

Operating Systems

Programming Assignment - 03

Introduction and Learning Objectives

This assignment is a hands-on project that will guide you through the creation of a functional
command-line interpreter, or "shell," similar to bash or zsh. Building a shell is a quintessential rite of
passage in the study of operating systems, as it touches upon many fundamental concepts: process
creation and control, file descriptors, signal handling, I/O redirection, and inter-process
communication. You will start with a basic shell that can execute external commands and
incrementally add professional features, gaining a deep, practical understanding of how the operating
system works from the user's perspective.

The goal of this project is not just to write a single program, but to master the complete development
lifecycle of a complex piece of system software. You will learn how core shell features are implemented,
how to manage a project's evolution with a disciplined Git workflow using tags and releases, and how
to integrate powerful third-party libraries to add professional functionality like command history and
tab completion.

By the end of this assignment, you will have demonstrated a comprehensive ability to:

• Understand and Manage the Process Lifecycle: Master the fork-exec-wait cycle that
underpins the execution of nearly every command in a UNIX-like environment.

• Implement Internal Shell Commands: Distinguish between external commands and built-
in commands (like cd, exit, jobs), and implement the logic for those that must run within the
shell's own process.

• Manage Command History: Implement the mechanisms to store, display (history), and re-
execute (!n) previous commands.

• Integrate External Libraries: Enhance your application by linking against and using a
third-party library (GNU Readline) to provide advanced user-interface features.

• Control I/O and Process Communication: Implement the powerful shell features of
input/output redirection (<, >) and pipes (|) by manipulating file descriptors.

• Implement Multitasking Features: Add support for command chaining (;) and background
process execution (&), including the proper handling of "zombie" processes.

• Create Basic Scripting Logic: Build a foundational if-then-else-fi control structure,
taking the first step towards creating a true scripting language.

• Utilize a Professional Git Workflow: Use Git tags to mark specific versions of your code and
create formal, versioned software releases on GitHub.

The Scenario & Resources

Your journey will begin with a simple but functional starter project that contains the core logic of a
UNIX shell, already organized into a modular structure (main.c, shell.c, execute.c). Your task is to
take this base shell and incrementally build upon it, adding a series of advanced features. Each
completed feature will represent a new, versioned release of your shell, tracked meticulously through
your Git repository.

To succeed, you must first familiarize yourself with the foundational concepts and the provided starter
code. The following resources are essential and will guide your work:

Instructor: Muhammad Arif Butt, PhD

2

• To fully grasp the core logic of the starter code you will be working with, it is essential to first
watch the Instructor's video lecture on building a basic shell. This video explains the
fork-exec-wait cycle and the modular design of the initial code.

• Your journey begins by cloning the Starter code repository on GitHub. This provides you
with the complete, working base shell that you will extend.

Flowcharts of the shell's core logic is provided below for your reference.

Do not blindly copy-paste code from AI. You are
expected to understand the 'how' and 'why' of every line
you submit, and failure to demonstrate this to a TA will

result in a zero for the assignment.

Display prompt & wait

Read command line

Parse & Tokenize

Empty

Built-in
Command

Need Path
lookup

Executable
found

Fork()
Create child process

Execute Built in found

Resolve in path

Command not found

No

No

No

Yes

Yes

Yes

No

Yes

Fork() System call

Child or
Parent

Child Process
PID = 0

exec() system call
Replace process image

Setup Environment
Redirections, signals,

file descriptors

Exec
Success

Run program

exit() with status
Process Terminates

Exec error

Parent Process
Shell Continues

Background

Wait() System call
Block until child exist

Collect exit status

Job
Control

Return to prompt

Continue Shell

Handle Signals

Update Jobs

No

Yes

No

No

Yes

Child Parent

These two figures shows a flowchart that
illustrate the complete lifecycle of executing an
external command. The first chart (beginning
with START) details the preparation phase,
where the shell reads user input, parses it, and
validates the command, culminating in the
fork() system call. The second chart
(beginning with fork() System call) then details
the execution phase, showing the distinct
responsibilities of the new Child Process (which
runs the command) and the original Parent
Process (which waits for and manages the child).

Instructor: Muhammad Arif Butt, PhD

3

Feature-1: The Starting Point (Release 1 - The Base Shell)
What you will do: In this feature, you will set up your own GitHub repository, populate it with the
provided starter shell code, build and test the shell, and then create your first formal release.

The base code for this assignment is located within the instructor's OS-Codes repository on GitHub.
You will retrieve this code and use it to populate your own assignment repository. After setup, your
project should contain the following structure and files.

Project Directory Structure

Task 1: Set Up Repository and Add Starter Code

• Create a public GitHub repository named ROLL_NO-OS-A03.
• Clone it to your local machine.
• Get the starter code from the instructor’s GitHub repository.
• Copy the following into your project folder:

o src
o include
o Makefile

Task 2: Build and Test

• Navigate into your ROLL_NO-OS-A03 directory.
• Use make to build the project.
• Run the shell: ./bin/myshell. Test it with simple commands like ls -l, pwd, and whoami to

verify it works.

Task 4: Commit and Push the Base Code

• Use the standard git workflow to add all the project files to the staging area.
• Commit the files with a message like "feat: Initial project setup with base shell

code".
• Push this commit to your main branch on GitHub.

Task 5: Create Your First Release (Release 1)

• Create an annotated git tag named v1.0-base for the initial version and push it to GitHub.
• Go to Releases → Draft a new release.

• Select the v1.0-base tag you just pushed.

(05 Marks)

ROLL_NO-OS-A03/
├── src/
│ ├── main.c
│ ├── shell.c
│ └── execute.c
├── include/
│ └── shell.h
├── Makefile
└── README.md

Instructor: Muhammad Arif Butt, PhD

4

• Title the release Release 1 - The Base Shell.
• Add a short description: Initial unmodified starter code.
• Attach the compiled bin/myshell binary.
• Finally, publish the release.

Development Workflow for All Subsequent Features
For every feature you implement from this point forward (Feature-2 through Feature-8), you are
required to follow the complete professional Git workflow outlined below. These steps are a core part
of the assignment and will be checked for each feature.
The workflow for EACH feature is as follows:

1. Start the Feature:
o Ensure your main branch is up-to-date by merging the previous feature's branch into

it.
o Create and switch to a new, dedicated branch for the feature you are about to start

(e.g., feature-built-ins).
2. Implement and Commit:

o Write the code and make the necessary changes to implement the feature's
requirements.

o Build and test your implementation thoroughly.
o Once the feature is working correctly, commit your changes to your feature branch

with a clear, descriptive message.
3. Finalize and Release the Feature:

o Merge your completed feature branch back into your main branch.
o Create a new annotated tag corresponding to the feature's version (e.g., v2, v3, etc.).
o Push the new tag to your GitHub repository.
o On GitHub, navigate to "Releases" and draft a new release.
o Select the tag you just pushed, give the release a descriptive title, attach your

compiled bin/myshell binary as an asset, and publish it.
This entire cycle must be completed for each feature before you begin the next one.

Instructor: Muhammad Arif Butt, PhD

5

Feature-2: Built-in Commands
Concepts Covered: Process Model (Parent vs. Child), Built-in Commands, System Calls (chdir),
Git Branching, Git Tagging & Releases
What you will do: Your base shell can only run external commands by creating a child process.
However, some commands, like cd or exit, must be executed by the shell process itself. In this
feature, you will add support for these essential "built-in" commands.

Task 1. Create a Development Branch
From your main branch, create and switch to a new branch for this feature. A suitable name would
be feature-built-ins.
Task 2. Implement the Built-in Commands
You are required to implement the following commands. The logic for these commands should be
added directly into your shell's source code.

• exit: Terminates the shell gracefully.
• cd <directory>: Changes the current working directory. Use the chdir() system call and

remember to handle errors (e.g., if the directory does not exist).
• help: Displays a brief help message listing all the built-in commands you have implemented.
• jobs: For now, this is a placeholder. It should just print a message like "Job control not

yet implemented."
Task 3. Modify the Main Loop to Handle Built-ins
This is the most critical logic change. Before your code calls fork() to run an external command, you
must first check if the command entered by the user is one of your new built-ins.

• Implementation Hint: A good way to organize this is to create a new function, for example:
int handle_builtin(char** arglist);. This function can check if arglist[0] is a built-in
command (like "cd", "exit", etc.). If it is, the function should execute the command's logic and
return 1 (to signal that the command was handled). If it's not a built-in, it should return 0. In
your main loop, you will now only call your external execute() function if handle_builtin()
returns 0.

Task 4. Build, Run, and Commit
• Use make to build your updated shell.
• Test your new commands thoroughly. Verify that exit closes the shell, cd changes the

directory (you can check with pwd executed as an external command), and help and jobs
print their messages.

• Once everything is working correctly, use the standard git workflow to add your modified
files and commit them to your feature-built-ins branch with a clear message.

(10 Marks)

Instructor: Muhammad Arif Butt, PhD

6

Feature-3: Command History
Concepts Covered: Data Structures (Arrays/Lists), String Manipulation, Built-in Commands, Git
Branching, Git Tagging & Releases
What you will do: A good shell remembers what you have typed. In this feature, you will add memory
to your shell by implementing a command history. This includes storing recent commands, displaying
them with a new history command, and re-executing them with the !n syntax.
Task 1. Create a Development Branch

• First, merge your completed feature-built-ins branch into main.
• From your updated main branch, create and switch to a new branch for this feature. A suitable

name would be feature-history.
Task 2. Implement History Storage

• You need a data structure to store the commands. A simple array of strings (e.g., char*
history[HISTORY_SIZE];) is a great place to start.

• Modify your main loop so that after a command is successfully read, it is added to this history
storage. You will need to manage the array, keeping track of the current command count and
handling the case where the history is full (e.g., by overwriting the oldest command).

• Your shell must store at least the last 20 commands.
Task 3. Implement the history Built-in Command

• Add history to your list of built-in commands (in your handle_builtin function or equivalent).
• When the user types history, your shell should loop through your history storage and print

each command, preceded by its line number (starting from 1).
Task 4. Implement the !n Re-execution Feature

• This is a special type of command that needs to be handled before tokenization or even adding
the command to the history.

• In your main loop, after reading a command line, check if the first character is !.
o If it is, parse the number n that follows.
o Retrieve the n-th command string from your history storage.
o Replace the !n command line with the retrieved command string, and then let your

shell's main loop proceed to tokenize and execute it as if the user had typed it directly.
o Remember to handle errors, such as if n is out of bounds.

Task 5. Build, Run, and Commit
• Use make to build your shell.
• Test the history features thoroughly:

o Type several commands.
o Use the history command to see if they are listed correctly with numbers.
o Use !n to re-execute a command from the list.

• Once everything works, add your modified files and commit them to your feature-history
branch.

(10 Marks)

Instructor: Muhammad Arif Butt, PhD

7

Feature-4: Tab Completion with Readline
Concepts Covered: External Library Integration (GNU Readline), Linking (-l flag), API Usage,
Command-line Editing, Tab Completion
What you will do: This feature is a hallmark of modern shells and dramatically improves usability.
You will integrate the powerful GNU Readline library to replace your basic command input function,
providing professional features like tab completion and advanced history navigation "out of the box."
Task 1. Merge and Create a New Branch:

• First, merge your completed feature-history branch into main.
• From your updated main branch, create and switch to a new branch for this feature. A suitable

name would be feature-readline.
Task 2. Implement the Readline Integration:

• You are required to integrate the readline library into your project. This involves the following
steps:

1. Replace your read_cmd function with calls to readline().
o In your C source files, you will need to include the necessary Readline headers:

#include <readline/readline.h> and #include <readline/history.h>.
o In your main loop, replace the call to your own read_cmd() function with a call

to readline(). The readline() function handles the prompt, user input, and
line editing automatically.

2. You must modify your Makefile to link against the library. Add -lreadline to your
linker flags variable (e.g., LDFLAGS).

Task 3. Implement Completion and Verify History:
• You must now ensure the new features provided by Readline are working as expected.

o Implement filename and command completion. When the user presses the Tab
key, the shell should automatically complete the name of a command or a file in the
current directory.

o The readline library provides history functionality out of the box. Ensure the
up/down arrow keys now correctly cycle through your command history.

• Implementation Hint: readline has its own functions for managing history (like
add_history()) and providing default completion. Read the documentation to see how to
properly initialize it. Start with the default completion behavior. The add_history() function
should be called after a command has been successfully read and is not empty.

• Useful resource: GNU Readline Library Documentation.
Task 4. Build, Run, and Commit:

• Use make to build your shell. If you get "undefined reference" errors for readline or
add_history, it means your Makefile was not updated correctly.

• Run your new shell and test the features:
o Press the Up and Down Arrow keys. You should be able to navigate through your

command history seamlessly.
o Type the beginning of a filename or a command (like ls) and press the Tab key.

Readline should automatically complete it for you.
• Once everything works, add your modified files and commit them to your feature-readline

branch.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

8

Feature-5: I/O Redirection and Pipes
Concepts Covered: File Descriptors (STDIN_FILENO, STDOUT_FILENO), I/O Redirection, Pipes,
System Calls (open, close, dup2, pipe), Process Management
What you will do: This feature is fundamental to the UNIX philosophy of small tools working
together. You'll implement the ability for your shell to redirect a command's input and output, and to
chain commands together using pipes. This will be version v5.
Task 1. Merge and Create a New Branch

• First, merge your completed feature-readline branch into main. From your updated main
branch, create and switch to a new branch for this feature. A suitable name would be
feature-io-redirection.

Task 2. Modify the Parser
• Your tokenize function (or a new parsing layer you create) must be updated to recognize the

special characters: <, >, and |. The parser needs to not only separate the command arguments
but also identify the redirection and pipe operators and the filenames or commands
associated with them. You may need to adjust your data structures to store this information.

Task 3. Implement I/O Redirection (< and >):
• Output Redirection (>): Implement the > operator. The command's standard output should

be written to the specified file instead of the console.
o Example: ls -l > file_list.txt

• Input Redirection (<): Implement the < operator. The command should take its standard
input from the specified file instead of the keyboard.

o Example: sort < file_list.txt
Task 4. Implement Pipes (|):
Implement the | operator. The standard output of the command on the left of the pipe must become
the standard input of the command on the right.

o Example: cat /etc/passwd | grep "root"
• Implementation Hints:

This task is all about file descriptor management. The key system calls are open(),
close(), dup2(), and pipe().

• For < and >: After you fork(), but before you execvp(), the child process must:
o open() the target file to get a new file descriptor.
o Use dup2() to clone this new file descriptor onto STDIN_FILENO (for <) or

STDOUT_FILENO (for >).
o close() the original file descriptor returned by open().

• For pipes:
o Call pipe() in the parent shell to create a read/write pair of file descriptors.
o fork() twice, creating two child processes (one for each side of the pipe).
o In the left child (the writer), dup2() the pipe's write-end to its STDOUT_FILENO.
o In the right child (the reader), dup2() the pipe's read-end to its STDIN_FILENO.
o Crucially, close() all unused pipe ends in all three processes (the

parent and both children) to avoid hangs.
Task 5. Build, Run, and Commit

• Use make to build your shell.
• Test each new feature thoroughly using the examples provided. Verify that files are created

correctly for > and that commands read from them for <. Ensure the pipe example works as
expected.

• Once everything works, add your modified files and commit them to your feature branch.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

9

Feature-6: Command Chaining and Background Execution
Concepts Covered: Process Management, Job Control, Zombie Proc esses, waitpid() with WNOHANG,
Parsing
What you will do: This feature adds multitasking capabilities to your shell. You will implement the
ability to run multiple commands sequentially from a single line using the semicolon (;) and to execute
commands in the background using the ampersand (&). This will also require you to properly manage
these background jobs and update your jobs command. This will be version v6.
Task 1. Merge and Create a New Branch:

• First, merge your completed feature-io-redirection branch into main.
• From your updated main branch, create and switch to a new branch for this feature. A suitable

name would be feature-multitasking.
Task 2. Implement Command Chaining (;):

• Requirement: Allow multiple commands to be entered on a single line, separated by
semicolons. They must be executed sequentially. The shell should wait for the first command
to complete before starting the next.

o Example: echo "First command" ; sleep 2 ; echo "Second command"
• Implementation: Your parser should first split the input line into separate command strings

based on the ; delimiter. Your main loop will then iterate through these command strings,
executing each one sequentially using your existing fork-exec-wait logic.

Task 3. Implement Background Execution (&):
• Requirement: If a command is followed by an ampersand, the shell should execute it in the

background and immediately display the prompt again for the next command, without waiting
for the background command to finish.

o Example: sleep 10 &
• Implementation: When your parser detects an & at the end of a command, it should set a flag.

When you fork() a process for a background command, the parent shell must not call
waitpid() for that child. Instead, it should store the child's PID in a list of background jobs
and continue its main loop immediately.

Task 4. Handle Zombie Processes and Update jobs:
• Requirement: Your jobs built-in command should now list all commands currently running

in the background, along with their Process IDs (PIDs).
• Implementation: You must handle "zombie" processes. A zombie is a completed background

process whose status has not yet been collected by the parent. In your main loop, before
prompting for new input, you must call waitpid(-1, &status, WNOHANG) in a loop.

o The WNOHANG option makes the call non-blocking; it will "reap" any completed child
process and return immediately if none have finished. This prevents your shell from
freezing while waiting for background jobs.

o As jobs are reaped, you should remove them from your list of active background jobs.
Your jobs command should then print the contents of this list.

Task 5. Build, Run, and Commit:
• Use make to build your shell.
• Test the features thoroughly: run chained commands with ;, run commands in the background

with &, and use jobs to see the list of active background processes.
• Once everything works, add your modified files and commit them to your feature-

multitasking branch.

(15 Marks)

Instructor: Muhammad Arif Butt, PhD

10

Feature-7: The if-then-else-fi Control Structure
Concepts Covered: Parsing, State Management, Conditional Logic, Process Exit Status
What you will do: This is your first step into creating a true scripting language. You will add the
ability for your shell to understand and execute a multi-line if-then-else-fi control structure,
allowing for conditional execution of commands based on the success or failure of another command.
This will be version v7.
Task 1. Merge and Create a New Branch:

• First, merge your completed feature-multitasking branch into main. From your updated
main branch, create and switch to a new branch for this feature. A suitable name would be
feature-if-then-else.

Task 2. Implement the if-then-else-fi Structure:
• Requirement: Implement an if-then-else-fi control structure. The shell must be able to

parse this multi-line block.
o if block: The shell executes the command following the if keyword.
o then block: If the command from the if block exits with a status of 0 (success), the

shell executes the commands between then and else (or fi).
o else block: If the command from the if block exits with a non-zero status (failure),

the shell executes the commands between else and fi. The else block is optional.
o fi block: This keyword marks the end of the entire if statement.

• Example Usage:

• Implementation Hints:
This is primarily a parsing and state management challenge. Your read_cmd function (or
equivalent) will need to be significantly smarter. When it sees an if, it must enter a special
mode to continue reading lines until it finds a matching fi.

• Store the lines for the then and else blocks in separate buffers (e.g., arrays of strings).
• Execute the command from the if block using your standard fork-exec-wait logic.
• After the command finishes, use the WEXITSTATUS(status) macro on the status

variable returned by waitpid() to get the child's actual exit code.
• Based on the exit code (0 for success, non-zero for failure), your shell must then choose

which block of commands to execute.
Task 3. Build, Run, and Commit:

• Use make to build your shell.
• Test the if structure thoroughly. Create test cases with and without the else block. Use

commands that are known to succeed (like true) and fail (like false or grep on a non-
existent pattern) to verify both branches of logic.

• Once it works correctly, add your modified files and commit them to your feature-if-then-
else branch..

(10 Marks)

Example with else
if grep "user" /etc/passwd > /dev/null
then
 echo "Found user"
else
 echo "User not found"
fi

Example without else
if [-f "myfile.txt"]
then
 echo "myfile.txt exists."
fi

Instructor: Muhammad Arif Butt, PhD

11

Feature-8: Shell Variables
Concepts Covered: Data Structures (Linked Lists/Hash Tables), String Manipulation, Parsing,
Memory Management
What you will do: A scripting language isn't complete without variables. In this final feature, you'll
add the ability for your shell to create, use, and modify variables. This involves implementing variable
assignment and expanding variables (e.g., $VARNAME) before a command is executed. This will be
version v8.
Task 1. Merge and Create a New Branch:

• First, merge your completed feature-if-then-else branch into main. From your updated main
branch, create and switch to a new branch for this feature. A suitable name would be feature-
variables.

Task 2. Implement Variable Assignment and Storage:
• Requirement: Implement a mechanism to assign values to variables. The standard shell

syntax is VARNAME=value (with no spaces around the =). This should be treated as a built-in
action.

o Example: MESSAGE="Hello, World!"
• Implementation:

o You will need an internal data structure to store the variables. A simple linked list of
key-value pairs is a good place to start. For better performance, a hash table could be
used.

o Your parser must be updated to identify assignment statements. A simple check is to
see if a token contains an = and has no spaces around it.

o When an assignment is detected, it should not be executed via fork(). Instead, a built-
in function should parse the VARNAME and value and store them in your data structure.

Task 3. Implement Variable Expansion:
• Requirement: Before executing any command, the shell must scan the arguments for words

beginning with a $. If found, it should replace the word (e.g., $MESSAGE) with the variable's
stored value.

o Example: echo $MESSAGE should print "Hello, World!".
• Implementation:

o Create a pre-execution "expansion" step. After tokenizing but before executing, loop
through the arglist. If an argument starts with $, look it up in your variable storage
and replace it with its value.

o Be very careful with memory management here. You will likely need to allocate new
memory for the expanded string.

Task 4. Implement the set Command:
• Requirement: Create a new built-in command (e.g., set or export) that prints all currently

defined variables and their values.
• Implementation: Add set to your handle_builtin function. When called, it should iterate

through your variable data structure and print each key-value pair.
Task 5. Build, Run, and Commit:

• Use make to build your shell.
• Test the variable features thoroughly:

1. Assign a value to a variable: MSG="hello"
2. Use the set command to verify it was stored.
3. Use the variable in a command: echo $MSG
4. Re-assign the variable and test again.

• Once it works correctly, add your modified files and commit them to your feature-variables
branch.

(10 Marks)

Instructor: Muhammad Arif Butt, PhD

12

Feature-9: Git Workflow
Concepts Covered: Collaborative Git Workflow (Forks, Issues, Pull Requests), Code Review
What you will do: This final part covers the unique submission process for this assignment, which
simulates a professional, collaborative Git workflow. You will use a secondary GitHub account to fork
your own project, report a mock "bug" by creating an issue, fix it, and submit a pull request. Finally,
you will act as the project maintainer to review and merge the fix.
Task 1. Prepare for the Pull Request Workflow

• For this task, you will need a secondary GitHub account. If you do not have one, you must
create a new one using a different email address. This is a mandatory step for simulating a
collaborative environment.

• Log out of your primary GitHub account (the one that owns the ROLL_NO-OS-A03 repository)
and log in with your new, secondary account.

Task 2. Fork and Create an Issue
• While logged in as your secondary user, navigate to the GitHub page of your primary

assignment repository (github.com/YourPrimaryUsername/ROLL_NO-OS-A03).
• In the top-right corner, click the Fork button. This will create a personal copy of your own

project under your secondary user's account.
• Now, go back to your primary repository's GitHub page. Navigate to the "Issues" tab and

create a New issue.
o Title: Choose a title for a mock bug or a minor feature. For example: Bug: 'help'

command does not list the 'set' command.
o Comment: Briefly describe the issue. For example: "The set command was added in a

previous feature, but the help command was not updated to include it in the list of
available built-ins."

o Submit the new issue.
Task 3. Fix the Issue and Submit a Pull Request

• Clone the forked repository (the one on your secondary account) to a new, separate location
on your local machine.

• In this new local copy, create a new branch to work on the fix (e.g., fix-help-command-bug).
• Implement the code changes necessary to "fix" the issue you reported. In the example above,

this would mean updating your help command's logic.
• Commit and push this new branch to your forked (secondary) repository.
• On the GitHub page of your forked repository, you will see a prompt to "Compare & pull

request". Click it.
• Review the changes and create the pull request. This will formally submit your fix for review

to the original (primary) repository.
Task 4. Review and Merge the Pull Request

• Log out of your secondary GitHub account and log back in with your primary account.
• Navigate to your primary assignment repository (ROLL_NO-OS-A03). You will see a new entry

in the "Pull requests" tab.
• As the project maintainer, click on the pull request to review it. Look at the "Files changed"

tab to see the proposed fix and ensure it is correct.
• If the fix is correct, merge the pull request. This will integrate the changes from your

secondary account's branch into your primary repository's main branch.
• Finally, on your local machine, navigate back to your original ROLL_NO-OS-A03 directory and

use git pull to sync the merged changes from GitHub.
Task 5. Push All Branches to GitHub

• For final grading, your instructor needs to see the history of your entire development process.
• Use the git push command to push all of your feature branches (e.g., feature-built-ins,

feature-history, feature-readline, etc.) from your local primary repository to GitHub.

(10 Marks)

Instructor: Muhammad Arif Butt, PhD

13

Viva-Voce and Final Submission
What you will do: This final part covers the steps to finalize your project's Git history and prepare
for the viva-voce. The submission will be followed by an oral defense where you will be expected to
demonstrate your shell and explain your code to determine your final grade.
Important Note on Grading: Your performance in the viva-voce will determine the marks
awarded for all preceding features (Features 2 through 8). You will be asked questions during
this session to assess your true understanding of the concepts you've implemented and the code you
have written. As stated in the academic integrity policy, failure to explain your own code will result
in a zero.
Task 1. Prepare for the Viva-Voce

• You must be prepared to demonstrate your shell and verbally explain the concepts behind
each feature you have implemented.

• Thoroughly review your own code, your Git history, and the core OS concepts related to each
feature. You must be able to explain the "how" and "why" of every part of your
implementation, from the fork-exec-wait cycle and built-in commands to I/O redirection and
shell variables.

Task 2. Merge Your Final Branch
• Merge your final completed feature branch, which should be feature-variables (or your

equivalent for Tag v8), back into your main branch. This ensures that main contains the
complete and final version of your project with all features integrated.

Task 3. Push Everything to GitHub
• For grading, your instructor needs to see not only the final code but also the history of your

development process contained in your feature branches.
• Use the appropriate git command to push your updated main branch to GitHub.
• Also, use the git command to push all of your feature branches to your remote repository.

This includes branches like feature-built-ins, feature-history & feature-readline etc.

Grading Rubric (Total: 100 Marks)

Feature Task Marks
Feature-1 The Starting Point (Release - 1) 05
Feature-2 Built-in Commands (Tag v2) 10
Feature-3 Command History (Tag v3) 10
Feature-4 Tab Completion with Readline (Tag v4) 15
Feature-5 I/O Redirection and Pipes (Tag v5) 15
Feature-6 Command Chaining and Background Execution (Tag v6) 15
Feature-7 The if-then-else-fi Control Structure (Tag v7) 10
Feature-8 Shell Variables (Tag v8) 10
Feature-9 Git Workflow 10
Total

100

Happy Learning with Arif Butt

