

Operating Systems

Programming Assignment - 02

Introduction and Learning Objectives

This assignment is a hands-on project that takes you deep into the workings of a core Unix utility:
ls. Starting with a basic C implementation, you will incrementally add advanced features, mirroring
the capabilities of the standard ls command in a GNU/Linux environment. This project is designed
to strengthen your understanding of file systems, system calls, and the professional practices used to
build robust command-line tools.

The goal is to move beyond basic programming and master the design and implementation of
system-level software. You will learn to parse command-line options, manage file metadata, format
output professionally, and manage the project's evolution with a disciplined Git workflow, including
versioned releases for each new feature.

By the end of this assignment, you will have demonstrated proficiency in:

• System Call Programming: Using essential system calls like stat(), lstat(), readdir(),
getpwuid(), and getgrgid() to interact with the file system.

• Data Structures & Algorithms: Using dynamic arrays and standard library sorting
algorithms (qsort) to manage and present file system data.

• Command-Line Argument Parsing: Implementing logic to handle command-line options
such as -l and -R.

• Output Formatting: Crafting detailed, column-aligned, and colorized output similar to
professional command-line utilities.

• Build Automation: Using a Makefile to manage the compilation and build process of your C
application.

• Professional Git Workflow: Using branches for features, and creating versioned tags and
releases on GitHub.

The Scenario: Re-engineering the ls Utility

You will begin with a simple, functional ls program and evolve it by implementing a series of
advanced features in distinct stages. Each stage will introduce a new capability—such as the long
listing format (-l), alphabetical sorting, colorized output, and recursive listing (-R). A key constraint
is to extend the same base code throughout the project without making major structural changes.

To prepare for this journey and to assist you in your development, the following resources are
provided:

• It is mandatory to first watch the making of ls video to grasp the foundational concepts of
how the utility is built from the ground up.

• Your starting point is the ls-v1.0.0 program, which is available for download directly from
the instructor's GitHub account.

• For implementing complex features like the long-listing format, a repository of helper code
examples is provided. This repository contains small, focused programs that demonstrate
how to:

o Retrieve file metadata (permissions, link count, size) using the stat() system call.

Instructor: Muhammad Arif Butt, PhD

2

o Resolve user and group IDs into human-readable names using getpwuid() and
getgrgid().

o Format file modification timestamps into a standard date and time string.

Feature-1: Project Setup and Initial Build

Concepts Covered: Git/GitHub, Project Scaffolding, Basic Makefile Usage

What you will do: Your first task is to set up your personal GitHub repository, populate it with the
instructor's starter code, and confirm that you can build the initial version. This establishes the
foundational project structure that you will extend in all subsequent features.
Task 1. Create and Clone Your GitHub Repository:

• Create a new public repository on GitHub. Name it exactly: ROLL_NO-OS-A02 (e.g.,
BSDSF23A001-OS-A02 (ALL UPPERCASE)).

• Initialize this repository with a README.md file. This is important as it makes the repository
immediately cloneable.

• Use the git clone command to clone this new, empty repository of yours to your local
machine. You will now have a local directory named ROLL_NO-OS-A02.

Task 2. Populate Your Project with the Starter Code:

• Fork, download or clone the ls-v1.0.0 starter project from the instructor's resources to a
temporary location on your computer.

• From the starter project, copy the following items directly into your ROLL_NO-OS-A02 local
repository folder:

o The entire src directory (which contains ls-v1.0.0.c).
o The Makefile.

Task 3. Create the Complete Project Structure:

• Navigate inside your ROLL_NO-OS-A02 directory. You have already copied over src and
Makefile.

• Now, use the standard Linux command for making new directories to create the remaining
folders needed for the assignment.

• Finally, use the appropriate command to create an empty file named REPORT.md.
• After this step, your ROLL_NO-OS-A02 directory must have the following complete structure:

(05 Marks)

Do not blindly copy-paste code from AI. You are
expected to understand the 'how' and 'why' of every line
you submit, and failure to demonstrate this to a TA will

result in a zero for the assignment.

ROLL_NO-OS-A02/
├── src/
│ └── ls-v1.0.0.c
├── bin/ # This directory will hold the compiled program
├── obj/ # This will be used for object files in later features
├── man/ # This will be used for the bonus man page task
├── Makefile # The build script for compilation
├── README.md # From when you created the repository
└── REPORT.md # Your analysis report for answering questions

Instructor: Muhammad Arif Butt, PhD

3

Task 4. Initial Build and Test:

• Before committing, it's crucial to verify that the project works in its new home. Use the make
utility to compile the starter code.

• After a successful build, an executable will be created in the bin/ directory. Run this
executable (e.g., ./bin/ls) to confirm it functions as expected.

Task 5. Commit and Push Your Initial Project:

• Now that your project is fully structured and tested, save this initial state to GitHub.
• Use the standard git workflow:

1. Add all the new files and directories (src, Makefile, bin, obj, man, REPORT.md) to the
staging area.

2. Commit your staged changes with a clear and descriptive message, such as "feat:
Initial project setup with starter code".

3. Push your commit to the main branch on GitHub.
Deliverables:

• A GitHub repository URL that follows the specified naming convention and contains the
complete, structured initial project, including the starter code and the REPORT.md file.

Feature-2: ls-v1.1.0 - Complete Long Listing Format
Concepts Covered: File Metadata, System Calls (stat, lstat), User/Group Resolution (getpwuid,
getgrgid), Time Formatting, Command-Line Argument Parsing

What you will do: You will add a feature that allows the user to use the -l option with ls to
display files inside a directory in a long listing format. The final output of this version should
resemble the ls -l format exactly. This will be version 1.1.0 of your utility.

Marks Distribution (15 Marks):

• Code Implementation (7 Marks): Correctly uses the specified system calls (stat,
getpwuid, etc.) and logic to gather all required metadata.

• Output Correctness (3 Marks): The output is correctly formatted and properly aligned,
exactly resembling the real ls -l.

• Git Workflow (2 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (3 Marks): The v1.1.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Create a Development Branch:

• From your main branch, create and switch to a new branch for this feature. A suitable name
would be feature-long-listing-v1.1.0.

Task 2. Implement Argument Parsing:

• Modify the main function in your C source file to detect if a -l command-line argument was
provided. The standard C library function getopt() is highly recommended for this.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

4

• Your program's logic should now branch: if -l is present, it should call a new function to
handle the long listing format; otherwise, it should fall back to the original simple display
logic.

Task 3. Implement the Long Listing Logic:

• To implement the long listing format, you will need to create a new C function that gathers
and prints detailed information for each file. Your implementation must use the following:

o stat() or lstat() for retrieving file metadata.
o getpwuid() and getgrgid() for resolving user and group ID numbers into human-

readable names.
o ctime() for formatting the file's modification timestamp.
o Custom permission formatting logic to convert the st_mode integer into the

familiar rwx string format, including handling of special bits.
Task 4. Build, Run, and Commit:

• Update your Makefile if necessary to accommodate any new files or changes.
• Build the entire project using make and run the resulting executable with the -l option to test

your implementation thoroughly. The output must be properly aligned in columns.
• Once working, use the standard git workflow to add all your modified files to the staging

area, and then commit them to your feature branch with a clear message.
Task 5. Tag and Release Version 1.1.0:

• First, merge your completed feature branch back into your main branch.
• Use the git tag command to create a new annotated tag. Name it exactly v1.1.0.
• Push your new tag to your remote repository on GitHub.
• On GitHub, navigate to the "Releases" section and draft a new release titled Version 1.1.0:

Complete Long Listing Format.
• Select the v1.1.0 tag you just pushed.
• In the "Attach binaries" section, upload your compiled ls executable.
• Publish the release.

Report Questions (for REPORT.md):

• What is the crucial difference between the stat() and lstat() system calls? In the context of
the ls command, when is it more appropriate to use lstat()?

• The st_mode field in struct stat is an integer that contains both the file type (e.g., regular
file, directory) and the permission bits. Explain how you can use bitwise operators (like &) and
predefined macros (like S_IFDIR or S_IRUSR) to extract this information.

Instructor: Muhammad Arif Butt, PhD

5

Feature-3: ls-v1.2.0 – Column Display (Down Then Across)
Concepts Covered: Output Formatting, Terminal I/O (ioctl), Data Structures, Dynamic Memory

What you will do: You will upgrade the default output of ls (when used without any options).
Instead of a single column, your program will now display files in multiple columns, formatted "down
then across," automatically adjusting to the width of the terminal and the length of the filenames.
The final output should mimic the default behavior of the standard ls utility. This will be version
1.2.0.

Marks Distribution (15 Marks):

• Code Implementation (7 Marks): Logic correctly determines the number of columns and
rows based on terminal width and filename lengths.

• Output Correctness (3 Marks): The output is correctly formatted in columns, aligned, and
adjusts properly to different terminal sizes.

• Git Workflow (2 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (3 Marks): The v1.2.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Merge and Create a New Branch:

• First, ensure your main branch is up-to-date by merging your completed long-listing feature
branch into it.

• From your main branch, create and switch to a new branch for this feature, for example:
feature-column-display-v1.2.0.

Task 2. Gather All Filenames First:

• The logic for column display requires knowing all filenames and the longest filename before
you can start printing.

• Modify your program's default behavior:

o Read all directory entries into a dynamically allocated array of strings.
o While doing so, keep track of the length of the longest filename.

Task 3. Calculate Column Layout:

• Your program needs to determine how many columns can fit on the screen. The calculation
depends on:

o Terminal Width: You can get the terminal width programmatically. The ioctl
system call with the TIOCGWINSZ request is the standard way to do this. If ioctl is
unavailable, you can fall back to a fixed width (e.g., 80 characters).

o Maximum Filename Length: Use the length of the longest filename you found in
the previous step. Add a small buffer for spacing between columns (e.g., 2 spaces).

o Calculation: The number of columns is terminal_width / (max_filename_length +
spacing). The number of rows needed can then be calculated based on the total
number of files.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

6

Task 4. Implement "Down Then Across" Printing:

• This is the most complex part of the logic. You cannot simply iterate through your array of
filenames and print them.

• You must iterate row by row. For each row, you will print the items that belong in that row
from each column. For example, to print the first row, you would print filenames[0], then
filenames[0 + num_rows], then filenames[0 + 2*num_rows], and so on, for each column.

• Ensure each item is padded with spaces to align with the next column correctly.
Task 5. Build, Run, and Commit:

• Build the project using make and run your ls command without any options.
• Resize your terminal window and run it again to ensure the column layout adapts correctly.
• Once the output is correct, commit your changes to your feature branch.

Task 6. Tag and Release Version 1.2.0:

• Merge your completed feature branch back into main.
• Create a new annotated tag named exactly v1.2.0.
• Push the tag to GitHub.
• On GitHub, draft a new release titled Version 1.2.0: Column Display.
• Select the v1.2.0 tag, attach your compiled ls binary, and publish the release.

Report Questions (for REPORT.md):

• Explain the general logic for printing items in a "down then across" columnar format. Why is
a simple single loop through the list of filenames insufficient for this task?

• What is the purpose of the ioctl system call in this context? What would be the limitations of
your program if you only used a fixed-width fallback (e.g., 80 columns) instead of detecting
the terminal size?

Instructor: Muhammad Arif Butt, PhD

7

Feature-4: ls-v1.3.0 – Horizontal Column Display (-x Option)

Concepts Covered: Output Formatting Logic, Command-Line Argument Parsing, State
Management

What you will do: You will extend your ls utility by adding a new display mode: a simple
horizontal (row-major) column layout, triggered by the -x flag. Unlike the default "down then across"
format, this mode lists files from left to right, wrapping to the next line only when the current line is
full. This provides a clear contrast in implementation logic and mimics another standard ls
behavior. This will be version 1.3.0.

Marks Distribution (15 Marks):

• Code Implementation (7 Marks): Argument parsing correctly handles the new -x flag, and
the horizontal printing logic is implemented correctly.

• Output Correctness (3 Marks): The ls -x output is correctly formatted horizontally and
wraps based on terminal width. The default ls output remains "down then across".

• Git Workflow (2 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (3 Marks): The v1.3.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Merge and Create a New Branch:

• First, ensure your main branch is up-to-date by merging your completed column-display
feature branch (v1.2.0) into it.

• From your main branch, create and switch to a new branch for this feature, for example:
feature-horizontal-display-v1.3.0.

Task 2. Extend Argument Parsing for the -x Flag:

• Modify your getopt() loop in the main function to recognize the new -x option.
• You will need a way to manage the state of which display mode is selected (e.g., long-listing,

horizontal, or default vertical). A simple integer or enum flag variable is a good way to track
this. The presence of -x should set this flag.

Task 3. Implement the Horizontal Display Logic:

• Create a new C function dedicated to printing in the horizontal format. This logic is
significantly different and simpler than the "down then across" method.

• The implementation should:
1. Determine the terminal width and calculate the width of each column (based on the

longest filename, just as in the previous feature).
2. Loop through your array of filenames.
3. For each filename, print it, padded with spaces to fill the column width.
4. Keep track of the current horizontal position on the screen. If printing the next

filename would exceed the terminal width, print a newline character (\n) and reset
your horizontal position counter before printing the filename.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

8

Task 4. Integrate the New Display Mode:

• In your main do_ls function (or equivalent), after you have read all the filenames into an
array, you must now check your display mode flag.

• Based on the flag, call the correct display function: call your long-listing function if -l was
present, your new horizontal display function if -x was present, or your original "down then
across" function if no display option was given.

Task 5. Build, Run, and Commit:

• Build the project using make. Test your program thoroughly:
o ./bin/ls (should show "down then across" columns)
o ./bin/ls -l (should show long listing format)
o ./bin/ls -x (should now show horizontal "across" columns)

• Once all modes work correctly, commit your changes to your feature branch.
Task 6. Tag and Release Version 1.3.0:

• Merge your completed feature branch back into main.
• Create a new annotated tag named exactly v1.3.0.
• Push the tag to GitHub.
• On GitHub, draft a new release titled Version 1.3.0: Horizontal Column Display (-x).
• Select the v1.3.0 tag, attach your compiled ls binary, and publish the release.

Report Questions (for REPORT.md):

• Compare the implementation complexity of the "down then across" (vertical) printing logic
versus the "across" (horizontal) printing logic. Which one requires more pre-calculation and
why?

• Describe the strategy you used in your code to manage the different display modes (-l, -x,
and default). How did your program decide which function to call for printing?

Instructor: Muhammad Arif Butt, PhD

9

Feature-5: ls-v1.4.0 – Alphabetical Sort

Concepts Covered: Dynamic Memory, Arrays of Pointers, Sorting Algorithms (qsort), Function
Pointers

What you will do: You will modify the default behavior of ls to display directory contents in
alphabetical order. This is a standard feature that users expect. The implementation requires
reading all directory entries into memory, sorting them, and then displaying the result using your
existing column-display logic. This will be version 1.4.0.

Marks Distribution (15 Marks):

• Code Implementation (7 Marks): Correctly reads all entries into a dynamic array and uses
qsort() with a proper string comparison function.

• Output Correctness (3 Marks): The output of the default ls command (and -x and -l) is
now verifiably sorted alphabetically.

• Git Workflow (2 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (3 Marks): The v1.4.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Merge and Create a New Branch:

• First, ensure your main branch is up-to-date by merging your completed horizontal-display
feature branch (v1.3.0) into it.

• From your main branch, create and switch to a new branch for this feature, for example:
feature-alphabetical-sort-v1.4.0.

Task 2. Integrate Sorting into the Directory Reading Logic:

• Your logic from previous features already reads all filenames into a dynamic array. Now, you
will add the sorting step immediately after reading is complete, but before any display
function is called.

• Use the standard C library function qsort() to sort the array of filenames.
• To use qsort(), you must provide it with a comparison function. You will need to write a

simple helper function that takes two const void * pointers, casts them to string pointers
(char **), and uses strcmp() to determine their alphabetical order. This comparison function
is the key to telling qsort how to sort your specific data type (strings).

Task 3. Ensure Sorting Applies to All Display Modes:

• After the array of filenames has been sorted by qsort(), your existing logic will pass this
sorted array to the appropriate display function (long-listing, vertical column, or horizontal
column). No changes should be needed for the display functions themselves; they will now
simply render the pre-sorted list.

• Ensure you properly manage memory by freeing the array of strings and the array itself after
they have been displayed.

Task 4. (Optional) Handle Hidden Files:

• Your base ls code currently skips hidden files (those starting with .). The real ls command
only shows them when the -a flag is used. While implementing -a is not required for this

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

10

feature, ensure your sorting logic would work correctly even if hidden files were included in
the list.

Task 5. Build, Run, and Commit:

• Build the project using make and run your ls command with no options, -x, and -l on various
directories to verify that the output is always alphabetically sorted.

• Once the output is correct, commit your changes to your feature branch with a clear message.
Task 6. Tag and Release Version 1.4.0:

• Merge your completed feature branch back into main.
• Create a new annotated tag named exactly v1.4.0.
• Push the tag to GitHub.
• On GitHub, draft a new release titled Version 1.4.0: Alphabetical Sort.
• Select the v1.4.0 tag, attach your compiled ls binary, and publish the release.

Report Questions (for REPORT.md):

• Why is it necessary to read all directory entries into memory before you can sort them? What
are the potential drawbacks of this approach for directories containing millions of files?

• Explain the purpose and signature of the comparison function required by qsort(). How does
it work, and why must it take const void * arguments?

Instructor: Muhammad Arif Butt, PhD

11

Feature-6: ls-v1.5.0 – Colorized Output Based on File Type

Concepts Covered: File Metadata (stat), ANSI Escape Codes, String Manipulation

What you will do: You will enhance ls to provide a more user-friendly, colorized output. Based on
the file type, each filename will be printed in a specific color or style, making it easier to distinguish
between directories, executables, and other file types at a glance. This will be version 1.5.0.

Marks Distribution (10 Marks):

• Code Implementation (5 Marks): Logic correctly identifies file types using stat and
applies the correct ANSI escape codes for coloring.

• Output Correctness (2 Marks): The output of ls correctly displays colors for different file
types as specified.

• Git Workflow (1 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (2 Marks): The v1.5.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Merge and Create a New Branch:

• First, ensure your main branch is up-to-date by merging your completed alphabetical-sort
feature branch (v1.4.0) into it.

• From your main branch, create and switch to a new branch for this feature, for example:
feature-colorized-output-v1.5.0.

Task 2. Understand ANSI Escape Codes:

• Color in the Linux terminal is achieved by printing special character sequences known as
ANSI escape codes. For example, to print text in blue, you would print "\033[0;34m", then
your text, and then "\033[0m" to reset the color back to default.

• Create a set of #define macros or a helper function in your code to manage these color codes,
making your printing logic cleaner.

Task 3. Determine File Type Before Printing:

• To know which color to use, you must determine the type of each file before you print its
name. This requires using the stat() or lstat() system call to get the st_mode for each file.

• You will need to integrate this stat() call into your display loops. Before printing any
filename, get its st_mode.

Task 4. Implement the Coloring Logic:

• Write a function that takes a filename and its st_mode and prints it with the correct color
based on the following rules:

o Directory: Blue
o Executable: Green (Hint: Check the execute permission bits in st_mode).
o Tarballs (.tar, .gz, .zip): Red (Hint: Use strstr or check the filename extension).
o Symbolic Links: Pink (Hint: Use lstat and the S_ISLNK() macro).
o Special Files (e.g., device files, sockets): Reverse Video

(10 Marks)

Instructor: Muhammad Arif Butt, PhD

12

Task 5. Build, Run, and Commit:

• Build the project using make and run your ls command on a directory that contains a mix of
file types (directories, executables, archives, etc.) to verify that the coloring works as
specified.

• Once the output is correct, commit your changes to your feature branch.
Task 6. Tag and Release Version 1.5.0:

• Merge your completed feature branch back into main.
• Create a new annotated tag named exactly v1.5.0.
• Push the tag to GitHub.
• On GitHub, draft a new release titled Version 1.5.0: Colorized Output.
• Select the v1.5.0 tag, attach your compiled ls binary, and publish the release.

Report Questions (for REPORT.md):

• How do ANSI escape codes work to produce color in a standard Linux terminal? Show the
specific code sequence for printing text in green.

• To color an executable file, you need to check its permission bits. Explain which bits in the
st_mode field you need to check to determine if a file is executable by the owner, group, or
others.

Instructor: Muhammad Arif Butt, PhD

13

Feature-7: ls-v1.6.0 – Recursive Listing (-R Option)

Concepts Covered: Recursion, String Manipulation (Path Construction), File Metadata (stat),
Command-Line Argument Parsing

What you will do: You will implement one of the most powerful features of ls: recursive listing,
triggered by the -R flag. When this option is used, your program will list the contents of the initial
directory, and then for every subdirectory it finds, it will recursively descend into that subdirectory
and list its contents as well, continuing until all nested directories have been visited. This will be
version 1.6.0.

Marks Distribution (20 Marks):

• Code Implementation (10 Marks): The recursive logic is correctly implemented, and path
construction is handled properly for nested directories.

• Output Correctness (5 Marks): The output correctly mimics the structure of the standard
ls -R command, printing directory headers.

• Git Workflow (2 Marks): A separate branch is used for the feature and work is committed
correctly.

• Tag and Release (3 Marks): The v1.6.0 tag and corresponding GitHub Release with the
binary asset are created successfully.

Task 1. Merge and Create a New Branch:

• First, ensure your main branch is up-to-date by merging your completed colorized-output
feature branch (v1.5.0) into it.

• From your main branch, create and switch to a new branch for this feature, for example:
feature-recursive-listing-v1.6.0.

Task 2. Extend Argument Parsing for the -R Flag:

• Modify your getopt() loop in the main function to recognize the new -R option.
• Use a flag variable (e.g., int recursive_flag = 0;) to keep track of whether this option has

been enabled by the user.
Task 3. Modify the Core do_ls Function for Recursion:

• The core of this feature is to make your main directory-listing function recursive. It should
now perform the following steps:

o First, print the name of the directory it is about to list (e.g., printf("%s:\n",
dirname);). This is standard ls -R behavior.

o Read all directory entries into a dynamically allocated array and sort them (as you did
in previous features).

o Loop through the sorted list of entries to display them using your existing display logic
(e.g., column, long-listing, etc.).

o Crucially, inside this same loop, after printing an entry's name, you must check if
that entry is a directory.

o To do this, you must first construct the full path to the entry (e.g., by
combining the current directory's path and the entry's name, like
dirname/entryname).

(20 Marks)

Instructor: Muhammad Arif Butt, PhD

14

o Use lstat() on this full path to get the file's metadata.
o Use the S_ISDIR() macro on the st_mode field to check if it's a directory.

o If the entry is a directory (and its name is not . or ..), you must make a recursive
call to your do_ls function, passing the newly constructed full path as the argument.

Task 4. Build, Run, and Commit:

• Build the project using make.
• Test your implementation by running it on a directory that contains nested subdirectories

(e.g., ./bin/ls -R src). Verify that it correctly lists the top-level directory and then
recursively lists the contents of the subdirectories.

• Once the output is correct, commit your changes to your feature branch.
Task 5. Tag and Release Version 1.6.0:

• Merge your completed feature branch back into main.
• Create a new annotated tag named exactly v1.6.0.
• Push the tag to GitHub.
• On GitHub, draft a new release titled Version 1.6.0: Recursive Listing (-R).
• Select the v1.6.0 tag, attach your compiled ls binary, and publish the release.

Report Questions (for REPORT.md):

• In a recursive function, what is a "base case"? In the context of your recursive ls, what is the
base case that stops the recursion from continuing forever?

• Explain why it is essential to construct a full path (e.g., "parent_dir/subdir") before making a
recursive call. What would happen if you simply called do_ls("subdir") from within the
do_ls("parent_dir") function call?

Instructor: Muhammad Arif Butt, PhD

15

Viva-Voce and Final Submission
What you will do: This final part covers the steps to merge all your work, ensure your report is
complete, and submit the project for grading. The submission will be followed by a viva-voce where
you will be expected to defend and explain your work.

Marks Distribution (10 Marks):

• Final Report (5 Marks): All questions in REPORT.md are answered completely, clearly, and
thoughtfully.

• Final Git Workflow (5 Marks): The final feature branch is merged correctly, and all
branches are pushed to GitHub.

Task 1. Finalize your REPORT.md file

• Ensure all questions from all preceding features of the assignment are answered. Review
your answers to make sure they reflect a clear understanding of the concepts you've
implemented.

Task 2. Merge Your Final Branch

• Merge your final completed feature branch (e.g., feature-recursive-listing-v1.6.0 or
whichever is your last one) back into your main branch. This ensures that main contains the
complete and final version of your project.

Task 3. Push Everything to GitHub

• For grading, your instructor needs to see not only the final code but also the history of your
development process contained in your feature branches.

• Use the appropriate git command to push your updated main branch to GitHub.
• Also, use the git push command to push all of your feature branches to your remote

repository. This includes branches like feature-long-listing-v1.1.0, feature-column-
display-v1.2.0, feature-alphabetical-sort-v1.4.0, etc.

Grading Rubric (Total: 100 Marks)

Part Task Marks
Part 1 Project Setup and Initial Build 5
Part 2 ls-v1.1.0 – Complete Long Listing Format 15
Part 3 ls-v1.2.0 – Column Display (Down Then Across) 15
Part 4 ls-v1.3.0 – Horizontal Column Display (-x) 15
Part 5 ls-v1.4.0 – Alphabetical Sort 15
Part 6 ls-v1.5.0 – Colorized Output 10
Part 7 ls-v1.6.0 – Recursive Listing (-R) 20
Part 8 Final Submission (Report, Final Git Workflow) & Viva 5
Total

100

Happy Learning with Arif Butt

(5 Marks)

