
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 5.3
Concurrency Control Mechanisms - II

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Recap: Concurrency Control Mechanisms
● Introduction to Semaphores
● System-V vs POSIX API for Semaphores
● POSIX Un-named Semaphores

Ø Achieving Mutual Exclusion
Ø Achieving Serialization
Ø Using Counting Semaphores

● POSIX Named Semaphores
Ø Achieving Mutual Exclusion
Ø Achieving Serialization
Ø Using Counting Semaphores

● Challenges with Synchronization Primitives
2

Instructor: Muhammad Arif Butt, PhD

Recap
Concurrency Control Mechanisms

3

Instructor: Muhammad Arif Butt, PhD

Concurrency Control Mechanisms

Concurrency control mechanisms are synchronization primitives and techniques used
to coordinate access to shared resources among multiple concurrent processes or
threads, ensuring data consistency, preventing race conditions, and maintaining

system correctness in multi-threaded/multi-process environments.

4

Instructor: Muhammad Arif Butt, PhD

Overview of Concurrency Control Mechanisms
• Software-level Synchronization Primitives: Implemented through collaboration between C

runtime libraries and the OS kernel. Examples include mutexes, spinlocks, condition variables,
barriers, semaphores, and read-write locks.

• Hardware-level Synchronization Primitives: Hardware-based concurrency control mechanisms
rely on special atomic CPU instructions (compare-and-swap and test-set-lock), that perform
indivisible/atomic operations. These instructions enable synchronization directly at the hardware
level without the need for kernel intervention or traditional locking mechanisms. Hardware atomics
are commonly used in high-performance, low-latency applications where the overhead of locks is
prohibitive.

• Compiler-level Synchronization Primitives: Higher-level concurrency control mechanisms are
provided by programming languages, compilers, and frameworks to simplify thread synchronization.
Instead of writing complex locking code manually, developers can use simple annotations or
directives. These tools automatically generate the necessary synchronization logic behind the scenes.
Examples include:

Ø Java’s synchronized keyword, which locks objects implicitly to prevent concurrent access.
Ø GCC’s __transaction_atomic, which allows blocks of code to run atomically, and rolling back changes if a

conflict is detected.
Ø C#'s lock(object) statement, which generates Monitor.Enter()/Monitor.Exit() calls wrapped in

try-finally blocks to guarantee lock release even during exceptions.
5

Instructor: Muhammad Arif Butt, PhD

S/W Level Primitives (Pthread Library)
• Mutexes (Mutual Exclusion Locks): Binary locks ensuring only one thread can access a critical

section at a time. Threads block/sleep when lock is unavailable, yielding CPU to other threads. Use
a mutex when you need exclusive ownership of a critical section.

• Spinlocks: Like mutexes, spinlocks are also used to achieve mutual exclusion, but do busy waiting
instead of blocking, i.e., threads continuously poll for lock availability instead of blocking. Use
spinlocks when the CS is very short or scenarios where lock contention is rare.

• Barriers: Synchronization points where threads must wait until all participating threads reach the
barrier before any can proceed, ensuring coordinated execution phases. Use in parallel algorithms
where threads must complete one stage before starting the next.

• Condition Variables: Synchronization primitives that allow threads to wait for specific conditions
to become true, working in conjunction with mutexes to provide efficient blocking/waking
mechanisms. Use condition variable when you need threads to wait efficiently for a state change.
(e.g., producer-consumer wait for buffer not empty/full.

By default libpthread's mutexes, barriers and condition variables (which are POSIX standard) and spinlocks
(which are GNU/Linux extensions) are used by threads within the same process. However, if you place them in
shared memory and change their attribute to PTHREAD_PROCESS_SHARED, then they can also synchronize
cooperating processes.

6

Instructor: Muhammad Arif Butt, PhD

Introduction to
Semaphores

Mutexes are optimized for locking, condition variables are
optimized for waiting, and semaphores can do both

7

Instructor: Muhammad Arif Butt, PhD

Introduction to Semaphores
• A semaphore is a synchronization primitive that can be initialized to any non-negative integer,

and can only be modified using two atomic operations:
o wait() or P(): Decrements the semaphore value by one:

If semaphore ≥ 0 → thread/process continues.
If semaphore < 0 → thread/process blocks (goes to waiting queue).

P() stands for proberen (to test) in Dutch.
o post() or V(): Increments the semaphore value by one:

If there are waiting threads → one is unblocked.
Otherwise, the semaphore value is just incremented

V() stands for verhogen (to increment) in Dutch.
• Types of Semaphores: Depending on which thread/process is unblocked on a post():

o Strong Semaphore, which ensures FIFO (First-In-First-Out) order of unblocking
o Weak Semaphores, does not guarantee order as any waiting thread may be chosen arbitrarily.

• Uses of Semaphores:
o Binary semaphore: Initialized with 1, to achieve mutual exclusion.
o Counting semaphore: Initialized with N, to allow N processes to access shared pool of resources.
o Signalling semaphore: Initialized to 0, used to serialize or signal between threads/processes.

8

Instructor: Muhammad Arif Butt, PhD

Achieving Mutual Exclusion (Binary Semaphores)
mutex m;

do {

lock(m);

<Critical Section>

unlock(m);

<Remainder Section>

} while (1);

• Mutex: Must always be unlocked by the same
thread that locked it (strict ownership model).
So we use mutex, when the same thread enters
and exits the critical section or while protecting
data structures where one thread owns the
entire operation.

• Semaphore: Can be posted by any thread,
regardless of which thread performed the wait
(no ownership concept). So we use semaphores
when one thread produces/acquires, and
another thread consumes/releases it. Moreover,
we use semaphores, when a signal handler
needs to release a lock (as only semaphore
post() is signal-safe).

semaphore s = 1;

do {

wait(s);

<Critical Section>

post(s);

<Remainder Section>

} while (1);
9

Instructor: Muhammad Arif Butt, PhD

5 3434 2

Counting Semaphores (Railway Analogy)

10
3

123

1

2

sem_value = 0sem_value = 1sem_value = 2

Instructor: Muhammad Arif Butt, PhD

3

6 5 45 34

11

sem_value = 2

3

sem_value = 1

1

2

sem_value = 0

Counting Semaphores (Railway Analogy)

Instructor: Muhammad Arif Butt, PhD

Signaling Semaphores (Serialization)
Example 1 Consider two processes P1 and P2 with statements A and B in them respectively. We
want that statement <print B> in P2 should be executed after statement <print A> in P1 is
executed. Give a semaphore based solution

Example 2 Consider three processes P1, P2 and P3. Instruction A in P1 executes after instruction B
in P2 is executed. Instruction B in P2 executes after instruction C in P3 has executed. Give a
semaphore based solution. (C < B < A)

P1
.
.
.

<print A>

post(s);
.
.

P2
.
.
.

wait(s);

<print B>
.
.

Semaphore s = 0;

12

Instructor: Muhammad Arif Butt, PhD

System-V vs POSIX
Semaphores

13

Instructor: Muhammad Arif Butt, PhD

System V vs POSIX Semaphores
• System V Semaphores: Complex IPC mechanism with semaphore arrays, atomic multi-operations, and

persistent lifecycle, but not signal-safe.
• POSIX Semaphores: Simple, modern API with signal-safe operations and automatic clean-up, but limited to

single-semaphore operations.

Aspect System V Semaphores POSIX Semaphores
Header File #include <sys/sem.h> #include <semaphore.h>

Creation API semget() with IPC keys sem_init() / sem_open()

Data Structure Semaphore arrays (sets) Individual semaphores
Scope Recommended for Inter-process Named: inter-process, Unnamed: threads
Atomicity Multiple semaphores atomically Single semaphore only
Persistence Survives process termination Auto-cleanup on exit
Signal Safety Not signal-safe sem_post() is signal-safe
Cleanup Manual (semctl() removal) Automatic destruction
Complexity High (IPC keys, arrays) Low (simple functions)
Portability Traditional Unix systems POSIX-compliant systems

14

Instructor: Muhammad Arif Butt, PhD

POSIX API for Semaphores
Named Semaphores

sem_open()

Unnamed /Memory Based Semaphores

sem_init()

sem_wait()

sem_trywait()

sem_post()

sem_getvalue()

sem_destroy()sem_close()

sem_unlink()
15

Unnamed semaphores default to thread-level
sharing but can synchronize processes when
initialized with pshared=1 and placed in shared
memory.

Named semaphores automatically provide process-
level synchronization through filesystem-based
naming that allows unrelated processes to access the
same semaphore object.

Instructor: Muhammad Arif Butt, PhD

POSIX
Un-named Semaphores

16

Instructor: Muhammad Arif Butt, PhD

Creating Unnamed Semaphores

Memory Based Semaphore Shared between two Processes

Thread 1

Memory Based Semaphore Shared between two Threads

Thread 2

Semaphore

One Process

Semaphore

Shared Memory
17

Instructor: Muhammad Arif Butt, PhD

Creating Unnamed Semaphores
int sem_init(sem_t *sem, int pshared, int value);

• The sem_init() library call initializes the unnamed semaphore at the address
pointed to by its first argument sem with value mentioned as third argument.

• If pshared is zero, then semaphore is shared between the threads of a process, and
sem has to be global, so that it is accessible among all the threads of a process.

• If pshared is non-zero, then semaphore is shared between processes, and sem has to
be located in a region of shared memory.

• After a successful call, the address of semaphore sem can be used as the argument to
sem_wait() and sem_post() calls by the processes or threads.

• Initializing a semaphore that has already been initialized results in undefined
behavior.

18

Instructor: Muhammad Arif Butt, PhD

Incrementing, Decrementing Semaphore
int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

• The sem_wait() library call decrements the semaphore pointed to by sem. If the
semaphore value is greater than zero, then the decrement proceeds, and the
function returns, immediately. If the semaphore currently has the value zero,
then the call blocks until the value of semaphore value rises above zero.

• The sem_post() library call increments the semaphore pointed to by sem. If the
semaphore's value becomes greater than zero, then another process or thread
blocked in a sem_wait() call will be woken up and proceed to lock the
semaphore.

• On success both the functions returns 0. On error, the value of the semaphore is
left unchanged, a -1 is returned and errno is set to indicate the error.

19

Instructor: Muhammad Arif Butt, PhD

Destroying Unnamed Semaphores
int sem_destroy(sem_t *sem);

• The sem_destroy() call destroys the unnamed semaphore at the address pointed to
by sem. Only a semaphore that has been initialized by sem_init() should be
destroyed using sem_destroy().

• Destroying a semaphore that other processes or threads are currently blocked on
produces undefined behavior.

• Using a semaphore that has been destroyed produces undefined results, until the
semaphore has been reinitialized using sem_init().

• On success the call returns 0. On error a -1 is returned, and errno is set to indicate
the error.

20

Instructor: Muhammad Arif Butt, PhD

Achieving ME using Un-named Semaphores

21

long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

sem_t s;

int main(){

pthread_t t1, t2;

sem_init(&s, 0, 1);

pthread_create(&t1, NULL, inc, NULL);

pthread_create(&t2, NULL, dec, NULL);

pthread_join(t1,NULL);

pthread_join(t2,NULL);

sem_destroy(&s);

printf("balance:%ld\n", balance);

return 0;

}

void * dec(void * arg){
for(long i=0;i<100000000;i++){

sem_wait (&s);
balance--;
sem_post (&s);

}
pthread_exit(NULL);

}

void * inc(void * arg){
for(long i=0;i<100000000;i++){

sem_wait (&s);
balance++;
sem_post (&s);

}
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.3/unnamed/
race-threads.c
solrace-threads.c

CSP Solution using
Un-named Semaphores

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

22

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Serialization using Un-named Semaphores

23

void* f1(void * arg);
void* f2(void * arg);
void* f3(void * arg);
sem_t semA, semB;
int main(){

pthread_t t1, t2;
sem_init(&semA, 0, 0);
sem_init(&semB, 0, 0);
pthread_create(&t1, NULL, f1, NULL);
pthread_create(&t2, NULL, f2, NULL);
pthread_join(t1,NULL);
pthread_join(t2,NULL);
pthread_join(t3,NULL);
sem_destroy(&semA);
sem_destroy(&semB);
printf("balance:%ld\n", balance);
return 0;

}

void * f1(void * arg){
sem_wait (&semB);
fprintf(stderr, “%s“, “ Arif Butt”);
pthread_exit(NULL);

}

void * f2(void * arg){
sem_wait (&semA);
fprintf(stderr, “%s“, “ fun with”);
sem_post (&semB);
pthread_exit(NULL);

}

void * f1(void * arg){
fprintf(stderr, “%s“, “Learning is”);
sem_post (&semA);
pthread_exit(NULL);

}

Instructor: Muhammad Arif Butt, PhD

Lec5.3/unnamed/
race-serialize.c
solrace-serialize.c

Serialization using Un-
named Semaphores

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

24

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Lec5.3/unnamed/
counting-sem.c

Counting Un-named
Semaphores

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

25

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

POSIX
Named Semaphores

26

Instructor: Muhammad Arif Butt, PhD

Creating a Named Semaphore

User Space

Kernel Space

/dev/shm/sem.name1

Process
A

Process
B

27

Instructor: Muhammad Arif Butt, PhD

Creating a named Semaphore
sem_t *sem_open(const char *name, int oflag, mode_t mode, int value);

● The sem_open() library call creates a new semaphore or opens an existing semaphore
identified by its first argument name of the form /somename, i.e., a null-terminated string of
up to NAME_MAX-4 (i.e., 251) characters consisting of an initial slash, followed by one or more
characters, none of which are slashes.

● The second argument oflag is mostly O_CREAT, in which case the semaphore is created if it
does not already exist. If both O_CREAT and O_EXCL are specified, then an error is returned if a
semaphore with the given name already exists.

● If O_CREAT is specified in oflag, then two additional arguments must be supplied. The mode
argument specifies the permissions to be placed on the new semaphore. The value argument
specifies the initial value for the new semaphore. Binary semaphores usually have an initial
value of 1, whereas counting semaphores often have an initial value greater than 1.

● The return value is a pointer to sem_t data type, which is then used as the argument to
sem_wait(), sem_post() and sem_close() calls.

28

Instructor: Muhammad Arif Butt, PhD

Closing and Removing a Named Semaphore

● A un-named semaphore is automatically closed on process termination, while a named
semaphore has to be closed by using the sem_close() library call and passing it the
sem_t variable received via a previous sem_open() call.

● However, closing a named semaphore does not remove it from the system, as they are at
least kernel-persistent. They retain their value even if no process currently has the
semaphore open.

● So to remove a named semaphore from the system we can use the sem_unlink() call. A
semaphore has a reference count of how many times they are currently open. Removing
of semaphore from filesystem occur when the reference count becomes zero and also after
the last process that has opened the semaphore calls sem_close().

● On the shell on Linux, you can use the rm(1) command to delete the related file in the
/dev/shm/ directory.

int sem_close(sem_t *sem);

int sem_unlink(const char *name);

29

Instructor: Muhammad Arif Butt, PhD

Mutual Exclusion using Named Semaphores

30

void inc();
void dec();
long *balance;
sem_t *sem;
int main(){
key_t key1 = ftok("file1", 65);
int shm_id1=shmget(key1, 8, IPC_CREAT | 0666);
balance = (long*)shmat(shm_id1, NULL, 0);
*balance=0;
sem = sem_open("/balance_sem", O_CREAT, 0666, 1);
int cpid = fork();
if (cpid == 0){

inc();
shmdt(balance);
exit(0);

}else{
dec();
waitpid(cpid,NULL,0);
fprintf(stderr, ”Balance is: %ld\n", *balance);
shmdt(balance);
shmctl(shm_id1, IPC_RMID, NULL);
sem_close(sem);
sem_unlink("/balance_sem");
return 0;

}
}

void inc(){
sem_wait(sem);
int temp = *balance;
usleep(100000);
temp = temp + 1;
usleep(100000);
*balance = temp;
sem_post(sem);
return;

}
void dec(){

sem_wait(sem);
int temp = *balance;
usleep(100000);
temp = temp - 1;
usleep(100000);
*balance = temp;
sem_post(sem);
return;

}

Instructor: Muhammad Arif Butt, PhD

Lec5.3/named/
race-processes.c
solrace-processes.c

CSP Solution using
Named Semaphores

GitHub Code Repository Link: https://github.com/arifpucit/OS-Codes

Demonstration

31

https://github.com/arifpucit/OS-Codes

Instructor: Muhammad Arif Butt, PhD

Challenges with
Synchronization Primitives

32

Instructor: Muhammad Arif Butt, PhD

Synchronization Primitives: Challenges
• All synchronization primitives (mutexes, condition variables, barriers, semaphores) share

fundamental challenge and that is they require distributed coordination across multiple threads
with global correctness requirements.

• Core Problems:
o Scattered Operations: Synchronization calls are distributed across multiple threads throughout

the codebase, making system-wide analysis and debugging extremely difficult.
o Initialization and Lifecycle Errors: Improper initialization, incorrect attributes, or resource

management mistakes can cause undefined behavior or system instability.
o Global Correctness Requirement: Every participating thread must follow the synchronization

protocol perfectly—there is no partial correctness in concurrent systems.
o Catastrophic Failure Mode: One programming error in any thread can cause system-wide

deadlocks, data corruption, or complete application failure.
• Above problems may result in following issues:
○ Violation of M.E: Multiple threads in Critical Sections simultaneously.
○ Deadlock: Threads waiting for each other in circular dependencies.
○ Starvation: Thread(s) are indefinitely blocked due to unavailability of a resource.

33

Instructor: Muhammad Arif Butt, PhD

Violation of Mutual Exclusion

P0
post(s);

<Critical Section>

nothing/wait(s);

…

P1
wait(s);

<Critical Section>

post(s);

…

Suppose the programmer wants to achieve mutual exclusion, but by mistake he/she has placed the
post operation before the wait operation in P0

● If P1 executes first, decrements s to 0 and enter its CS. Suppose a context switch occur, and P0
executes, and instead of a wait gives a post to s, and enter it CS. Both P0 and P1 are in CS, thus
M.E is violated.

Semaphore s = 1;

34

Instructor: Muhammad Arif Butt, PhD

Deadlock

wait(s1);

P0 P1

post(s1)

post(s2)

semaphore s1 = 1;

semaphore s2 = 1;

P0 P1

wait(s2);

post(s1);

post(s2);

1 1wait(s2);

wait(s1);

post(s2);

post(s1);

s1 s2

0 0

.

.

.

.

.

.

Blocked …

35

Deadlock is a situation, where a set of processes are stuck forever waiting for each other in a circular
wait → no progress possible.

Instructor: Muhammad Arif Butt, PhD

Starvation

P0
wait(s);

…

…

nothing/post(s);

P0
wait(s);

…

…

post(s);

36

Starvation is a situation, where a process keeps waiting indefinitely because it is never chosen (unfair
scheduling or resource allocation), even though progress by others continues.

👉 Deadlock = no one moves.
👉 Starvation = some move, one starves.

Instructor: Muhammad Arif Butt, PhD

Solutions and Best Practices

Best Practices:
• Proper Initialization: Always initialize synchronization objects before use and destroy them properly.
• Correct Attributes: Use appropriate mutex types, semaphore initial values, and condition variable

configurations.
• Resource Management: Implement proper clean-up and avoid leaks using RAII patterns where possible.
• Universal Compliance: Ensure all threads follow the synchronization protocol without exception.
• Error Handling: Design robust error paths that maintain synchronization invariants.
• Testing and Validation: Use thread sanitizers, stress testing, and static analysis tools.

One possible solution is use Compiler-level synchronization primitives, which shift the responsibility of enforcing
M.E / serialization form the programmer to the compiler. Instead of writing complex locking code manually,
developers can use simple annotations or directives. These tools automatically generate the necessary
synchronization logic behind the scenes. Examples include:
• Java’s synchronized keyword, which locks objects implicitly to prevent concurrent access.
• GCC’s __transaction_atomic, which allows blocks of code to run atomically, and rolling back changes if a

conflict is detected.
• C#'s lock(object) statement, which generates Monitor.Enter()/Monitor.Exit() calls wrapped in

try-finally blocks to guarantee lock release even during exceptions.

37

Instructor: Muhammad Arif Butt, PhD 38

To do

Coming to office hours does NOT mean that you are academically weak!

● Watch SP video on Programming with POSIX Semaphores
https://www.youtube.com/watch?v=KupTFYvxRnE

https://www.youtube.com/watch?v=KupTFYvxRnE

