
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 6.1
Contiguous Memory Allocation Schemes

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Overview of Memory
● Swapping
● Overlaying
● Address Binding

o Program-Time
o Compile-Time
o Load-Time
o Run-Time

● Overview of Memory Allocation Techniques
o Contiguous
o Non-Contiguous

● Address Translation in Contiguous Memory
● Contiguous Memory Allocation Techniques

o MFT
o MVT
o Buddy Partitioning Scheme

2

Instructor: Muhammad Arif Butt, PhD

Memory Overview

3

Instructor: Muhammad Arif Butt, PhD

Memory Hierarchy
The purpose of Memory Hierarchy is to obtain the highest possible access speed while

minimizing the total cost of the memory system.

Magnetic
Tapes

Magnetic
Disks

I/O
Processor

CPU

Main
Memory

Cache
Memory

Registers

Cache

Main Memory

Secondary Storage

Internet Storage

4

Instructor: Muhammad Arif Butt, PhD

Purpose Of Memory Management
• To ensure fair, secure, orderly and efficient use of memory
○ Fair means, fair distribution of memory among processes
○ Secure means, once a process is brought in memory it should not overwrite another process and must

never cross its address space
○ Orderly means, should follow some algorithm to allocate/deallocate the memory to processes
○ Efficient means, if a process needs 10KB, it should be given 10KB and not 100KB

• Above tasks can be performed by doing following:
○ Keeping track of used and free memory space
○ When, where and how much memory to allocate and deallocate
○ Swapping processes in and out of main memory

• Von Neumann vs. Harvard Architecture
○ In Von Neumann, we have a unified memory space for instructions and data. Simpler memory

management but potential security concerns.
○ In Harvard, we have separate memory spaces for instructions and data. Enhanced security but increased

complexity in memory allocation.
5

Instructor: Muhammad Arif Butt, PhD

Address Space Abstraction (Illusion vs Reality)

6

Aspect Application View
(Illusion)

Hardware View
(Reality) Enabling Mechanism

Memory Size Giant, virtually unlimited
address space

Limited physical RAM
(typically GBs) Virtual memory + demand paging

Memory Ownership Each process has private,
dedicated memory

All processes share same
physical memory pool Memory Management Unit (MMU)

Address Layout Consistent, predictable
address ranges

Fragmented, dynamic
physical addresses Address translation

Memory Access Direct access to any virtual
address

Complex mapping through
page tables Hardware address translation

Memory Protection Complete isolation from other
processes

Shared memory requiring
active protection Access control bits + privilege levels

Memory Expansion Memory appears infinitely
expandable

Fixed physical capacity,
expansion via storage Swapping to disk

Concurrency Each process runs in
isolation

Multiple processes compete
for same resources Context switching + memory mapping

Instructor: Muhammad Arif Butt, PhD

Swapping

7

Instructor: Muhammad Arif Butt, PhD

Swapping
Swapping is a memory management technique where a process is temporarily moved out of main
memory to a backing store (usually a disk) and later brought back for continued execution. This
allows the operating system to manage memory more efficiently, especially under multitasking or
priority-based scheduling.

Backing Store

● A fast disk large enough to hold memory images of all active processes.
● Must support direct access to memory images for quick retrieval.
● Acts as temporary storage during process swapping.

Roll Out, Roll In

● A variant of swapping used in priority-based scheduling.
● Roll Out: Lower-priority process is swapped out to free memory.
● Roll In: Higher-priority process is loaded into memory for execution.

8

Instructor: Muhammad Arif Butt, PhD

Schematic View Of Swapping

9

Instructor: Muhammad Arif Butt, PhD

Example: Swapping Cost Calculation
Given the following data, calculate the total swapping cost in time:
● Process Size = 1 MB
● Transfer Rate = 5 MB/sec
● Disk Latency = 8 milliseconds (0.008 sec)
● Seek Time = 0 (ignored)

Swapping involves two transfers:
● Swap Out (Memory → Disk)
● Swap In (Disk → Memory)

● Each transfer cost:
Transfer Time = Process Size / Transfer Rate = 1 / 5 = 0.2 sec
Total Time Per Transfer = Transfer Time + Latency = 0.2 + 0.008 = 0.208 sec

● So, total cost for both swap out and swap in:
Total Swapping Cost = 2 × 0.208 = 0.416 sec

10

Instructor: Muhammad Arif Butt, PhD

Overlaying

11

Instructor: Muhammad Arif Butt, PhD

Overlaying
Overlaying is a memory management technique that allows a process to execute even when its
total size exceeds the available physical memory. It works by retaining only the currently required
instructions and data in memory, while dynamically loading and unloading other parts as needed.
This approach is manually implemented by the programmer and is especially useful in systems
with limited memory resources.

Key Characteristics

● Only essential code and data segments are kept in memory at any given time.
● When new segments are needed, they replace the ones that are no longer required.
● The operating system does not manage overlays; instead, a user-defined overlay driver

controls the loading and unloading of segments.

12

Instructor: Muhammad Arif Butt, PhD

Example: Two-Pass Assembler
Consider a two-pass assembler with the following memory requirements:

Components Size (in KB) Description

Pass 1 70 KB Performs parsing and syntax analysis

Pass 2 80 KB Generates object code

Symbol Table 20 KB Stores language grammar; built during Pass 1

Common Routines 30 KB Shared functions used by both passes

● Total Process Size: 200 KB
● Available Memory: 150 KB
● Overlay Required: Yes

Since the total process size exceeds the available memory, overlaying is used to manage execution efficiently.

13

Instructor: Muhammad Arif Butt, PhD

Schematic View of Overlaying

14

Instructor: Muhammad Arif Butt, PhD

Address Binding

15

Instructor: Muhammad Arif Butt, PhD

Loading a Binary to Physical Memory
Program Loading is a process of copying a program from disk to main memory in order to make it a process

16

Physical Memory

Instructor: Muhammad Arif Butt, PhD

Core Components of Process Address Space

17

Components Description Purpose Memory Characteristics
Program Code Executable instructions Store compiled program logic Read-only, shared across instances
Global/Static Data Variables with program lifetime Store persistent application state Read-write, fixed size at compile time
Stack Function calls & local variables Manage execution context LIFO structure, grows/shrinks dynamically
Heap Dynamic memory allocation Runtime memory allocation Grows upward, managed by allocator

• We have seen as how a source file written in C is
transformed to a binary in elf format and how
that binary is loaded into memory.

• The logical address space is shown in the opposite
image having different sections of the process
address space.

• Remember the addresses of a process logical
address space starts from zero on wards.

Instructor: Muhammad Arif Butt, PhD

Overview of Address Binding

18

• Address binding is the process of mapping a program’s logical (or virtual) addresses, generated by
the CPU, to actual physical addresses in main memory.

• Since programs are typically written and compiled without knowing their exact memory location,
the operating system and supporting hardware must decide when and how this mapping occurs.

• Binding can happen at different stages:
o Program Time
o Compile Time
o Load Time
o Execution/Run Time

Instructor: Muhammad Arif Butt, PhD

Program-Time Address Binding
All actual physical addresses are directly specified by the
programmer in the program itself

Limitation:
• Very difficult for programmers to specify address
• Used normally in uni-process programming environment

PCB
-

JUMP 1424
-
-

LOAD 2224
-

-
-
-

data
-
-
-

Heap

Stack

P.A: 1024

1424

2224

19

Instructor: Muhammad Arif Butt, PhD

Compile-Time Address Binding
PCB

-
JUMP X

-
-

LOAD Y
-

-
-
-

data
-
-
-

Heap

Stack

X: 1424

Y: 2224

• At compile time, all symbolic and relative addresses in the program are resolved into
fixed absolute physical addresses, generating an executable that assumes a known and
static load location.

• If you know at compile time where the process will reside in memory, the absolute code
can be generated by the compiler.

• This approach eliminates address translation overhead at runtime, making it efficient
• However, it lacks flexibility. Process must reside in the same memory region for it to

execute correctly. If the addresses are not free, we cannot load the program for the
execution, even if lot of memory space is available

• This method is generally found in simple or embedded systems, or legacy environments
like DOS .COM programs

So in program time as well as in compile time address binding, we
can load a process in memory if and only if the absolute addresses
for instructions and data are free inside the memory

P.A: 1024

Instructor: Muhammad Arif Butt, PhD

Load-Time Address Binding
PCB

-
JUMP 400

-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

400

1200

0

21

• With load-time binding, the compiler produces relocatable
(relative) addresses, not fixed physical ones.

• Initially addresses within the process are relative to start
address and final binding is delayed until load time.

• When the program is loaded into memory by the OS loader, it
selects a free memory region and adds the appropriate base
value each logical address

PCB
-

JUMP 400
-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

x+ 400

x+ 1200

x

If the process is swapped out and then swapped in,
it has to be loaded in the same memory region.

Instructor: Muhammad Arif Butt, PhD

Run-Time Address Binding
PCB

-
JUMP 400

-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

400

1200

0

22

• Run-time address binding defers address mapping until the program runs.
Here, logical addresses are translated into physical ones dynamically, via
hardware (e.g., using a base register or modern MMU mechanisms), allowing
the OS to move the process in memory during execution.

• This supports advanced features like relocation, paging, swapping, and memory
protection—making it the default for most modern operating systems

Logical addresses are translated dynamically to
Physical addresses during execution using
hardware support like base-limit registers or an
MMU. More on this later J

Instructor: Muhammad Arif Butt, PhD

Memory Allocation
Techniques

23

Instructor: Muhammad Arif Butt, PhD

Memory allocation schemes used by operating systems can be broadly divided into two main categories:
Contiguous Memory Allocation:
• Multiprogramming with Fixed Tasks (MFT)
• Multiprogramming with Variable Tasks (MVT)
• Buddy Partitioning
Non Contiguous Memory Allocation:
• Segmentation
• Paging
• Paged Segmentation

CPU

TLB

MMU Translation
Mapping Memory

Physical
Address

Logical/Virtual
Address

24

Memory Allocation Techniques

All these techniques require the OS to translate the logical address to physical address

The Memory Management Unit (MMU) is a hardware unit (not
part of OS) built into the CPU (in modern x86-64 processors) It's
silicon circuitry that performs address translation (LA to PA) at
hardware speeds.

Translation Look-aside Buffer (TLB) is a small, dedicated,
superfast hardware cache of PTEs, which is looked by the
MMU to translate the LA before going to the Memory and
look for the corresponding PTE.

Instructor: Muhammad Arif Butt, PhD 25

Allocation
Techniques

Description Advantages Disadvantages

MFT Memory divided into fixed-sized
partitions, each assigned to a
process.

Simple implementation,
predictable partitioning.

Internal fragmentation (unused
space within partitions), inflexible,
multiprogramming limited.

MVT Partitions dynamically sized to
process needs; allocated at
runtime.

More efficient memory use
compared to fixed partitions

External fragmentation, complex
allocation and compaction required.

Buddy System Divides memory into power-of-two
blocks; splits and coalesces
“buddy” blocks as needed.

Reduces external fragmentation,
fast allocation/deallocation,
relatively easy to implement

Internal fragmentation due to
rounding up size; still some memory
waste; limited to power-of-two sizes.

Segmentation Memory divided into variable-sized
logical segments (e.g. code, data,
stack).

Logical program organization,
protection by segment, dynamic
allocation

External fragmentation, complex
address translation, harder to
manage.

Paging Divides both memory and
processes into fixed-size pages and
frames; uses page tables.

No external fragmentation,
straightforward allocation,
isolation between processes

Internal fragmentation (unused
space in pages), page table
overhead, address translation cost.

Paged
Segmentation

A hybrid: segments (logical units)
that are further divided into pages.

Logical grouping (like
segmentation) + fragmentation
reduction and protection (like
paging)

High complexity, two-level
translation overhead, management
complexity.

Memory Allocation Techniques

Instructor: Muhammad Arif Butt, PhD

Address Translation
in

Contiguous Memory Allocation

26

Instructor: Muhammad Arif Butt, PhD

Contiguous Memory Allocation

A memory management technique in which the entire process is loaded into a
single continuous block of physical memory. This approach simplifies address

translation and improves access speed but can lead to fragmentation and
inefficient memory utilization.

27

Instructor: Muhammad Arif Butt, PhD

Address Translation using Base Register

28

Base and limit registers are provided by the CPU/MMU for relocation and protection. They
don’t dictate how memory is divided among processes, rather are used to translate the logical address
to its corresponding physical address in contiguous memory allocation schemes.

Relocation: A process is compiled assuming it will start at address 0. But in reality, the OS can load
it anywhere in physical memory. This problem is resolved using the Base Register that holds the
starting physical address of the process’s allocated memory block. The CPU adds this base value to
every logical address generated by the process. This way, the same program can run no matter where
it is loaded → relocatable.

CPU
Instruction

Address

Base Address

Physical Address+
MMU

Logical Address

Memory

14346

14000

346

Base RegisterLogical / Virtual Addresses: An
address generated by the process /
CPU, that refers to an instruction or
data within the logical address space
of the process.

Physical Addresses. An address for a
main memory location where instruction or
data resides is called the physical address.
Set of all physical addresses corresponding
to the logical addresses comprises the
physical address space of that process.

Instructor: Muhammad Arif Butt, PhD

Translation using Base + Limit Register

29

Protection: A process should not access memory outside its allocated block, otherwise it might
overwrite another process’s data or OS memory. To ensure that a process stays inside its own
allocated region, we use the limit register that stores the maximum address in the process’s memory
partition. Every logical address generated by the CPU is checked:

• If logical address < limit, it is valid.
• If logical address ≥ limit, it triggers a memory protection fault (segmentation fault).

CPU
Address +<

Base RegisterLimit Register

Logical Address Physical Address

Memory Address Fault

346

310 14000

contains start of the
process’s memory
partition

contains max address
in the process’s
memory partition

Base Address

Memory

Yes

No

In multi-programming scenarios, every process has its own value of base and limit register. So after
a context switch, the appropriate values are loaded in these two registers by the OS.

Instructor: Muhammad Arif Butt, PhD

Multiple Partitioning
with Fixed Tasks

30

Instructor: Muhammad Arif Butt, PhD

Multiprogramming with Fixed Tasks (MFT)
• In MFT memory is divided into several fixed number of partitions (either

uniform or varied) at system start-up. Each partition holds exactly one process,
enabling simple multiprogramming. This is simple but leads to internal
fragmentation (unused space inside partitions). Each process has a logical
address space starting at 0, mapped to a contiguous physical address elsewhere
in memory. When a partition becomes free, a process from the input queue is
loaded into it. Upon termination, the partition is reused.

• Equal-Size Partitions: Memory is divided into uniform partitions. Any
process ≤ partition size can be loaded into an available partition. If no process
is ready/running, the OS may swap out a process to free space. Programs larger
than partition size require overlay design by the programmer. Leads to internal
fragmentation as small programs waste unused partition space.

• Unequal-Size Partitions: Partitions are of varying sizes, tailored to typical
program sizes. Reduces internal fragmentation by placing smaller programs in
smaller partitions. In the figure, programs up to 16 MB can be accommodated
without overlays.

Operating
system

8M

8M

8M

8M

8M

8M

8M

8M

Operating
system

8M

2M

4M

6M

8M

8M

12M

16M

Equal size partitions Unequal size partitions

31

Instructor: Muhammad Arif Butt, PhD

MFT with Multiple Input Queues

Partition 4

Partition 3

Partition 2

Partition 1

OS

100 K

300 K

200 K

150 K

Input
Queues

32

• Each partition has its own input queue.
• Incoming processes are placed into queues

based on size compatibility.
• When a partition becomes free, a process from

its dedicated queue is loaded.
• Offers fast allocation but limited flexibility, as

no placement algorithm is required.

Instructor: Muhammad Arif Butt, PhD

MFT with Single Input Queue
Partition 4

Partition 3

Partition 2

Partition 1

OS

100 K

300 K

200 K

150 K

Single Input
Queue

33

• A single queue serves all partitions, providing better memory
utilization and reduced fragmentation.

• When it is time to load / swap a process into main memory and if
there is more than one free block of memory of sufficient size, then
the OS must decide which free block to allocate. Required for MFT
(using single input queue) as well as for MVT.

First Fit: Scan memory from the beginning and allocate the first free block
that is large enough. Fast and simple, but may leave small unusable holes at
the beginning.
Next Fit: Similar to first fit, but the search continues from the last allocated
position instead of always starting at the beginning. Spreads allocations more
evenly across memory.
Best Fit: Find the smallest available block that is still big enough for the
process. Minimizes wasted space but can create many very small unusable
holes.
Worst Fit: Allocate the largest available block to the process. Leaves behind
big free spaces that may be useful later, but can also waste memory.

Instructor: Muhammad Arif Butt, PhD

Multiple Partitioning
with Variable Tasks

34

Instructor: Muhammad Arif Butt, PhD

Multiprogramming with Variable Tasks (MVT)
In MVT, memory partitions are created dynamically at runtime, sized
exactly to fit each process. Both the number and size of partitions vary
over time. Processes can be swapped out and reloaded into different
partitions, offering flexibility. Minimizes internal fragmentation,
though not entirely eliminated.

OS (8M)

P1
(20M)

P2
(14M)

P3
(18M)

Empty
(56M)

Empty (4M)

P4(8M)

Empty (6M)

P2
(14M)

Empty (6M)

64 MB

35

External Fragmentation
• Memory external to all processes is fragmented.
• Consider the memory snapshot, and suppose a new process of size 10

MB comes, it cannot be accommodated, although we do have 16 MB
free memory, but that is not contiguous.

• Solution to External Fragmentation is compaction. OS moves all
processes to the beginning of the memory, so that we have contiguous
free space at the end. Compaction is time consuming and wastes
CPU time.

Instructor: Muhammad Arif Butt, PhD

Buddy System Of
Partitioning

36

Instructor: Muhammad Arif Butt, PhD

Buddy System of Partitioning
Multiprogramming with Fixed Tasks (MFT) suffers from internal fragmentation, while

Multiprogramming with Variable Tasks (MVT) is prone to external fragmentation. To address these
limitations, the Buddy System offers a dynamic partitioning approach based on memory blocks sized as

powers of two.
In the Buddy System:
● Memory is allocated in blocks of size 2^i.
● If a free block of the exact required size exists, it is allocated directly.
● If not, the system locates the next larger block, splits it into two equal halves (buddies), and allocates

one half.
● These buddies are tracked in separate free lists for each block size.
● When both buddies of size 2^i become free, they are merged (coalesced) into a single block of size

2^{i+1}, reducing fragmentation.

This method ensures efficient memory utilization and simplifies block management through structured
splitting and merging

37

Instructor: Muhammad Arif Butt, PhD

Example

38

Instructor: Muhammad Arif Butt, PhD

Tree Representation

39

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 1: A system has 256 KB memory, divided into 4 equal partitions. Show how jobs are
allocated and calculate the internal fragmentation in each partition if a set of jobs arrive in
sequence: J1 (50 KB), J2 (60 KB), J3 (70 KB), J4 (120 KB).

Problem 2: A system has 500 KB free memory. Show memory allocation step by step for First-Fit
placement algorithm and calculate external fragmentation at the end. Jobs arrive in this order:
J1 (200 KB), J2 (100 KB), J3 (50 KB), J4 (175 KB). Jobs complete as follows:
J2 finishes first, then J3.

Problem 3: Show how the available memory of 810 KiB will accommodate following job sequence
with all the four placement algorithms using MVT.
J1 (90K),J2 (45K), J3 (180K), J4 (90K), J5 (135K), J6 (180K), J3 terminates,
J5 terminates, J7 (135K), J8 (180K), J7 AND J8 TERMINATE, J9(285K)

Problem 4: Show how the available memory of 2560 KiB will accommodate following job sequence
with all the four placement algorithms using MVT. OS Kernel takes 400 KiB.
P1 (600K), P2 (1000K), P3 (300K), P2 terminates, P4 (700K), P5 (500K)

40

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 5 Show how the available memory of 1MiB will be allocated using Buddy Memory
Allocation scheme.
(P1:100K),(P2:240K),(P3:64 K), (P4:256 K), P2 terminates, P1 terminates,
(P5:75K), P3 terminates, P4 terminates, P5 terminates

Problem 6 Consider a swapping system in which memory consists of the following hole sizes in
memory order: 10, 4, 20, 18, 7, 9, 12 and 5 KiBs
Which hole is taken for successive segment requests of
● 12 KiB
● 10 KiB
● 9 KiB

for First Fit?
Repeat the question for Best Fit, Worst Fit and Next Fit.

Problem 7 Show how the available memory of 1MiB will be allocated using Buddy Memory
Allocation scheme.
(P1:100K);(P2:240K);(P3:64 K); (P4:256 K), P2 terminates, P1 terminates,
(P5:75K), P3 terminates, P4 terminates, P5 terminates

41

Instructor: Muhammad Arif Butt, PhD

Sample Problems

42

Problem 8: Given five memory partitions of 100, 500, 200, 300 and 600 KiB (in order). How would
each of the First Fit, Best Fit and Worst Fit algorithms place processes of 212 K, 417 K, 112 K, and
426 K (in order)? Which algorithm makes the most efficient use of memory?

Problem 9 A swapping system eliminates empty slots by compaction. Assuming a random
distribution of many empty slots and many data segments. Time to read or write a 32 bit memory
word of is 10 nsec. How long does it take to compact 128 MiB? For simplicity, assume that word 0
is part of an empty slot and that the highest word in memory contains valid data.

Problem 10 A memory of 1024 KB is managed with Buddy System. Show how memory is allocated
and split at each step, if process requests arrive in following order:
P1 (120 KB), P2 (60 KB), P3 (370 KB), P4 (90 KB).

Instructor: Muhammad Arif Butt, PhD 43

To Do

Coming to office hours does NOT mean that you are academically weak!

• Carefully review all concepts discussed in class and go through the slides to
build a clear understanding of contiguous memory allocation schemes.

• Review the overview of memory management concepts (swapping, overlaying,
and address binding).

• Clearly differentiate between compile-time, load-time, and run-time binding,
and identify when each is used.

• Understand in detail the working of MFT, MVT, and Buddy Partitioning
Scheme with examples.

• Practice address translation problems in contiguous memory allocation using
base and limit registers.

• Draw memory layout diagrams for MFT, MVT, and Buddy System to
strengthen visualization.

• Prepare a list of possible exam-style short/long questions from today’s content
and try answering them without notes.

• Form small groups to discuss and cross-check answers for numerical and
conceptual questions.

