butt, PhD

Example 3: Reentrant vs Thread-safe

static int t;
void swap(int *x, int *y) {

int saved_t = t;
t = *x;
*x = *y;
*y = saved_t;
t = saved_t

}

Is this function Thread-Safe?
No: The function is not thread-safe because:
• The variable t is declared as static, making it global/shared

across all threads.
• Multiple threads calling swap() simultaneously will access and

modify the same t variable.
• This creates race conditions where one thread can overwrite

another thread's stored value in t.
• Even though the function attempts to save/restore t, the

save/restore operations themselves are not atomic.

Is this function Reentrant?
Yes: The function is reentrant because:
• It properly saves the original state of t at entry (saved_t = t).
• It restores the original state before exit (t = saved_t)
• Nested calls within the same thread will each have their own saved_t on the stack.
• Each level of recursion preserves and restores the global state correctly.

16

Instructor: Muhammad Arif Butt, PhD

Example 4: Reentrant vs Thread-safe

void swap(int *x, int *y){
int temp;
temp = *x;
*x = *y;
*y = t;

}

Is this function Thread-Safe?
Yes: The function is thread-safe because:
• It does not use any global or shared variable
• Multiple threads can call this function at the same time.

Is this function Reentrant?
Yes: The function is reentrant because:
• It uses only local variables.
• Does not perform I/O or use non-reentrant functions.
• If the function is interrupted by a signal handler that also

calls swap(), each invocation operates on its own stack
frame with its own temp variable. The interrupted call can
resume safely without any corruption of data.

17

Instructor: Muhammad Arif Butt, PhD

Reentrant Functions

Category Thread Unsafe Functions REENTRANT versions
Time asctime() asctime_r()

Time ctime() ctime_r()

Host Lookup (by name) gethostbyname() gethostbyname_r()

Host Lookup (by address) gethostbyaddr() gethostbyaddr_r()

Random numbers rand() rand_r()

Time conversion localtime() localtime_r()

Password hash crypt() crypt_r()

• In glibc, functions like asctime() return results in a static buffer, making them not thread-safe
because multiple threads may overwrite the same memory.

• Their reentrant counterparts, such as asctime_r(), take a caller-supplied buffer, ensuring per-
call storage and making them safe for concurrent use across threads.

18

// Thread-unsafe returns pointer to static buffer
char *s = asctime(localtime(&t));

// Thread-safe, uses caller-provided storage
char buf[26];
char *s = asctime_r(localtime_r(&t, &tm),buf);

So always compile your multi-threaded code with _REENTRANT defined:
$ gcc thread1.c -o thread1 -lpthread -D_REENTRANT

Instructor: Muhammad Arif Butt, PhD

Overview of Concurrency
Control Mechanisms

19

Instructor: Muhammad Arif Butt, PhD

Concurrency Control Mechanisms

Concurrency control mechanisms are synchronization primitives and techniques used
to coordinate access to shared resources among multiple concurrent processes or
threads, ensuring data consistency, preventing race conditions, and maintaining

system correctness in multi-threaded/multi-process environments.

20

Instructor: Muhammad Arif Butt, PhD

Overview of Concurrency Control Mechanisms
• Software-level Synchronization Primitives: Implemented through collaboration between C

runtime libraries and the OS kernel. Examples include mutexes, spinlocks, condition variables,
barriers, semaphores, and read-write locks.

• Hardware-level Synchronization Primitives: Hardware-based concurrency control mechanisms
rely on special atomic CPU instructions (compare-and-swap and test-set-lock), that perform
indivisible/atomic operations. These instructions enable synchronization directly at the hardware
level without the need for kernel intervention or traditional locking mechanisms. Hardware atomics
are commonly used in high-performance, low-latency applications where the overhead of locks is
prohibitive.

• Compiler-level Synchronization Primitives: Higher-level concurrency control mechanisms are
provided by programming languages, compilers, and frameworks to simplify thread synchronization.
Instead of writing complex locking code manually, developers can use simple annotations or
directives. These tools automatically generate the necessary synchronization logic behind the scenes.
Examples include:

Ø Java’s synchronized keyword, which locks objects implicitly to prevent concurrent access.
Ø GCC’s __transaction_atomic, which allows blocks of code to run atomically, and rolling back changes if a

conflict is detected.
Ø C#'s lock(object) statement, which generates Monitor.Enter()/Monitor.Exit() calls wrapped in

try-finally blocks to guarantee lock release even during exceptions.
21

Instructor: Muhammad Arif Butt, PhD

S/W Level Primitives (Pthread Library)
• Mutexes (Mutual Exclusion Locks): Binary locks ensuring only one thread can access a critical

section at a time. Threads block/sleep when lock is unavailable, yielding CPU to other threads. Use
a mutex when you need exclusive ownership of a critical section.

• Spinlocks: Like mutexes, spinlocks are also used to achieve mutual exclusion, but do busy waiting
instead of blocking, i.e., threads continuously poll for lock availability instead of blocking. Use
spinlocks when the CS is very short or scenarios where lock contention is rare.

• Barriers: Synchronization points where threads must wait until all participating threads reach the
barrier before any can proceed, ensuring coordinated execution phases. Use in parallel algorithms
where threads must complete one stage before starting the next.

• Condition Variables: Synchronization primitives that allow threads to wait for specific conditions
to become true, working in conjunction with mutexes to provide efficient blocking/waking
mechanisms. Use condition variable when you need threads to wait efficiently for a state change.
(e.g., producer-consumer wait for buffer not empty/full.

By default libpthread's mutexes, barriers and condition variables (which are POSIX standard) and spinlocks
(which are GNU/Linux extensions) are used by threads within the same process. However, if you place them in
shared memory and change their attribute to PTHREAD_PROCESS_SHARED, then they can also synchronize
cooperating processes.

22

Instructor: Muhammad Arif Butt, PhD

Achieving Mutual Exclusion

using pthread_mutex_t

23

Instructor: Muhammad Arif Butt, PhD

Thread Synchronization using MUTEX
● A Mutex (MUTual EXclusion) is a binary lock that ensures that

only one thread can access a critical section at a time. Threads
block/sleep when lock is unavailable, yielding CPU to other threads.
Use a mutex when you need exclusive ownership of a critical
section.

● A mutex has two possible states:
○ unlocked → not owned by any thread.
○ locked → exactly one thread owns it. It can never be owned by

two different threads simultaneously.
Share Resource

Mutex Lock System

Thread A

Thread B

Acquire or Release

ReleaseAcquire or

24

Instructor: Muhammad Arif Butt, PhD

Thread Synchronization using MUTEX
● If a thread tries to lock an already locked mutex, the

thread is blocked, until the mutex is released.
● Linux guarantees that no race condition occur among

threads attempting to lock the same mutex.

● Mutex provides both achieve both:
○ Mutual exclusion: prevent multiple threads

from accessing shared data simultaneously
○ Serialization: Enforce order in which threads

access shared resources

Thread A Thread B

mutex_var

Access

Blocked

Shared Resource

25

Instructor: Muhammad Arif Butt, PhD

How to use MUTEX?
1. Create and initialize a mutex variable
2. Several threads attempt to lock the mutex
3. Only one thread succeed → thread becomes owner of the mutex
4. The owner thread carry out operations on shared data
5. The owner threads unlock the mutex
6. Another waiting thread is allowed to acquire the mutex and repeat the process
7. After all work is done, the mutex is destroyed

26

Instructor: Muhammad Arif Butt, PhD

MUTEX Initialization

● The above function creates a mutex referenced by mut.
● The second argument is a pointer to pthread_mutexattr_t object that specifies mutex attributes,

which can specify the mutex type (normal, recursive, errorcheck), process sharing (private, shared). If
the attribute argument is set to NULL, the default mutex attributes are used.

Before using a mutex, it must be initialized. There are two ways to do this:
Static Initialization: Use this when the mutex is declared as a global or file-scope variable and
default attributes are fine. The macro PTHREAD_MUTEX_INITIALIZER sets up the mutex
automatically

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

Run time initialization: In all other cases, we must dynamically initialize the mutex by calling
pthread_mutex_init() function explicitly as shown:

pthread_mutex_t mut;

pthread_mutex_init(&mut, NULL);

27

Instructor: Muhammad Arif Butt, PhD

Locking, Unlocking and Destroying MUTEX

The lock() call will lock the pthread_mutex_t object referenced by mptr:
● If the mutex is unlocked → calling thread acquires the lock and continues.
● If the mutex is already locked → calling thread is blocked (put to sleep) until the mutex becomes available.
● Used when a thread is going to enter in its critical section.

The unlock() call release the mutex object referenced by mptr:
● If other threads are blocked on this mutex, one of them will be unblocked and allowed to acquire it. The

scheduling policy shall determine which thread shall acquire the mutex.
● This call should be made only by the owner thread.
● Used when a thread comes out of the CS.

The destroy() call destroys the mutex object referenced by mptr.

int pthread_mutex_lock(pthread_mutex_t *mptr);

int pthread_mutex_unlock(pthread_mutex_t *mptr);

int pthread_mutex_destroy(pthread_mutex_t *mptr);

28

Instructor: Muhammad Arif Butt, PhD

MUTEX Deadlocks
Be sure to observe following points to avoid deadlocks while using mutexes:
● No thread should attempt to lock or unlock a mutex that has not been initialized.
● Only the owner thread of the mutex (i.e the one which has locked the mutex) should unlock it.

● Do not lock a mutex that is already locked.
● Do not unlock a mutex that is not locked.

● Do not destroy a locked mutex.

29

Instructor: Muhammad Arif Butt, PhD

Achieving ME using phthread_mutex_t

30

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

pthread_mutex_t mut;

int main(){

pthread_t t1, t2;

pthread_mutex_init(&mut, NULL);

pthread_create(&t1, NULL, inc, NULL);

pthread_create(&t2, NULL, dec, NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

pthread_mutex_destroy(&mut);

printf("balance:%ld\n", balance);

return 0;

}

void * dec(void * arg){
for(long i=0;i<100000000;i++){

pthread_mutex_lock(&mut);
balance--;
pthread_mutex_unlock(&mut);

}
pthread_exit(NULL);

}

void * inc(void * arg){
for(long i=0;i<100000000;i++){

pthread_mutex_lock(&mut);
balance++;
pthread_mutex_unlock(&mut);

}
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/solrace1-mutex.c
Lec5.2/solrace2-mutex.c

CSP Solution using
pthread_mutex_t

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

31

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Achieving Mutual Exclusion

using pthread_spinlock_t

32

Instructor: Muhammad Arif Butt, PhD

Thread Synchronization using Spinlocks
● Like mutexes, spinlocks are also used to achieve mutual exclusion,

but do busy waiting instead of blocking, i.e., threads continuously poll
for lock availability instead of blocking. Use spinlocks when the CS is
very short or scenarios where lock contention is rare.

● A spinlock has two possible states:
○ unlocked → not owned by any thread.
○ locked → exactly one thread owns it. It can never be owned by

two different threads simultaneously. Share Resource

Spinlock Lock System

Thread A

Thread B

Acquire or Release

ReleaseAcquire or

33

Instructor: Muhammad Arif Butt, PhD

Spinlock Initialization

● The above function creates a spinlock object referenced by spin.
● The second argument can be either PTHREAD_PROCESS_PRIVATE or PTHREAD_PROCESS_SHARED.

In the second scenario the spinlock can be shared between processes, when placed in shared
memory.

Before using a mutex, it must be initialized. There are two ways to do this:
Static Initialization: Use this when the spinlock is declared as a global or file-scope variable and
default attributes are fine. The macro PTHREAD_SPINLOCK_INITIALIZER sets up the spinlock
automatically

pthread_spinlock_t spin = PTHREAD_SPINLOCK_INITIALIZER;

Run time initialization: In all other cases, we must dynamically initialize the spinlock by calling
pthread_spin_init() function explicitly as shown:

pthread_spinlock_t spin;

pthread_spin_init(&spin, PTHREAD_PROCESS_PRIVATE);

34

Instructor: Muhammad Arif Butt, PhD

Locking, Unlocking and Destroying Spinlock

The lock() call will lock the pthread_spinlock_t object referenced by spin:

● If the spinlock is unlocked → calling thread acquires the lock and continues.
● If the spinlock is already locked → calling thread actively spins (continuously polls the lock in a tight loop)

until the spinlock becomes available.
● Used when a thread is going to enter in its critical section.
The unlock() call release the pthread_spinlock_t object referenced by spin:

● If other threads are spinning on this spinlock, one of them will immediately detect the unlock and acquire it.
The scheduling policy shall determine which thread shall acquire the spinlock.

● This call should be made only by the owner thread.
● Used when a thread comes out of the CS.

The destroy() call destroys the pthread_spinlock_t object referenced by spin.

int pthread_spin_lock(pthread_spinlock_t *spin);

int pthread_spin_unlock(pthread_spinlock_t *spin);

int pthread_spin_destroy(pthread_spinlock_t *spin);

35

Instructor: Muhammad Arif Butt, PhD

Achieving ME using phthread_spinlock_t

36

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

pthread_spinlock_t spin;

int main(){

pthread_t t1, t2;

pthread_spin_init(&spin, PTHREAD_PROCESS_PRIVATE);

pthread_create(&t1, NULL, inc, NULL);

pthread_create(&t2, NULL, dec, NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

pthread_spin_destroy(&spin);

printf("balance:%ld\n", balance);

return 0;

}

void * dec(void * arg){
for(long i=0;i<100000000;i++){

pthread_spin_lock(&spin);
balance--;
pthread_spin_unlock(&spin);

}
pthread_exit(NULL);

}

void * inc(void * arg){
for(long i=0;i<100000000;i++){

pthread_spin_lock(&spin);
balance++;
pthread_spin_unlock(&spin);

}
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/solrace1-spinlock.c
Lec5.2/solrace2-spinlock.c

CSP Solution using
pthread_spinlock_t

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

37

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Achieving Mutual Exclusion

using x86 H/W Instruction

38

Instructor: Muhammad Arif Butt, PhD

H/W Level Synchronization Primitives
• H/W level synchronization does not mean that we are using some IC to handle the CS problem. It

basically mean that we are using instructions specified in the Instruction Set Architecture of a
processor to handle CSP.

• Disabling Interrupt: In a uni-processor environment, we can handle CSP, if we forbid/mask
interrupts (by setting MI bit to 1), while some shared variable is being modified. However, if a user
level program is given the ability to disable interrupts, then it can disable the timer interrupt.
Thus context switching will not take place, thus allowing it to use the CPU w/o letting other
processes to execute. In a multi-processor environment, it is not feasible to disable interrupts,
because it will only prevent processes from executing on the CPU in which interrupts are disabled.
Processes can execute on other CPUs and therefore does not guarantee mutually exclusive access
to program state. Moreover, disabling interrupts on all CPUs gives a great performance loss.
Therefore, disabling interrupts works, but safe to use only inside OS/kernel.

• Hardware-based concurrency control mechanisms rely on special atomic CPU instructions
(compare-and-swap and test-set-lock), that perform indivisible/atomic operations.

• These instructions enable synchronization directly at the hardware level without the need for
kernel intervention or traditional locking mechanisms.

• Hardware atomics are commonly used in high-performance, low-latency applications where the
overhead of locks is prohibitive. 39

Instructor: Muhammad Arif Butt, PhD

Structure of CSP by Disabling Interrupts

do {

Disable Interrupts

<Critical Section>

Enable Interrupts

<Remainder Section>

} while(true);

Non Critical Section

Non Critical Section

EXIT SECTION

ENTRY SECTION

Critical Section

40

Instructor: Muhammad Arif Butt, PhD

The compare_and_swap Instruction of x86

• If the lock and expected value are both same, i.e., zero that means the lock is free. In this case the
function replace the lock with the new_value (normally set to 1, i.e., occupied) and returns true.
So the thread has acquired the lock and can proceed to critical section.
• But if the lock and expected do not match, that means, some other thread has changed the lock

to 1 (i.e., occupied). In this case the function returns false and the thread can try again to acquire
the lock.

41

bool compare_and_swap(int *lock, int expected, int new_value) {

if (*lock == expected) { // COMPARE step
*lock = new_value; // SWAP step

return true; // Success!
} else

return false; // Failed - someone else changed it

}

The function executes as an atomic instruction: the comparison and assignment happen as one indivisible
operation that cannot be interrupted.

Instructor: Muhammad Arif Butt, PhD

Achieving ME using x86 compare_and_swap instr

42

long balance = 0;
volatile int lock = 0;
void acquire_lock(){

while (1) {
int expected = 0;
if (__sync_bool_compare_and_swap(&lock, expected, 1))

break;
}

}

void release_lock() {
__sync_lock_release(&lock);

}

int main(){
pthread_t t1, t2;
pthread_create(&t1, NULL, inc, NULL);
pthread_create(&t2, NULL, dec, NULL);
pthread_join(t1,NULL);
pthread_join(t2,NULL);
printf("balance:%ld\n", balance);
return 0;

}
void * dec(void * arg){

for(long i=0;i<100000000;i++){
acquire_lock();
balance--;
release_lock();

}
pthread_exit(NULL);

}
void * inc(void * arg){

for(long i=0;i<100000000;i++){
acquire_lock();
balance++;
release_lock();

}
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/solrace1-hw.c

CSP Solution using
pthread_spinlock_t

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

43

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Synchronize Execution Phases

using pthread_barrier_t

44

Instructor: Muhammad Arif Butt, PhD

What is a Barrier?
• Barriers are synchronization points where a specified number of threads must all arrive

before any of them can proceed further. You can think of a barrier as a checkpoint where
threads must wait for their teammates before continuing.

• Key Characteristics of a barrier are:
o Threads that reach the barrier first, must wait.
o When the last thread arrives, ALL waiting threads are released simultaneously.
o The same barrier can be used multiple times for repeated synchronization.
o The number of participating threads is set at initialization.

• When to use barrier?
o Iterative algorithms (each iteration needs all threads to finish previous iteration).
o Pipeline stages (all threads must complete stage N before starting stage N+1).
o Parallel data processing (ensure all data is processed before aggregation).
o Scientific computing (synchronize computational phases in simulations).

45

Instructor: Muhammad Arif Butt, PhD

Operations on pthread_barrier_t Variable

• Barriers can only be initialized via pthread_barrier_init() function.
o The first argument barrier, is the object to be initialized.
o The second argument attr, specifies the barrier attribute, which is mostly kept NULL.
o The third argument count (>0), specifies the number of worker threads that much reach the barrier

before any are released. Once count threads arrive, all are simultaneously released.
• The pthread_barrier_wait() function creates a synchronization checkpoint for threads. When a thread

calls this function:
o The thread blocks at the barrier until exactly the required number of threads have also called

pthread_barrier_wait() on the same barrier object.
o Once all required threads arrive (specified in the count parameter), the barrier releases ALL waiting

threads simultaneously, allowing them to continue execution together.
• The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release any

resources used by the barrier.

int pthread_barrier_init(pthread_barrier_t *barrier,
const pthread_brrierattr_t *attr,
unsigned count);

int pthread_barrier_wait(pthread_barrier_t *barrier);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

46

Instructor: Muhammad Arif Butt, PhD

Example No Barriers: barrier1.c

47

void * worker(void * arg);

int main(){

pthread_t t1, t2, t3;

int id1=1, id2=2, id3=3;

pthread_create(&t1, NULL, worker, (void*)&id1);

pthread_create(&t2, NULL, worker, (void*)&id2);

pthread_create(&t3, NULL, worker, (void*)&id3);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

pthread_join(t3, NULL);

printf(”\nAll threads. Completed\n”);

return 0;

}

void * worker(void * arg){
int tid = *(int*)arg;

// Phase 1: Each thread does its work
printf("Thread %d: Starting Phase 1\n", tid);
sleep(tid); // Simulate different work times
printf("Thread %d: Finished Phase 1\n", tid);

//No barrier here – Threads proceed immediately to Phase 2

// Phase 2: Each thread does its work
printf("Thread %d: Starting Phase 2\n", tid);
sleep(1);
printf("Thread %d: Finished Phase 2\n", tid);

pthread_exit(NULL);
}

Instructor: Muhammad Arif Butt, PhD

Example Barriers: barrier2.c

48

void * worker(void * arg);

pthread_barrier_t phase_barrier;

int main(){

pthread_t t1, t2, t3;

int id1=1, id2=2, id3=3;

pthread_barrier_init(&phase_barrier, NULL, 3);

pthread_create(&t1, NULL, worker, (void*)&id1);

pthread_create(&t2, NULL, worker, (void*)&id2);

pthread_create(&t3, NULL, worker, (void*)&id3);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

pthread_join(t3, NULL);

pthread_barrier_destroy(&phase_barrier);

printf(”\nAll threads. Completed\n”);

return 0;

}

void * worker(void * arg){
int tid = *(int*)arg;

// Phase 1: Each thread does its work
printf("Thread %d: Starting Phase 1\n", tid);
sleep(tid); // Simulate different work times
printf("Thread %d: Finished Phase 1\n", tid);

// Threads wait for all threads to finish Phase 1
printf("Thread %d: Waiting at barrier …\n", tid);
pthread_barrier_wait(&phase_barrier;
printf("Thread %d: Passed barrier (all threads finished

Phase 1\n", tid);

// Phase 2: Each thread does its work
printf("Thread %d: Starting Phase 2\n", tid);
sleep(1);
printf("Thread %d: Finished Phase 2\n", tid);

pthread_exit(NULL);
}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/barrier1.c
Lec5.2/barrier2.c

Synchronizing
Execution Phases

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

49

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Conditional Waiting

using pthread_cond_t

50

Instructor: Muhammad Arif Butt, PhD

Why Condition Variables?

51

void * f1(void * arg);
int main(){

pthread_t t1, t2, t3;
int id1=1, id2=2, id3=3;
pthread_create(&t1, NULL, f1, (void*)&id1); //pass thread no
pthread_create(&t2, NULL, f1, (void*)&id2);
pthread_create(&t3, NULL, f1, (void*)&id3);
pthread_join(t1,NULL);
pthread_join(t2,NULL);
pthread_join(t3,NULL);
return 0;

}
void * f1(void * arg){

int tid = *(int*)arg;
char* messages[] = {"", "Learning is ", "fun with ", "Arif Butt"};
usleep(100000);
fprintf(stderr, "%s", messages[tid]); //print message
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/serialize1.c

Serialization using
Condition Variables

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

52

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

What is a Condition Variable?
• A condition variable is a synchronization construct that allows threads to suspend execution and relinquish the

processors until some condition/state is satisfied.
• The two basic operations on condition variables are:

o Signal(): Wake up a sleeping thread on this condition variable.
o Wait(): Release lock, goto sleep, reacquire lock after you are awoken up.

• Every condition variable works together with an associated mutex that protects the shared data representing
the condition being waited for. So we can say that a condition variable enables a thread to sleep inside a CS.
Any lock held by the thread is automatically released when the thread is put to sleep.

• The wait() call atomically releases the mutex and puts the thread to sleep, then automatically reacquires the
mutex when the thread wakes up. This prevents race conditions between checking the condition and going to
sleep.

53

Do printing

Condition variable cond

Exit

Waiting Area
Entrance

wait()

signal()

Waiting Threads

Checks for a
conditionMutex is for locking, while

condition variable is for waiting.

Instructor: Muhammad Arif Butt, PhD

Initializing pthread_cond_t Variable
Static Initialization: In case where default attributes are appropriate, the following
macro can be used to initialize a pthread_cond_t variable

﻿pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Run time initialization: In all other cases, we must dynamically initialize the condition
variable using pthread_cond_init()

﻿int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);

This function initializes the condition variable object pointed to by cond using the
condition attributes specified in attr. If attr is NULL, default attributes are used
instead. Linux Threads implementation supports no attributes for conditions, hence the
attr parameter is actually ignored.

54

Instructor: Muhammad Arif Butt, PhD

Operations on pthread_cond_t Variable
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

● The thread that calls pthread_cond_wait() atomically unlocks its second argument mutex
and waits for the condition variable cond to be signaled by suspending its execution.

● The pthread_cond_signal() restarts one of the threads that are waiting on the condition
variable cond. If no threads are waiting on cond, nothing happens. If several threads are
waiting on cond, exactly one is restarted, but it is not specified which.

● Unlike pthread_cond_signal() which wakes only one thread,
pthread_cond_broadcast() ensures that all waiting threads get a chance to check if the
condition they're waiting for has been satisfied. This is useful when the condition change might
affect multiple threads or when you're unsure which specific thread should handle the
condition.

55

Instructor: Muhammad Arif Butt, PhD

Serialization using Condition Variables

56

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int turn = 1;

void * f1(void * arg);
int main(){

pthread_t t1, t2, t3;

int id1=1, id2=2, id3=3;

pthread_create(&t1, NULL, f1, (void*)&id1);

pthread_create(&t2, NULL, f1, (void*)&id2);

pthread_create(&t3, NULL, f1, (void*)&id3);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

pthread_join(t3, NULL);

printf("\n\n");

return 0;

}

void * f1(void * arg){

int tid = *(int*)arg;

char* messages[] = {"", "Learning is ", "fun with
", "Arif Butt"};

pthread_mutex_lock(&mutex);

while(turn != tid)

pthread_cond_wait(&cond, &mutex);

usleep(100000);

fprintf(stderr, "%s", messages[tid]);

turn++; //increase the turn

pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&mutex);

pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.2/serialize2.c

Serialization using
Condition Variables

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

57

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Classic Synchronization
Problems

58

Instructor: Muhammad Arif Butt, PhD

Producer Consumer
Problem

59

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Problem
Producer produces information that is consumed by a consumer process. To allow
producer and consumer run concurrently we must have a buffer that can be filled
by the producer and emptied by the consumer. The buffer can be bounded or
unbounded
● Unbounded Buffer: Places no practical limit on the size of the buffer. The

consumer may have to wait for new items if the buffer is empty, but the
producer can always produce new items

● Bounded Buffer: Assumes a fixed size buffer. The consumer must wait if the
buffer is empty and the producer must wait if the buffer is full

While an item is being added to or removed from the buffer, the buffer is in an
inconsistent state. Therefore, threads must have exclusive access to the buffer. If
a consumer thread arrives while the buffer is empty, it blocks until a producer
adds a new item

60

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Problem (cont…)
Implicit Synchronization:

$ grep prog1.c | wc –l
grep is a producer process and wc is a consumer process. grep writes into the pipe
and wc reads from the pipe. The required synchronization is handled implicitly by the
kernel. If producer gets ahead of the consumer (i.e. the pipe fills up), the kernel puts
the producer to sleep when it calls write(), until more room is available in the pipe.
If consumer gets ahead of the producer (i.e. the pipe is empty), the kernel puts the
consumer to sleep when it calls read(), until some data is there in the pipe.

Explicit Synchronization:
When we as programmers are using some shared memory/data structure, we use some
form of IPC between the procedure and the consumer for data transfer. We also need
to ensure that some type of explicit synchronization must be performed between the
producer and consumer.

61

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Problem (cont…)
Process
Producer Thread 0

Producer Thread 1

Producer Thread 2

Producer Thread 9

Store items

buff[0]

buff[1]

buff[2]

0

1

2

fetch items

Each producer thread obtains a mutex lock and then
accesses the buffer and places a number at that
location. Producer must block, when the buffer is full.
Moreover, producer must signal to a blocked
consumer on empty buffer.

Consumer Thread 0

Consumer Thread 1

Consumer Thread 2

Consumer Thread 9
1000buff[999]

Each consumer thread obtains a mutex lock and then
accesses the buffer and removes the number from that
location. Consumer must block when the buffer gets
empty. Moreover, consumer must signal to a blocked
producer on full buffer.

62

Instructor: Muhammad Arif Butt, PhD

Use of pthread_cond_t to Notify

Local Data

void placeitem()

void takeitem()

.

.

.

Condition variable full

Condition variable empty

Exit

Waiting Area
Entrance

wait()

signal()

signal()

wait()

Producer Threads

Consumer Threads

63

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Problem (Un-Bounded Buffer)

64

buffer = [];
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t itemAvailable = PTHREAD_COND_INITIALIZER;

Producer
do {

item = produceItem();

pthread_mutex_lock(&mutex);

placeItem(buffer, item);

pthread_cond_signal(&itemAvailable);

pthread_mutex_unlock(&mutex);

} while(1);

Consumer
do {

pthread_mutex_lock(&mutex);

while (isEmpty(buffer))

pthread_cond_wait(&itemAvailable, &mutex);

item = takeItem(buffer);

pthread_mutex_unlock(&mutex);

consumeItem(item);

} while(1);

Instructor: Muhammad Arif Butt, PhD

Producer Consumer Problem (Bounded Buffer)

65

buffer = [SIZE];
int count = 0; //current number of items in buffer
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t itemAvailable = PTHREAD_COND_INITIALIZER;// items available to consume
pthread_cond_t spaceAvailable = PTHREAD_COND_INITIALIZER; // space available to produce

Producer
do {

item = produceItem();
pthread_mutex_lock(&mutex);
while (count == SIZE)

pthread_cond_wait(&spaceAvailable, &mutex);
placeItem(buffer, item);
count++;
pthread_cond_signal(&itemAvailable);
pthread_mutex_unlock(&mutex);

} while(1);

Consumer
do {

pthread_mutex_lock(&mutex);
while (count == 0)

pthread_cond_wait(&itemAvailable,&mutex);
item = takeItem(buffer);
count--;
pthread_cond_signal(&spaceAvailable);
pthread_mutex_unlock(&mutex);
consumeItem(item);

} while(1);

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher
Problem

66

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher Problem

67

• Five Chinese philosophers, who spend their
lives just thinking and eating

• Sit on a round table with five plates of rice and
five chopsticks

• A philosopher requires two chopsticks to eat (so
at a time a maximum of two philosophers can
eat)

• Protocol used for eating:
o Picks up left chopstick and then right

chopstick, one at a time in either sequence
o If successful in acquiring two chopsticks, the

philosopher eats for a while, then puts down
the chopstick and continues to think

o One fine day all became hungry at a time. All
pick up the left chopstick first and then look
for the right chopstick, which was not there.
They did not fight like us but waited and
waited and waited and finally starved to
death. Sad day in China….

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher Problem (Deadlock Version)

68

pthread_mutex_t chopstick[5]; // 5 chopsticks, all initialized
for (int i = 0; i < 5; i++) // Initialize chopsticks

pthread_mutex_init(&chopstick[i], NULL);

Philosopheri
do {

think();
pthread_mutex_lock(&chopstick[i]); // pick up left chopstick
pthread_mutex_lock(&chopstick[(i+1)%5]); // pick up right chopstick
eat();
pthread_mutex_unlock(&chopstick[(i+1)%5]);// put down right chopstick
pthread_mutex_unlock(&chopstick[i]); // put down left chopstick

} while(1);

DEADLOCK SCENARIO:
• All 5 philosophers pick up their left chopstick simultaneously
• Each waits for right chopstick, but it's held by the next philosopher - Circular wait → DEADLOCK!
• Everyone starves to death.

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher Problem (Asymmetric Solution)

69

pthread_mutex_t chopstick[5]; // 5 chopsticks, all initialized
for (int i = 0; i < 5; i++) // Initialize chopsticks

pthread_mutex_init(&chopstick[i], NULL);

Philosopheri
do {

think();
if (i == 4){ //last philosopher picks up in reverse order

pthread_mutex_lock(&chopstick[(i+1)%5]); // pick up right chopstick
pthread_mutex_lock(&chopstick[i]); // pick up left chopstick

}else{ // others picks up left first
pthread_mutex_lock(&chopstick[i]); // pick up left chopstick
pthread_mutex_lock(&chopstick[(i+1)%5]); // pick up right chopstick

}
eat();
pthread_mutex_unlock(&chopstick[(i+1)%5]);// put down right chopstick
pthread_mutex_unlock(&chopstick[i]); // put down left chopstick

} while(1);

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher Problem (Maximum Concurrent Dinners)

70

pthread_mutex_t chopstick[5]; // 5 chopsticks, all initialized
for (int i = 0; i < 5; i++) // Initialize chopsticks

pthread_mutex_init(&chopstick[i], NULL);
pthread_mutex_t diningRoom = PTHREAD_MUTEX_INITIALIZER;
int diningCount = 0;
const int MAX_DINERS = 4; // Allow only 4 philosophers to dine simultaneously

Philosopheri
do {

think();
// Entry to dining room

pthread_mutex_lock(&diningRoom);
while (diningCount >= MAX_DINERS) {

pthread_mutex_unlock(&diningRoom);
usleep(1000); // brief delay
pthread_mutex_lock(&diningRoom);

}
diningCount++;
pthread_mutex_unlock(&diningRoom);

Philosopheri
// Pick up chopsticks

pthread_mutex_lock(&chopstick[i]);
pthread_mutex_lock(&chopstick[(i+1)%5]);
eat();
// Put down chopsticks

pthread_mutex_unlock(&chopstick[(i+1)%5]);
pthread_mutex_unlock(&chopstick[i]);

// Exit dining room
pthread_mutex_lock(&diningRoom);
diningCount--;
pthread_mutex_unlock(&diningRoom);

} while(1);

Instructor: Muhammad Arif Butt, PhD

Dining Philosopher Problem (Condition Variables)

71

// Shared variables
typedef enum {THINKING,HUNGRY,EATING} philosopher_state_t;

philosopher_state_t state[5] = {THINKING, THINKING,
THINKING, THINKING, THINKING};

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t self[5];

for (int i = 0; i < 5; i++)
pthread_cond_init(&self[i], NULL);

// Helper function to test if philosopher i can eat
void test(int i) {

if (state[i] == HUNGRY && //I am hungry
state[(i+4)%5] != EATING && //left not eating
state[(i+1)%5] != EATING)//right not eating

{
state[i] = EATING;
pthread_cond_signal(&self[i]);

}
}

Philosopheri
do {

think();
// Try to eat

pthread_mutex_lock(&mutex);
state[i] = HUNGRY;
test(i);//see if both chopsticks are available
while (state[i] != EATING)

pthread_cond_wait(&self[i], &mutex);
pthread_mutex_unlock(&mutex);
eat();
pthread_mutex_lock(&mutex);
state[i] = THINKING;
test((i+4)%5);// check if left neighbor can eat

test((i+1)%5);// check if right neighbor can eat

pthread_mutex_unlock(&mutex);
} while(1);

Instructor: Muhammad Arif Butt, PhD

Reader-Writer Problem

72

Instructor: Muhammad Arif Butt, PhD

Reader Writer Problem
For successful read-write operations, following conditions must be satisfied:
• Two or more readers can access shared data simultaneously.
• Only one writer can access it at a time.
• If a writer is writing to the file, no reader may read it.

Readers have Priority
• If one or more readers are reading a shared resource and some other readers and writers also

want to access that shared resource; we will let the readers read and writers wait until there is no
reader reading the shared resource.

• If a reader want to read, it wait for a minimum amount of time.

Writers have Priority
• If one or more readers are reading a shared resource and some other readers and writers also

want to access that shared resource; we will NOT let any further readers to come in and read,
rather let the old readers finish reading and let a writer write.

• If a writer wants to write, it waits for minimum amount of time.

73

R R
R

W

Instructor: Muhammad Arif Butt, PhD

Reader Writer Problem (Readers have Priority)

74

int readCount = 0; // number of active readers
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; // protects readCount
pthread_mutex_t wrt = PTHREAD_MUTEX_INITIALIZER; // writer exclusion

Writer
do {

pthread_mutex_lock(&wrt);//acquire write access
// CRITICAL SECTION - WRITING IS PERFORMED

performWriting();

pthread_mutex_unlock(&wrt); //release write access

} while(1);

Reader
do {

pthread_mutex_lock(&mutex);
readCount++;
if (readCount == 1)//1st reader block writers

pthread_mutex_lock(&wrt);
pthread_mutex_unlock(&mutex);

// CRITICAL SECTION - READING IS PERFORMED
performReading();
pthread_mutex_lock(&mutex);
readCount--;
if (readCount == 0)//last reader allow writers

pthread_mutex_unlock(&wrt);
pthread_mutex_unlock(&mutex);

} while(1);

Instructor: Muhammad Arif Butt, PhD

Sleeping Barber Problem

75

Instructor: Muhammad Arif Butt, PhD

Sleeping Barber Problem
A barber shop consists of a room with n waiting chairs and one barber
chair:
• If there are no customers to be served the barber goes to sleep.
• If a customer arrives and the barber is asleep, the customer wakes up

the barber.
• If the barber is busy, but chairs are available, then the customer sits

on one of the free chairs.
• If a customer enters barber shop and all chairs are occupied, then the

customer leaves the shop.

76

Customer

– Check if chair available, if not leave.

– Inform barber that I have arrived.

– Wait until barber cuts his hair.

Barber

– Sleep until a customer wakes him up.

– Service customer (during that remember to update available chairs).

– Tell customer to leave after finished.

– Repeat for other customers.

Instructor: Muhammad Arif Butt, PhD 77

To Do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video on Synchronization among threads
https://youtu.be/SvFr7rPWI3g?si=QVdmv9njl0342EBN

● Write down working C programs for the classic synchronization
problems discussed in the lecture slides.

https://youtu.be/SvFr7rPWI3g?si=QVdmv9njl0342EBN

