
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 6.2
Non-Contiguous Memory Allocation Schemes - I

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Overview of Non-Contiguous Memory Allocation
● Segmentation

o What is Segmentation?
o How segmentation work?
o LA to PA translation in Segmentation
o Sharing of Segments among Processes
o Example Problems

● Paging
o What is Paging
o How paging work?
o LA to PA translation in Paging
o Sharing of Pages among Processes
o Example Problems

● Where the Page Table is Kept?
o CPU registers
o Cache / TLB
o Memory
o LA to PA translation
o Example Problems

● Structure of Page Table and Address translation in
o Hierarchical PT
o Inverted PT
o Hashed PT
o Example Problems 2

Instructor: Muhammad Arif Butt, PhD

Overview of Non-contiguous
Memory Allocation Techniques

3

Instructor: Muhammad Arif Butt, PhD

Non-Contiguous Memory Allocation

A memory management technique in which a process is divided into smaller
parts that can be loaded into multiple non-adjacent blocks of physical memory.

This approach allows better utilization of available space and eliminates external
fragmentation, but it introduces additional overhead in address translation and
may suffer from internal fragmentation depending on the scheme (e.g., paging,

segmentation).

4

Instructor: Muhammad Arif Butt, PhD 5

Allocation
Techniques

Description Advantages Disadvantages

MFT Memory divided into fixed-sized
partitions, each assigned to a
process.

Simple implementation,
predictable partitioning.

Internal fragmentation (unused
space within partitions), inflexible,
multiprogramming limited.

MVT Partitions dynamically sized to
process needs; allocated at
runtime.

More efficient memory use
compared to fixed partitions

External fragmentation, complex
allocation and compaction required.

Buddy System Divides memory into power-of-two
blocks; splits and coalesces
“buddy” blocks as needed.

Reduces external fragmentation,
fast allocation/deallocation,
relatively easy to implement

Internal fragmentation due to
rounding up size; still some memory
waste; limited to power-of-two sizes.

Segmentation Memory divided into variable-sized
logical segments (e.g. code, data,
stack).

Logical program organization,
protection by segment, dynamic
allocation

External fragmentation, complex
address translation, harder to
manage.

Paging Divides both memory and
processes into fixed-size pages and
frames; uses page tables.

No external fragmentation,
straightforward allocation,
isolation between processes

Internal fragmentation (unused
space in pages), page table
overhead, address translation cost.

Paged
Segmentation

A hybrid: segments (logical units)
that are further divided into pages.

Logical grouping (like
segmentation) + fragmentation
reduction and protection (like
paging)

High complexity, two-level
translation overhead, management
complexity.

Memory Allocation Techniques

Instructor: Muhammad Arif Butt, PhD

LA to PA Address Translation

6

Logical / Virtual Addresses: An
address generated by the process /
CPU, that refers to an instruction or
data within the logical address space
of the process.

Physical Addresses. An address for a
main memory location where instruction
or data resides is called the physical
address. Set of all physical addresses
corresponding to the logical addresses
comprises the physical address space of
that process.

Instructor: Muhammad Arif Butt, PhD

Segmentation

7

Instructor: Muhammad Arif Butt, PhD

What is Segmentation?

Segmentation is a non-contiguous memory allocation technique in which a
program is divided into variable-sized logical units called segments (such as code,

data, and stack), each with its own base and limit. The operating system maps
these segments independently into physical memory, enabling logical

organization, protection, and sharing, though it can suffer from external
fragmentation.

8

Instructor: Muhammad Arif Butt, PhD

How Segmentation Work?
Key Features:
• Divides a program into variable-sized logical units (segments) like code, data, stack.
• Each segment has its own base (starting address) and limit (length).
• Provides logical view of memory aligned with how programs are structured.
• Allows independent protection and sharing at the segment level.

Advantages:
• Reflects programmer’s logical program structure (modules, arrays, procedures).
• Enables fine-grained protection and controlled sharing of specific segments.
• Supports dynamic segment growth/shrinkage (e.g., stack expansion).
• Facilitates modular programming and separate compilation.

9

Disadvantages:
• Leads to external fragmentation, since segments are variable-

sized.
• Complex address translation (needs segment table lookup).
• Segment tables can be large, requiring extra memory and

management overhead.
• Slower access compared to simple contiguous schemes due to

table lookup.

Instructor: Muhammad Arif Butt, PhD

Segmentation: LA to PA Translation

<

Segment Table

limit base

(s,d)

s

Memory

+y

n

error

CPU

Ensure that s < STLR. If
yes then adds STBR to it
and then index the
segment table.

PA

Base contains the base address of
the segment where the segment
resides in memory.

Logical address = <segment#, offset>
Each segment table entry has two values:
• Base contains the starting physical address where that segment resides in memory.
• Limit specifies the length of that specific segment.
Segment Table Base Register (STBR): Points to the starting address of segment table in memory
Segment Table Length Register (STLR): Holds no. segments of program
A logical address is valid if s< STLR and offset < limit

10

Instructor: Muhammad Arif Butt, PhD

Segmentation: Example

Segment 0

Segment 3

Segment 2

Segment 4

Segment 1

1400

2400

3200

4300

6300

4700

5700

67000
1
2
3
4

Segment Table

limit base

1000
400
400
1100
1000

1400
6300
4300
3200
4700

Subroutine

Segment 0

Stack

Segment 3

SQRT

Segment 1

Main
Program

Segment 2

Symbol
Table

Segment 4

Logical Address Space

11

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 1 Consider the given segment table, What are the physical
addresses for the following logical addresses?
● (2,399)

● (4,0)

● (4,1000)

● (3,1300)

● (6,297)

Problem 2 Consider the given segment table, What are the physical
addresses for the following logical addresses?
● (0,430)

● (1,10)

● (2,500)

● (3,400)

● (4,112)

Segment Table

Segment # Length Base

0 1000 1400

1 400 6300

2 400 4300

3 1100 3200

4 1000 4700

Segment Table

Segment # Length Base

0 600 219

1 14 2300

2 100 90

3 580 1327

4 96 1952

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 3 Consider the given segment table, What are the physical addresses
for the following logical addresses:
● (0, 0)

● (2, 120)

● (6, 10)

● (5, 3399)

● (4, 1200)

● (0, 99)

Segment # Length Base

0 100 12000

1 1200 12100

2 190 13300

3 444 15500

4 19308 18008

5 3400 5000

Problem 4 Consider the above segment table, if segment table base register (STBR) contains 36500 and segment
table entry size (STES) is 64 bits then what will be size of segment table? Also compute the address of the last
entry?

13

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 5 Compare between Segmentation and Base/Bound Address Translation Techniques
• Segmentation divides a process into multiple variable-sized logical units, while Base/Bound treats the process as a single continuous block.
• Segmentation uses a segment table (multiple base/limit pairs), while Base/Bound uses only one base and one limit register per process.
• Segmentation supports logical separation of code, data, and stack, whereas Base/Bound provides only relocation and protection for entire process
• Segmentation allows fine-grained protection and sharing at the segment level, while Base/Bound allows protection only for the whole process.
• Segmentation can suffer from external fragmentation, while Base/Bound faces the same limitation but with less flexibility.

14

Instructor: Muhammad Arif Butt, PhD

External Fragmentation in Segmentation
External Fragmentation
● Occurs when free memory is split into many small non-contiguous holes, making it difficult to allocate

large segments even if total free memory is sufficient.

Compaction as a Solution
● Involves shuffling/moving existing segments in memory so that scattered free spaces are merged into one

large contiguous block.
● Helps in accommodating larger memory requests that otherwise wouldn’t fit into fragmented holes.

Requirement of Dynamic Relocation
● Compaction requires dynamic relocation at execution time, because the physical location of segments

changes during compaction.

Run-time Address Binding
● Needed so that the operating system can correctly map logical addresses to new physical locations after

compaction.
● The segment table must be updated with the new base addresses of segments whenever they are moved.

15

Instructor: Muhammad Arif Butt, PhD

Protection in Segmentation
• Each entry in the segment table includes protection bits, as well specifying the read/write/execute permissions.
• These protection details may be stored in the segment table or in the segment registers managed by the

memory management hardware.
• A segment descriptor typically contains the following fields:
• Base Address (selector) – Starting physical address of the segment.
• Limit (Length) – Maximum size of the segment.
• Protection/Access Rights – Control bits (valid, read, write, execute).

base limit protection

16

Instructor: Muhammad Arif Butt, PhD

Logical Address Space
process P1

data 1

editor

segment 0

segment 1

Logical Address Space
process P2

data 1

editor

segment 0

segment 1

limit base

25286
4425

43062
68348

0

1

segment table
process P1

limit base

25286
8850

43062
90003

0

1

segment table
process P2

data 2

editor

physical memory

data 1

43062

68348

90003

17

Sharing can be implemented at the segment level, i.e., the segment table entries of multiple processes can point
to the same physical segment. Suppose Two processes P1 and P2 both use an editor program.
• The editor code segment is loaded only once in memory.
• Both P1 and P2 share this code segment → saves memory.
• Each process still has its own private data segments (e.g., buffers, user input).
The shared code segment is marked read-only/executable (so processes cannot overwrite it).

Sharing of Segments among Processes

Instructor: Muhammad Arif Butt, PhD

Paging

18

Instructor: Muhammad Arif Butt, PhD

What is Paging?

Paging is a non-contiguous memory allocation technique in which both logical
and physical memory are divided into fixed-size blocks called pages (in logical

memory) and frames (in physical memory). A page table maintained by the
operating system maps each page to a frame, eliminating external fragmentation
but introducing page table overhead and possible internal fragmentation within

frames.

19

Instructor: Muhammad Arif Butt, PhD

How Paging work?
Key Features:
• Logical space is divided into pages while physical space is divided into frames (of same/fixed sizes).
• A process is loaded into memory by loading its pages into frames, which need not to be contiguous.
• Which page goes to which frame, this mapping information is kept in a structure calles page table.
• Provides a uniform abstraction of memory, hiding physical fragmentation.
• Eliminates external fragmentation by allocating memory in equal-sized chunks.

Advantages:
• No external fragmentation.
• Simplifies memory allocation and management due to fixed-size blocks.
• Enables efficient process swapping and virtual memory implementation.
• Provides strong isolation between processes.

20

Disadvantages:
• Can cause internal fragmentation (last page may waste space).
• Requires additional memory for page tables, which can be large.
• Address translation involves page table lookup, adding

overhead.
• May increase memory access time without hardware support

like TLB (Translation Lookaside Buffer).

Instructor: Muhammad Arif Butt, PhD

CPU Physical
Memory

p d

fPTBR +

LA
f d

Displacement within pageIndex to page table

PTBR contains base
address of page table

Page Table

21

PA

Logical Address is divided into:
• Page number (p) used to index page table containing base address of that page in physical memory.
• Page offset (d) concatenated with base address of frame to define the physical address.
Physical Address is divided into:
• Frame number (f) kept in the page table against the page number.
• Frame offset (d) is the same as the page offset

Paging: LA to PA Translation

Instructor: Muhammad Arif Butt, PhD

Address Translation Example
● Page size = 4 bytes

● Process address space = 4 pages

● Physical address space = 8 frames

● Logical address: (1,3) = 0111

● Physical address: (6,3) = 11011

Page# Frame#

0111

No of bits for page no = 2
No of bits for frame no = 3

11011

(p,d)

(f,d)

22

Instructor: Muhammad Arif Butt, PhD

Page Tables
Page Tables are used to keep track of how logical addresses map to
physical addresses. Page table entries generally contain the frame number
where the particular page is loaded. In addition, a PTE may also contain:
• Modify/Dirty bit: Indicates whether a page is modified since loaded in memory.
• Resident bit: Indicates whether the page is resident in memory or not (may be

on disk). It's not an error for a program to access a non-resident page. A page
fault occurs and the page is brought into memory from disk.

• Valid bit: Page is legal for the program to access, e.g., is the page a process has
requested is part of its address space. (If not Abort)

• Protection bits: Specify if a page is readable, writable or executable.

Page table size depends on the maximum number of pages of a process that
a CPU support. For example, if a system support a process of maximum 8
pages then the page table will contain 8 rows (length is debatable). So the
address of page table will consist of 3 bits.

Frame No

000

111

23

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 6 Given a logical address space consisting of 16 pages, each containing 1024 words (2 bytes per word),
mapped into a physical memory of 32 frames:

○ Specify the format of logical and physical addresses.
○ Determine the total size of logical and physical address spaces.
○ Calculate the required page table size.

Problem 7 In a system with a 48-bit logical address and 64 GB of main memory, using a page size of 4096 bytes:
○ Compute the total number of pages and frames.
○ Specify the format of logical and physical addresses.

Problem 8 Consider a system with a 32-bit logical address, a page size of 4 KB, and 512 MB of main memory:
○ Determine the total process address space.
○ Calculate the maximum number of pages per process.
○ Specify the format of logical and physical addresses.
○ Compute the page table size.

24

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 9 Given a logical address space of 8 pages, each containing 1024 words, mapped into a physical memory of 32
frames:

○ Determine the number of bits required for the logical address.
○ Determine the number of bits required for the physical address.

Problem 10 A system features a logical address space comprising 64 pages, each of 512 bytes, mapped into a physical
memory containing 1024 frames.

○ Determine the bit lengths of the page number (p), offset (d), and frame number (f).
○ Specify the formats of logical and physical addresses.

Problem 11 In a system with a 48-bit logical address, a 32-bit physical address space, and a page size of 4 KB:
○ Calculate the bit lengths of p, d, and f.
○ Specify the formats of logical and physical addresses.
○ Determine the maximum number of pages per process and the maximum number of frames in the system.
○ Compute the page table entry size (PTES) and the total size of the page table.

25

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 12 A system supports a maximum of 2 million pages per process, with a page size of 2 KB. Determine
the bit length of the logical address.

Problem 13 In a system with a 24-bit physical address space and a frame size of 512 bytes:
○ Calculate the page table entry size (PTES).
○ Determine the bit length of the physical address.

Problem 14 Given the following logical addresses in decimal: 20000, 32768, and 60000:
○ Compute the corresponding page number and offset within the page for a page size of 4 KB.
○ Repeat the computation for a page size of 8 KB.

Problem 15 A system has a 32-bit address space and uses 8 KB pages. The page table is fully implemented in
hardware, with each entry occupying one 32-bit word.

○ When a process starts, the page table is loaded from memory into hardware at a rate of one word per
100 nanoseconds.

○ If each process runs for 100 milliseconds, including the time to load the page table, determine the
fraction of CPU time spent on loading the page table.

26

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 16 In a system with 48-bit virtual addresses and 32-bit physical addresses, using a page size of 8 KB.
Calculate the number of entries required in the page table.

Problem 17 Given a logical address of 14000 and a page size of 1 KB, determine the page number in which
this address resides.

Problem 18 In a system with a 34-bit logical address, a 32-bit physical address, and a 16 KB page size.
Calculate the number of entries required in the page table.

Problem 19 Given a virtual address of 40808 and a page size of 4 KB. Compute the virtual page number and
the offset within the page.

27

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 20 What is the main difference between paging of memory and segmentation of memory?
Main Difference
•Paging: Divides memory into fixed-size blocks (pages/frames). Logical address = page number + page offset.
•Segmentation: Divides memory into variable-sized segments based on logical divisions of a program (code, stack, data, etc.). Logical address =
segment number + segment offset.

Problem 21 List two ways in which this difference affects the address translation hardware required in each
scheme.

1.Table Structure
• Paging: Needs a page table mapping each page to a frame → entries store frame number.
• Segmentation: Needs a segment table → entries store base address (start of segment) and limit (segment length).

2.Address Checking
• Paging: Hardware checks only the page table entry and concatenate offset to frame base address. No length check is needed because

pages are fixed-size.
• Segmentation: Hardware must check that the offset < limit for protection, then add it to the base to form the physical address.

28

Instructor: Muhammad Arif Butt, PhD

Paging Architectures
Paging Parameters in Intel P4

○ 32 bit linear address. (Intel used the term linear instead of logical)
○ 4K page size
○ Maximum pages in a process address space = 232/212 = 1M
○ No of bits for d = 12
○ No of bits for p = 32 – 12 = 20
○ What about the physical address format? / What about no of bits for f?

Paging Parameters in PDP 11
○ 16 bit Logical address.
○ 8K page size.
○ Maximum pages in a process address space = 216 / 213 = 8
○ No of bits for d = 13
○ No of bits for p = 16 – 13 = 3
○ What about the physical address format? What about no of bits for f ?

29

Instructor: Muhammad Arif Butt, PhD

Consider three processes P1, P2, P3, each correspond to an editor, e.g. vim

Code of the editor is shared by all the
three processes, loaded in frames 3, 4
and 6, which corresponds to page# 0,
1, 2 respectively.

F #P #
0

1

2

3

F #P #
0
1

2

3

F #P #

0
1

2

3

Each process page table has four
pages, three for the editor code
and one for the buffer / data.

Thus all processes are accessing the same
physical memory frames for the code of
editor. This way we have avoided to load
the code of the editor at three different
locations.

30

Sharing of Pages among Processes

Instructor: Muhammad Arif Butt, PhD

Where the Page Table is
Kept?

31

Instructor: Muhammad Arif Butt, PhD

Where the Page Table is Kept?
IN MAIN MEMORY
● Page table is kept in main memory.
● Page-table base register (PTBR) points to the starting address of page table.
● Page-table length register (PRLR) indicates size of the page table.
● In this scheme every data/instruction access requires two memory accesses. One for the page table (that

resides inside the main memory) and one for the data / instruction.
TEFFECTIVE = 2 x TMEM

32

Instructor: Muhammad Arif Butt, PhD 33

If PT is kept inside the memory, system has to access memory twice, once to translate the LA to PA
and second time to access the data?

IN CPU REGISTERS
● Design CPU in such a way that page table can be kept / maintained within the CPU, using its registers.
● Feasible for small process address space with less number of pages which may be of large size.
● Effective Memory Access Time (time to convert L.A to P.A) is almost the same as the Physical memory access

time.
● Example is PDP-11, which has eight pages each of size 8 KB

IN CPU CACHE
Option 1: PTEs are cached in cache like any other memory word. However, PTEs may be evicted by any other
data references
Option 2: Use a small, dedicated, superfast hardware cache of PTEs in MMU called Translation Look-aside
Buffer (TLB). Place references of some of the recently used pages in TLB, i.e. a portion of page table resides in
TLB and the rest in main memory. On a context switch, the TLB is flushed and loaded with values for the
scheduled processes. (Normally TLB contains the page numbers of the currently running process). If mapping is
found we say Page hit / TLB hit otherwise we say Page fault / TLB miss.

Where the Page Table is Kept? (cont…)

Instructor: Muhammad Arif Butt, PhD

Address Translation - TLB Hit

CPU MMU
1

PA

CPU Chip

TLB

LA

2
PTE

3

Memory
4

LA

Data
5

34

Effective Memory Access Time (Page hit) = Time to access TLB + Time to access memory

Instructor: Muhammad Arif Butt, PhD

Address Translation - TLB Miss

(Fortunately, TLB misses are rare)

CPU MMU
1

CPU Chip

TLB

LA

2

LA
Memory

PA

5

4

Data
6

3

PTE

35

Effective Memory Access Time (Page miss) = Time to access TLB + 2 x Time to access memory

Instructor: Muhammad Arif Butt, PhD

CPU p d

f

TLB
f

TLB Miss

TLB Hit

f d

Physical Memory

PA

LA

Page # Frame #

PTBR +

Contains the base
address of Page
Table

PT
36

Paging with TLB: LA to PA Translation
If HR is the hit ratio and MR is the miss ratio then:

TEFFECTIVE = HR (TTLB + TMEM) + MR (TTLB + 2 TMEM)

Instructor: Muhammad Arif Butt, PhD

Problem 22 A system has a memory access time of 100 nanoseconds and uses associative memory to implement the
page table. The TLB access time is 20 nanoseconds, with a hit ratio of 80%.
○ Compute the effective memory access time.
○ Recalculate the effective access time assuming no TLB, i.e., the page table is entirely stored in memory.

Problem 23 Repeat the calculations from Problem 26 using a TLB hit ratio of 95%.
○ Compare the results to evaluate the impact of increased hit ratio on effective memory access time.

Problem 24 In a paging system where the page table is stored in memory, a single memory reference takes 200
nanoseconds.
○ Determine the time required for a paged memory reference.
○ If associative registers are added and 75% of page-table references are resolved through them (with zero access time
when successful), compute the effective memory reference time.

Problem 25 A system uses a Translation Lookaside Buffer (TLB) with the following parameters:
○ TLB hit ratio: 80%
○ TLB access time: 15 nanoseconds
○ Main memory access time: 150 nanoseconds

Calculate the effective memory access time in nanoseconds.

37

Sample Problems

Instructor: Muhammad Arif Butt, PhD

Problem 26 A system employs both register-level caching and a TLB. The parameters are:
○ Register hit ratio: 30%
○ TLB hit ratio: 50%
○ Register access time: 1 nanosecond
○ TLB access time: 10 nanoseconds
○ Main memory access time: 150 nanoseconds

Determine the effective memory access time in nanoseconds.

Problem 27 In a system with associative registers and main memory, the following parameters are given:
○ Associative register hit ratio: 80%
○ Associative register access time: 50 nanoseconds
○ Main memory access time: 750 nanoseconds

Compute the access time when the page number is found in associative memory.
Compute the access time when the page number is not found in associative memory.
Calculate the effective memory access time.

38

Sample Problems (Cont.)

Instructor: Muhammad Arif Butt, PhD

Structure Of
Page Table

39

Instructor: Muhammad Arif Butt, PhD

Structure Of Page Table

• Logical Address space increases day by day due to the large size of processes, thus increasing the
size of the Page Table.

• Thus there is a dire need to structure Page Table in a better way especially in situation where the
Page Table becomes larger in size than a single page size, i.e. a page table cannot be contained by
a single page.

• To address this challenge, more efficient page table structures are required. Common techniques
include:
Ø Multi-level (Hierarchical) Page Tables
Ø Hashed Page Tables
Ø Inverted Page Tables

40

Consider a logical address space of 64 bits and page size of 4 KB. Also consider
the 8 byte PTE. How big the page table need to be?

Instructor: Muhammad Arif Butt, PhD

Multi level / Hierarchical Page Tables
• Consider a system with a logical address of 32 bits, and page size of 4KiB and each page entry of 4

Bytes
• Maximum pages in a process address space = 1MiB
• Page Table size = 4 MiB (because each entry in page table is of 4 Bytes). Since total no of pages are

220 i.e. 1 MiB, so there will be 220 rows/ tuples /entries, each tuple of 4 Bytes. So page table size will
be 4 MiB

• Since the system has a page size of 4KiB, therefore, the page table of 4MiB can’t be accommodated
in a single page of 4KiB. Thus we have to make pages of the page table

• We keep two page tables:
o Outer page table / page directory (which keep track of the pages of the inner page table)
o Inner Page Table which actually maps the frames

• No of pages in the outer page table = 4M / 4K = 1K
• So size of outer page table = 1K entries of 4 bytes each = 4KB
• This outer page table will now fit in one page

41

page number page offset

p1 p2 d

1010 12

Instructor: Muhammad Arif Butt, PhD

Frame #

Secondary
Page table

Physical addressPage
Directory

Page Directory (p1) Page Table (p2) Page offset

Frame # offset

Page table

LA
Page

Frame 0

Page
Frame 1

Page
Frame 2

Page
Frame 3

.

.

.
Page

Frame Y

Physical memory

42

10 bits 10 bits 12 bits

p1 is used to
index the outer
page table
whose
entry will give
us the base
address of one
of the
pages inside
the inner page
tables.

p2 is then used to index
the particular inner
page table containing
PTEs, to get the
Frame Number.

Only one inner page
table is shown, while
actually there will be
1024 page tables each
having 1024 PTEs
containing frame #

Only one inner page
table is shown, while
actually there will be
1024 page tables each
having 1024 PTEs
containing frame #

Hierarchical PT: LA to PA Translation

Instructor: Muhammad Arif Butt, PhD

Two-Level Page Table Scheme

43

Instructor: Muhammad Arif Butt, PhD

Example Processors having Multi-Level Page Tables
• Some example processors that use multi-level paging:

o 32 bit Sun SPARC support 3 Level Paging
o 32 bit Motorola 68030 support 4 Level Paging
o 64 bit Sun Ultra SPARC support 7 Level Paging

• Since each level is stored as a separate table in memory, converting a logical address to a physical
one will take multiple memory accesses.

• As the no of levels increases, too many memory references needed for address translation.
• But at times this is required to support large process address space, so that larger processes can be

executed in larger applications.

44

Instructor: Muhammad Arif Butt, PhD

An Inverted Page Table is a memory management structure that maintains one entry per frame in physical memory,
rather than per page in a process’s logical address space. This approach significantly reduces the size of the page table,

especially in systems with large virtual address spaces.
Key Characteristics:
● One entry per physical frame.
● Indexed by frame number (f).
● Each entry stores the page number and process ID (PID) to identify ownership.

Advantages:
● Space Efficiency:

○ Table size depends on the number of physical frames, not the size of the logical address space.
○ Only one global page table is maintained for all processes.

● Process Isolation:
○ Inclusion of PID ensures correct mapping even when multiple processes use the same page number.

Inverted Page Tables

45

Instructor: Muhammad Arif Butt, PhD

This scheme decreases the amount of memory needed to store each page table but increases the time needed to search the
table. It is because inverted page table is sorted by Physical address, but looks up occur on Virtual address. So the whole table
might need to be searched for a match.

<pid,p> pair is searched in the
Inverted Page Table. If a match is
found say at entry i, then that is the
Frame # where that page is loaded in
main memory.

Inverted Page Table is indexed with Frame # i, and not with
page # , hence is named as inverted page table

Inverted Page Table has entries equal to the number of
frames in Main memory. Each entry contain the pid and
its page number.

46

CPU Physical
Memorypid p i dd

pid p

page table

logical
address physical

address

search i

pid p

Inverted PT: LA to PA Translation

Instructor: Muhammad Arif Butt, PhD

The Hashed Page Table is an efficient memory management technique designed to handle large virtual address
spaces, especially in systems with 64-bit architectures. It uses a hashing mechanism to locate page table

entries, making it suitable for sparse address spaces.

Key Concepts

● Hashing
○ A technique where a key (typically the virtual page number) is passed through a hash function
○ The result is a hash value, which indexes into a hash table
○ The indexed slot contains either the desired entry or a linked list of entries that share the same hash

value (to resolve collisions)
● Hash Function

○ A deterministic function that maps a key to a valid index within the hash table
○ Ensures uniform distribution of entries and minimizes collisions
○ Must be fast and produce values within the bounds of the table size

Advantages

● Scalable for 64-bit systems: Efficiently handles large and sparse virtual address spaces
● Space-saving: Avoids allocating large contiguous page tables
● Fast lookup: Hashing provides near-constant time access in ideal conditions

Hashed Page Tables

47

Instructor: Muhammad Arif Butt, PhD

● Hashing can be combined with Inverted Page Tables, to overcome its limitation of
complex / time consuming search.

● For 64 bit address space Clustered Page Tables are used.

p

Physical
Memory

d r d

hash function

logical address physical address

hash table

Each entry in the L.L has
three fields: page number,
frame number for the page
and pointer to the next
node- (p, f, next)

Contains one entry (Link List) for pages of one
process. So here we don’t have to look for pid.

Search the L.L (page no and corresponding frame no)
looking for a node whose page no corresponds to the
page no in the Logical Address.

48

Hash PT: LA to PA Translation

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 28 A system has a logical address space of 28 bits and a page size of 4 KiB. Each page table entry
(PTE) requires 4 bytes. A memory pointer is 4 bytes. Answer the following:
• How many pages are there in the logical address space?
• How many entries fit in one page of a page table?
• What is the minimum number of paging levels required?
• Give the logical address format for the two-level scheme.

Problem 29 A system uses a 40-bit logical address space with a page size of 2 KiB. Each page table entry = 8
bytes. Each memory frame = 2 KiB. Answer the following:
• How many pages are in the logical address space?
• How many entries fit in one page of the page table?
• What is the minimum number of paging levels required?
• Give the logical address format for a three-level scheme.

Problem 30 Consider a logical address space of 36 bits with a page size of 8 KiB. Each PTE = 4 bytes. A page
table must fit inside a page. Answer the following:
• How many entries can a single page table hold?
• What is the maximum number of levels required?
• Show the logical address format for minimum paging levels.

49

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 31 A system has a 32-bit logical address space, page size = 2 KiB, and PTE size = 2 bytes.
• How many entries are needed for a single page table?
• How many entries fit in one page?
• Calculate the internal fragmentation in the last page table page.
Problem 32 Consider a system with a 32-bit logical address and a page size of 4KiB. Assume that the memory
address take 20 bits.
• Can it be implemented in single level paging?
• If not what is the minimum level of paging it requires?
• employs a two-level page table. The virtual address is divided into three fields:

○ 9-bit top-level page table index
○ 11-bit second-level page table index
○ Offset field comprising the remaining bits

Problem 33 Consider a logical address space of 32 bits and page size of 1 KiB. A memory pointer takes two
bytes. Each entry in the outermost page table also takes two bytes. Give answer to following questions:
• How many minimum levels of paging is required for the system? If not what is the minimum level of paging

it requires?
• Give the logical address format that takes minimum internal fragmentation in the page tables
• Give the logical address format that takes maximum internal fragmentation in the page tables
• Calculate the amount of internal fragmentation for the best case in the first level only

50

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 34 A system with a 36-bit logical address space, 4 KiB page size, and 64 GiB physical memory
supports 32-bit process identifiers (PIDs). The task is to determine the following parameters:
● Number of bits for page number (p), offset (d), and frame number (f)
● Number of page table entries (PTES) in the inverted page table
● Size of the inverted page table
● Format of logical and physical addresses

Problem 35 A system uses 32-bit process identifiers and employs an inverted page table for address
translation. The 34-bit logical address is divided into a 22-bit page number (p) and 12-bit offset (d). The physical
address is 32 bits wide. Determine the following:
● Page size
● Number of page table entries (PTES)
● Total number of pages
● Size of the inverted page table

51

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 36 In a system with 2048 MiB of RAM and a 4 KiB page size, calculate the total number of entries
required in the inverted page table.

Problem 37 On a 64-bit architecture with 256 MiB of physical memory and a 4 KiB page size, determine the
number of entries in the inverted page table.

Problem 38 A system has a logical address of 32 bits, physical memory size of 256 MiB, and Page size of 4 KiB.
Each Inverted Page Table entry stores the Process ID (16 bits) and Virtual Page Number (20 bits) plus some
control bits (assume 4 bits). Answer the following questions:
• How many frames are in physical memory?
• How many entries will the inverted page table contain?
• What is the total size of the inverted page table in bytes?

Problem 39 A system has a logical address of 30 bits, physical memory size of 64 MiB, and Page size of 1 KiB.
Each Inverted Page Table entry stores the PID of 12 bits, VPN of 20 bits, plus 4 control bits. Given a logical
address 0x12345A for process PID = 25, answer following:
• Extract the Virtual Page Number (VPN) and page offset.
• Show how the inverted page table lookup works to find the frame number.
• Compute the physical address if the Inverted Page Table (IPT) lookup returns Frame Number = 1000.

52

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 40 A system has a Logical address of 32 bits, physical memory of 512 MiB, and Page size of 4 KiB and
uses hash page table. Assume each hash table bucket has one entry of size 8 bytes (VPN + PFN + next pointer).
Answer the following questions:
• How many pages are there in the logical address space?
• How many frames are in physical memory?
• What is the minimum size of the hash table in bytes if the load factor is 1 (i.e., one entry per bucket on

average)?

Problem 41 A system uses a hashed page table with a Logical address of 28 bits, Page size = 1 KiB. The Hash
function: h(VPN) = VPN mod 256. Assume hash table has 256 buckets and each entry stores (VPN, PFN).
Moreover, following information is also known:
• VPN = 0x1F3 maps to PFN = 0x2A.
• VPN = 0x123 maps to PFN = 0x15.
• Logical address = 0x1F3_01C (underscore separates VPN and offset).
Answer the following questions:
• Extract the VPN and page offset.
• Show how the hash function maps this VPN to a bucket.
• Find the physical address.

53

Instructor: Muhammad Arif Butt, PhD 54

To Do

Coming to office hours does NOT mean that you are academically weak!

• Carefully review all concepts discussed in class and go through the slides to
build a clear understanding of non-contiguous memory allocation schemes.

• Revise the key differences between paging, segmentation, and
inverted/hashed page tables.

• Practice all numerical problems given in the slides and attempt similar
ones from recommended books.

• Draw and analyze address translation diagrams (paging, segmentation,
hierarchical paging, IPT) to strengthen visualization.

• Summarize the advantages, disadvantages, and real-world usage of each
memory allocation scheme in your own words.

• Prepare a list of possible exam-style short/long questions from today’s
content and try answering them without notes.

• Form small groups to discuss and cross-check answers for numerical and
conceptual questions.

