
Instructor: Muhammad Arif Butt, PhD

Operating Systems

Lecture 6.3
Non-Contiguous Memory Allocation Schemes - II

Instructor: Muhammad Arif Butt, PhD

Lecture Agenda
● Paged Segmentation

o What is Paged Segmentation?
o How Paged Segmentation work?
o LA to PA translation in Paged Segmentation
o Example Problems

● Address Translation in Intel family of Processors
o Intel 8080
o Intel 8086
o Intel 80386
o Intel/AMD x86-64

2

Instructor: Muhammad Arif Butt, PhD

Paged Segmentation

3

Instructor: Muhammad Arif Butt, PhD

Paged Segmentation Example

3

1

126

10

0

1

2

3

Page Table

1

0

-

-

-

3

-
-

-

2

0

1

2

3

10

126Here we have divided segment 4 into four
pages and kept that information in page table.

Subroutine

Segment 0

Stack

Segment 3

SQRT

Segment 1

Main
Program

Segment 2

Symbol
Table

Segment 4

Logical Address Space

4

Problem: Large segment sizes increase the
chance of External Fragmentation.
Solution:
• Each segment is further divided into pages.
• Each segment maintains its own Page Table.
• Segment Table → Points to the Page Table of

the segment.
• Page Table → Maps segment pages to physical

memory frames.

Advantages:
• Eliminates External Fragmentation.
• Provides benefits of both Segmentation (logical

division, protection) and Paging (efficient use
of memory).

Instructor: Muhammad Arif Butt, PhD

● The GE 645 computer was designed in 1964 and implemented a ground breaking two-level address
translation scheme that combined segmentation and paging.

● MULTICS (Multiplexed Information and Computing Service) was the first OS to implement paged
segmentation.

● Logical address is still <s,d>, with s used to index the segment table.
● Segment offset, d, is partitioned into two parts: p and d’

○ p is used to index the page table associated with segment s
○ d’ is used as offset within a page.
○ p indexes the page table to retrieve frame, f, and physical address (f,d’) is formed.

s d

p d’

index segment
table

index page table offset within the page p

Maximum possible number of
segments within a process

Maximum possible number of pages
within a segment

Size of a page

Max size of segment

Address Translation: GE-645

5

Instructor: Muhammad Arif Butt, PhD

Memory

s d

Physical Address

Page Table for
segment s

+

STBR

segment
length

page-table
base

Logical Address

<

Trap

yes

d

p d’

+ f f d’

Segment Table
d’ is the offset
within the page

6

Address Translation: GE-645

ST has one entry per segment and
each entry consist of the a tuple

The logical address is legal
if d < seg-length

p indexes the page table to
retrieve frame, f

Segment Table Base Register points
to the base address of Segment Table
of the running process.

Instructor: Muhammad Arif Butt, PhD

Sample Problems
Problem 1 Consider MULTICS on a GE 645 processor, with logical address of 34
bits and page size of 1 KB. s is of 18 bits and d is of 16 bits. Answer the following
questions:

● What is the largest segment size?
● What is the maximum number of segments per process?
● Give maximum number of pages per segment.
● Give the LA format including the no of bits for p and d’.

7

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 2 Consider a process in MULTICS with its segment#15 having 5096 bytes.
The page size is 1KB. The process generates a Logical Address of (15, 3921).
● Is it a legal address? If yes why?
● How many pages does the segment have?
● What page does the logical address refer to, and what is its offset?
● What is the P.A if page#3 (i.e. fourth page) is in frame 12?

8

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 3 Consider the given segment table. How many page
tables will be constructed for the process whose segments are
shown in the segment table?

Problem 4 Consider the given segment table. If the system
implements paged-segmentation with the page size of 2 KB, then
compute the page number and offset for the logical address of
(4,12765). Also compute the number of pages in segment 4 and
the address of the 3rd entry in the page table (Assume PTES is 4
Bytes)

Problem 5 Consider the given segment table, if segment table base
register (STBR) contains 36500 and segment table entry size (STES)
is 64 bits then what will be size of segment table? Also compute the
address of the last entry?

Segment # Length Base

0 100 12000

1 1200 12100

2 190 13300

3 444 15500

4 19308 18008

5 3400 5000

9

Instructor: Muhammad Arif Butt, PhD

Sample Problems (Cont.)
Problem 6 Consider a logical address in paged segmentation (16, 7865), where
16 is segment number and 7865 is offset. Suppose segment 16 has length of 15690
bytes. Page size is 1 KB. Calculate following:

● Number of pages in segment number 16
● In which page the above said offset will reside?
● How would you represent the above address in <s, p, d’> format?
● Let the page p is stored at frame 30, what would be the physical address?

10

Instructor: Muhammad Arif Butt, PhD

Address Translation
Intel 8080

11

Instructor: Muhammad Arif Butt, PhD

Intel 8080 (Real Mode Only)
• In 1974, Intel introduced its 8-bit Intel-8080 CPU with an address bus of 16 bits. The Intel

8080 represents the pre-virtual memory era where address translation wasn't necessary or
implemented. Every memory reference was a direct physical memory access, making
programming simpler but limiting memory management capabilities and system protection.
This direct approach was adequate for the single-user, single-tasking systems of the mid-1970s
but became insufficient as computing needs evolved.

• The Intel 8080 uses a flat, linear addressing model where:
o Logical addresses = Physical addresses
o No virtual memory concept
o No memory management unit (MMU)
o Direct hardware memory access

• The addressing is simple, you put a 16-bit address on the address bus and you get back the 8-
bit value that is stored at that address

• Address Space Characteristics:

0x0000

0xFFFF

Memory

Address Bus: 16-bit
Maximum Memory: 64KB (2^16 = 65,536 bytes)
Address Range: 0x0000 – 0xFFFF
Logical Address 0x1234 → Physical Address 0x1234 (direct mapping)

12

Instructor: Muhammad Arif Butt, PhD

Address Translation
Intel 8086

13

Instructor: Muhammad Arif Butt, PhD

Memory Model of Intel 8086
• In 1978, Intel introduced its 16-bit Intel 8086 CPU, with an address bus of

20 bits, along with a separate 8087 Floating Point Unit (Math co-
processor).

• Intel-8086 CPU has an addressable memory of 1 MiB, which is 16 times
more than Intel 8080.

• Intel wanted to port all assembly programs running on 8080 to run on 8086
as well. To make this porting possible, the designers of 8086 divided its
memory in 64 KiB segments, so that a 8080 program could be loaded into a
64 KiB memory segment and can execute successfully.

• Intel 8086 memory model is known as Segmented memory model, which
divides the memory into groups of independent segments referenced by
pointers located in special CPU registers called segment registers. Code,
data and stack can appear as three distinct units in memory.

• Characteristics:
o Maximum addressable memory: 1MB (20-bit addresses).
o No memory protection.
o Direct hardware mapping.
o No virtual memory support.

Segment
Register

0xFFFFF

0x00000

0x80000

64KiB Memory
Segment

Memory

14

Instructor: Muhammad Arif Butt, PhD

Segmented Memory of Intel 8086

0x00000

0xFFFFF
Memory

Data Segment
(64KB)

Code Segment
(64KB)

Stack Segment
(64KB)

Extra Segment
(64KB)

Data Segment Base Address (DS)

Offset Address (SI)

Code Segment Base Address (CS)

Offset Address (IP)

Stack Segment Base Address (SS)

Top of the stack (SP)

Extra Segment Base Address (ES)

Offset Address (DI)

Base of the stack (BP)

Segment registers (DS, CS, SS, ES)
hold the upper 16 bits of the starting
addresses of the respective four
memory segments

Offset registers (IP, SP, BP, SI, DI)
contains the 16 bits address within the
respective memory segments

20-bits physical address

15

Instructor: Muhammad Arif Butt, PhD

• In Intel 8086, Logical addresses ≠ Physical addresses (translation required)

• The architecture use pure segmentation, no paging.

• Translation Process: You provide a 16-bit segment selector and 16-bit offset (forming a logical address),
which the CPU translates into a 20-bit physical address using the following formula, allowing addressing up
to 1MiB of physical memory despite using 16-bit registers.

Logical Address: [Segment:Offset] (16-bit each)

Physical Address = (Segment × 16) + Offset

• Example: Suppose the CS register contains 0x3F2A. Translate the 16-bit logical address 0x1B08 to the
corresponding 20-bit physical address for Intel 8086 processor.

Address Translation: Intel 8086

CS = 0x3F2A
IP = 0x1B08
CS:IP = 3F2A:1B08
P.A = CS * 1016 + IP
P.A = 3F2A * 10 + 1B08
P.A = 3F2A0 + 1B08 = 40DA8

16

Instructor: Muhammad Arif Butt, PhD
00000H

FFFFFH
Memory

Data Segment
(64KB)

Code Segment
(64KB)

Stack Segment
(64KB)

Extra Segment
(64KB)

Example:
CS = 0x3F2A
IP = 0x1B08
CS:IP = 3F2A:1B08
P.A = CS * 1016 + IP
P.A = 3F2A * 10 + 1B08
P.A = 3F2A0 + 1B08 = 40DA8

20-bits physical
address

29/09/2020 8086 AUchiWecWXUe

hWWSV://ZZZ.cRVc.bURckX.ca/abRckXVd/3S92/LRcal_PageV/8086_achiWecWXUe.hWm 7/9

AlVo noWe WhaW Whe foXU VegmenWV need noW be defined VeSaUaWel\. Indeed, iW iV alloZable foU all foXU VegmenWV Wo
comSleWel\ oYeUlaS (CS = DS = ES = SS).

MemoU\ locaWionV noW defined Wo be ZiWhin one of Whe cXUUenW VegmenWV cannoW be acceVVed b\ Whe 8086/88 ZiWhoXW
fiUVW Uedefining one of Whe VegmenW UegiVWeUV Wo inclXde WhaW locaWion. ThXV aW an\ giYen inVWanW a ma[imXm of 256 K
(64K * 4) b\WeV of memoU\ can be XWili]ed. AV Ze Zill Vee, Whe conWenWV of Whe VegmenW UegiVWeUV can onl\ be
VSecified Yia S/W. AV \oX mighW imagine, inVWUXcWionV Wo load WheVe UegiVWeUV VhoXld be among Whe fiUVW giYen in an\
8086/88 SUogUam.

LOGICAL AND PHYSICAL ADDRESS

AddUeVVeV ZiWhin a VegmenW can Uange fUom addUeVV 00000h Wo addUeVV 0FFFFh. ThiV coUUeVSondV Wo Whe 64K-b\We
lengWh of Whe VegmenW. An addUeVV ZiWhin a VegmenW iV called an offVeW oU logical addUeVV. A logical addUeVV giYeV Whe
diVSlacemenW fUom Whe addUeVV baVe of Whe VegmenW Wo Whe deViUed locaWion ZiWhin iW, aV oSSoVed Wo iWV "Ueal" addUeVV,
Zhich maSV diUecWl\ an\ZheUe inWo Whe 1 MB memoU\ VSace. ThiV "Ueal" addUeVV iV called Whe Sh\Vical addUeVV.

WhaW iV Whe diffeUence beWZeen Whe Sh\Vical and Whe logical addUeVV?

The Sh\Vical addUeVV iV 20 biWV long and coUUeVSondV Wo Whe acWXal binaU\ code oXWSXW b\ Whe BIU on Whe addUeVV bXV
lineV. The logical addUeVV iV an offVeW fUom locaWion 0 of a giYen VegmenW.

When WZo VegmenWV oYeUlaS iW iV ceUWainl\ SoVVible foU WZo diffeUenW logical addUeVVeV Wo maS Wo Whe Vame Sh\Vical
addUeVV. ThiV can haYe diVaVWUoXV UeVXlWV Zhen Whe daWa beginV Wo oYeUZUiWe Whe VXbUoXWine VWack aUea, oU Yice YeUVa.
FoU WhiV UeaVon \oX mXVW be YeU\ caUefXl Zhen VegmenWV aUe alloZed Wo oYeUlaS.

YoX VhoXld alVo be caUefXl Zhen ZUiWing addUeVVeV on SaSeU Wo do Vo cleaUl\. To VSecif\ Whe logical addUeVV XXXX
in Whe VWack VegmenW, XVe Whe conYenWion SS:XXXX, Zhich iV eTXal Wo [SS] * 16 + XXXX.

ADVANTAGES OF SEGMENTED MEMORY

SegmenWed memoU\ can Veem confXVing aW fiUVW. WhaW \oX mXVW UemembeU iV WhaW Whe SUogUam oS-codeV Zill be
feWched fUom Whe code VegmenW, Zhile SUogUam daWa YaUiableV Zill be VWoUed in Whe daWa and e[WUa VegmenWV. SWack
oSeUaWionV XVe UegiVWeUV BP oU SP and Whe VWack VegmenW. AV Ze begin ZUiWing SUogUamV Whe conVeTXenceV of WheVe
definiWionV Zill become cleaUeU.

An immediaWe adYanWage of haYing VeSaUaWe daWa and code VegmenWV iV WhaW one SUogUam can ZoUk on VeYeUal
diffeUenW VeWV of daWa. ThiV iV done b\ Ueloading UegiVWeU DS Wo SoinW Wo Whe neZ daWa. PeUhaSV Whe gUeaWeVW adYanWage
f W d i Wh W Wh W f l i l dd l b l d d d h i

Address Translation Intel 8086 (cont…)

17

Instructor: Muhammad Arif Butt, PhD

Address Translation
Intel 80386

18

Instructor: Muhammad Arif Butt, PhD

Memory Model of Intel 80386
In 1985, Intel introduced its 32-bit Intel 80386 CPU, with 32-bit address bus that could address 4 GiB
of memory. Other than the real mode (for compatibility), it also support protected mode.

Real Mode: In real mode it uses simple segment:offset addressing (8086-compatible) without
protection. Maximum addressable memory is 1MiB, and the memory allocation appear contiguous to
applications.

Protected Mode (80386 Enhanced): This new mode of 80386 allows access to data and programs
located above the first 1 MiB of memory (extended memory), as well as within the first 1 MiB of
memory. The segment registers are now considered part of the operating system, you can neither read
nor change them directly. They point to OS data structures that contain information to access a
location. It revolutionized memory management and has a support of following memory managemtn
modes:
o Pure Segmentation: Uses only segment descriptors without paging.
o Pure Paging: Flat memory model with paging (segments cover entire 4GB space)
o Paged Segmentation: Full two-stage translation: 48-bit LA to 32-bit PA (segment→linear→physical)
o Backward Compatibility: Maintains 80286 and 8086 compatibility modes

19

Instructor: Muhammad Arif Butt, PhD

Address Translation: Intel 80386
CPU

Selector (segment registers)
G(1) P(2)S (13)

48 bit LA
16 32

Off set

DTBR

PDBR

+

Descriptor Table

+

Directory Page Table Offset

10 10 12

32-bit Linear Address

+ +

Page Directory Page Table

Frame # Offset
PA

Physical Address (maximum of 32 bits)

Inner page table contains the
Frame # which is appended
with offset to get the P.A

Page Directory Base
Register contains the
Base address of Page
Directory

Contains Base
Address of the
specific Inner page
table

The selector is used to index the appropriate
descriptor table, retrieving an 8-byte descriptor
containing base address of particular segment,
limit, and access rights.

Linear Address = Segment Base + Offset

Physical Memory

0

8191

Structure of a Selector stored in Segment Registers:
S(13) used to index into a Descriptor Table
G(1) specifies Table Indicator: 0 means GDT and 1 means LDT
P(2) define the privilege level for access or rings of protection

00 – Private OS functions
01 – OSS services
10 – device drivers
11 – Application programs

Program invisible registers used in paging unit are
CR0 to CR3. If the leftmost bit of CR0 is 1, paging
mechanism works otherwise, the linear address
generated by the program becomes the physical
address

GDT (Global Descriptor Table) is one per system, that describes
system-wide segments (e.g., OS kernel, shared libraries, device drivers).
LDT (Local Descriptor Table) is one per process, that describes process-
private segments (code, data, stack).

1220

20

Instructor: Muhammad Arif Butt, PhD

Address Translation
Intel/AMD x86-64

21

Instructor: Muhammad Arif Butt, PhD

Memory Model of Intel/AMD x86-64
In 2003, AMD introduced the x86-64 architecture (later adopted by Intel as Intel 64), featuring 64-bit
processing capabilities with a 64-bit address bus that could theoretically address 16 EiB of memory. Intel
Core i7 supports a 48-bit (256 TiB) virtual address space, and 52-bit (4 PiB) physical address space. You
can check your machine’s virtual & physical address sizes in the /proc/cpuinfo file.

Real Mode: Maintains complete 8086 compatibility using simple segment:offset addressing without
protection. Maximum addressable memory remains 1MiB, and memory allocation appears contiguous to
applications. This mode is primarily used during system boot, before transitioning to other modes.

Protected Mode (Legacy 32-bit): Fully compatible with 80386 protected mode, supporting all previous
memory management models including segmentation and paging. This mode allows 32-bit applications to
run unchanged on 64-bit processors while maintaining the 4GB address space limitation.

Long Mode (x86-64 Enhanced): Long mode is the mode where a 64-bit OS can access 64-bit instructions
and registers. 64-bit programs are run in a sub-mode called 64-bit mode, while 32-bit programs and 16-bit
protected mode programs are executed in a sub-mode called compatibility mode.

22

Instructor: Muhammad Arif Butt, PhD

Logical Address Space of Intel/AMD x86-64
• The x86-64 CPU chips that you can buy today implement 48 bit logical address for virtual
memory (as shown), and 40 bits for physical memory.

• To keep things consistent, the CPU enforces canonical addresses:
○ Bit 47 decides the sign.
○ Bits 63:48 must be the same as bit 47 (→ sign extension).
○ If this rule is broken → address is non-canonical (invalid).

• This splits the logical address space into three regions:
○ User space starts from 0x0000000000000000 to 0x00007FFFFFFFFFFF,

providing 128 TiB of addressable memory. This region is accessible to user-
mode processes and is where the code, data, heap, and stack reside.

○ Kernel space starts from 0xFFFF800000000000 to 0xFFFFFFFFFFFFFFFF,
spanning 128 TiB. It is exclusively reserved for the operating system kernel,
its subsystems, device drivers, and essential kernel data structures. Only code
running in privileged mode (ring 0) can access this region. Attempts to access
it from user mode result in a protection fault, ensuring kernel integrity and
isolation.

○ The non-canonical space, ranging from 0x0000800000000000 to
0xFFFF7FFFFFFFFFFF, lies between the user and kernel address ranges (16
EiB minus 256 TiB).

• The non-canonical gap is reserved so that when features like 5-level paging (57-bit
virtual addresses) are introduced in newer Intel/AMD CPUs, portions of that gap
can be reclaimed and made usable. You can check your machine’s virtual &
physical address sizes in the /proc/cpuinfo file:

23

Non-Canonical
gap

Canonical Space
User

Canonical Space
Kernel

0xFFFFFFFFFFFFFFFF

(128 TiB)

0xFFFF800000000000

(16 EiB - 256 TiB)

0x0000800000000000

0x0000000000000000

(128 TiB)

0x00007FFFFFFFFFFF

0xFFFF7FFFFFFFFFFF

Instructor: Muhammad Arif Butt, PhD

By default the x86-64 uses 48-bits for virtual address and uses a four-level paging structure,
commonly called Page Map Levels (PML4→PML3→PML2→PML1)

Logical Address of Intel/AMD x86-64

• CR3 register contains the physical address of PML4 table plus control bits for access permissions and flags.
• PML4 entry contains the physical address of a PML3 table plus control bits for access permissions and flags.
• PML3 entry contains the physical address of a PML2 table plus control bits for access permissions and flags.
• PML2 entry contains the physical address of a PML1 table plus control bits for access permissions and flags.
• PML1 entry contains the PA of the actual 4KB page frame plus control bits for access permissions and flags.

Page Table Characteristics:
• Each of the four page table levels has a size of 4 KiB.
• Each page table contains exactly 512 entries.
• Each entry is 8 bytes in size.
• Each entry either points to the next-level page table OR contains the final physical address that the virtual

address resolves to.
24

Name Sign Extend PML4 PML3 PML2 PML1 Page Offset

Bits 63-48 (16) 47-39 (9) 38-30 (9) 29-21 (9) 20-12 (9) 11-0 (12)

Virtual Address

Instructor: Muhammad Arif Butt, PhD

Name Sign Extend PML4 PML3 PML2 PML1 Page Offset

Bits 63-48 (16) 47-39 (9) 38-30 (9) 29-21 (9) 20-12 (9) 11-0 (12)

Virtual Address

Name Unused PML4 Unused

Bits 63-52 (12) 51-12 (40) 11-0 (12)

CR3

…

PGD Entry

PGD Entry

PGD Entry

…

PML 4

…

PUD Entry

PUD Entry

PUD Entry

…

PML-3 …

PMD Entry

PMD Entry

PMD Entry

…

PML-2

…

PT Entry

PT Entry

PT Entry

…

PML-1

Find indices for each page table in LA

11

2

3

4

5

6

7

9

8

10

4KB Page

+

12

The final physical address combines the 28-bit physical page
number with the 12-bit offset

25

1

Name NX Reserved PPN Ignored G PAT D A PCD PWT U/S R/W P

Bits 63 62-40 39-12 (28) 11-9 8 7 6 5 4 3 2 1 0

PML1 Entry

Physical Address
(40 bits)

Instructor: Muhammad Arif Butt, PhD

Sample Problem
Consider x86-64 processor using 4-level paging. You need to translate the given 48 bit virtual address
0x1A2B3C4D5678 to a 40-bit physical address. Perform the translation process using following
information:
• CR3 Register: Contains 0x8000A000 (physical address of PML4 table)
• PML4 Entry at index: Contains 0x8000B000000000FF
• PML3 Entry at index: Contains 0x8000C000000000FF
• PML2 Entry at index: Contains 0x8000D000000000FF
• PML1 Entry at index: Contains 0x12345678000001FF

Hint:
• Step1: Break down the virtual address into its components
• Step 2: Calculate the base address, entry address, entry value and next level address of all four PTs
• Step 3: Extract the physical page number from the PML1 entry.
• Step 4: Generate the final 40-bit physical address

26

Instructor: Muhammad Arif Butt, PhD

Example
Step 1: Break Down the Virtual Address: 0x1A2B3C4D5678
• Bits 47-39 (PML4 Index): 0x34 (52 decimal)
• Bits 38-30 (PML3 Index): 0x56 (86 decimal)
• Bits 29-21 (PML2 Index): 0xF1 (241 decimal)
• Bits 20-12 (PML1 Index): 0x6A (106 decimal)
• Bits 11-0 (Page Offset): 0x678 (1656 decimal)

27

Instructor: Muhammad Arif Butt, PhD

Example
• Step 2:
• PML4 Table Address:

o Starting Address: CR3 = 0x8000A000
o Entry Address: 0x8000A000 + (52 × 8) = 0x8000A000 + 0x1A0 = 0x8000A1A0
o Entry Value: 0x8000B000000000FF
o Next Level Address: 0x8000B000000000FF & 0x000FFFFFFFFFF000 = 0x8000B000

• PML3 Table Address:
o Starting Address: 0x8000B000
o Entry Address: 0x8000B000 + (86 × 8) = 0x8000B000 + 0x2B0 = 0x8000B2B0
o Entry Value: 0x8000C000000000FF
o Next Level Address: 0x8000C000000000FF & 0x000FFFFFFFFFF000 = 0x8000C000

• PML2 Table Address:
o Starting Address: 0x8000C000
o Entry Address: 0x8000C000 + (241 × 8) = 0x8000C000 + 0x788 = 0x8000C788
o Entry Value: 0x8000D000000000FF
o Next Level Address: 0x8000D000000000FF & 0x000FFFFFFFFFF000 = 0x8000D000

• PML1 Table Address:
o Starting Address: 0x8000D000
o Entry Address: 0x8000D000 + (106 × 8) = 0x8000D000 + 0x350 = 0x8000D350
o Entry Value: 0x12345678000001FF

28

Instructor: Muhammad Arif Butt, PhD

Example
Step 3: Extract Physical Page Number from PML1 Entry
• PML1 Entry: 0x12345678000001FF
• Extract bits 39-12 (Physical Page Number):

o PML1 Entry in binary: 0001 0010 0011 0100 0101 0110 0111 1000 0000 0000 0000 0000 0000 0001 1111
1111

o Bits 39-12: 0001001000110100010101100111 (28 bits)
o Physical Page Number: 0x1234567

Step 4: Generate Final Physical Address
• Formula: Physical Address = (Physical Page Number << 12) | Page Offset
• Calculation:

o Physical Page Number: 0x1234567
o Page Offset: 0x678
o Physical Address: (0x1234567 << 12) | 0x678
o Physical Address: 0x1234567000 | 0x678
o Final Physical Address: 0x1234567678

29

Instructor: Muhammad Arif Butt, PhD

Memory Management Related Info in /proc/ File System
System-wide Memory Information
•/proc/meminfo → Overall memory statistics (total, free, available, buffers, cached, swap, etc.).
•/proc/vmstat → Detailed virtual memory statistics (page ins/outs, faults, swaps, NUMA stats).
•/proc/zoneinfo → Info about memory zones (DMA, Normal, HighMem).
•/proc/pagetypeinfo → Breakdown of free pages by migration type and order.
•/proc/buddyinfo → Buddy allocator information (free blocks of various sizes).
•/proc/kpagecount → For each physical page frame, how many times it is mapped.
•/proc/kpageflags → Flags describing state of each physical page.
•/proc/kpagecgroup → Memory cgroup ownership of pages.
•/proc/sys/vm/ → Tunable virtual memory parameters (e.g., swappiness, overcommit_memory, dirty_ratio).

Per-Process Virtual Memory Information (for each process /proc/[pid]/)
•/proc/[pid]/maps → Memory regions mapped by the process (heap, stack, shared libs, mmap).
•/proc/[pid]/smaps → Detailed memory usage per mapping (RSS, PSS, shared/private clean/dirty).
•/proc/[pid]/smaps_rollup → Summary of smaps (aggregated stats).
•/proc/[pid]/status → High-level memory usage of process (VmSize, VmRSS, VmData, VmStack).
•/proc/[pid]/statm → Memory usage in pages (size, resident, shared, text, data).
•/proc/[pid]/numa_maps → NUMA node allocation of a process’s memory.
•/proc/[pid]/pagemap → Mapping of virtual pages to physical frames.

Swap and Huge Pages
•/proc/swaps → Active swap areas and their usage.
•/proc/sys/vm/nr_hugepages → Number of huge pages configured.
•/proc/meminfo → (also reports huge page stats like HugePages_Total, HugePages_Free).

30

Instructor: Muhammad Arif Butt, PhD 31

To do

Coming to office hours does NOT mean that you are academically weak!

• Carefully review all concepts discussed in class and go through the slides
to build a clear understanding of non-contiguous memory allocation
schemes.

• Understand in detail the working of address translation from LA to PA in
a paged segmentation architecture.

• Practice address translation problems in paged segmentation.
• Draw memory layout diagrams for address translation of Intel 8080, 8086,

80386 and x86-64 architectures.
• Prepare a list of possible exam-style short/long questions from today’s

content and try answering them without notes.
• Form small groups to discuss and cross-check answers for numerical and

conceptual questions.

